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Background: Early stage (preclinical) detection of Parkinson’s disease (PD) remains

challenged yet is crucial to both differentiate it from other disorders and facilitate timely

administration of neuroprotective treatment as it becomes available.

Objective: In a cross-validation paradigm, this work focused on two binary predictive

probability analyses: classification of early PD vs. controls and classification of early

PD vs. SWEDD (scans without evidence of dopamine deficit). It was hypothesized that

five distinct model types using combined non-motor and biomarker features would

distinguish early PD from controls with > 80% cross-validated (CV) accuracy, but that

the diverse nature of the SWEDD category would reduce early PD vs. SWEDD CV

classification accuracy and alter model-based feature selection.

Methods: Cross-sectional, baseline data was acquired from the Parkinson’s Progressive

Markers Initiative (PPMI). Logistic regression, general additive (GAM), decision tree,

random forest and XGBoost models were fitted using non-motor clinical and biomarker

features. Randomized train and test data partitions were created. Model classification CV

performance was compared using the area under the curve (AUC), sensitivity, specificity

and the Kappa statistic.

Results: All five models achieved >0.80 AUC CV accuracy to distinguish early PD from

controls. The GAM (CV AUC 0.928, sensitivity 0.898, specificity 0.897) and XGBoost

(CV AUC 0.923, sensitivity 0.875, specificity 0.897) models were the top classifiers.

Performance across all models was consistently lower in the early PD/SWEDD analyses,

where the highest performing models were XGBoost (CV AUC 0.863, sensitivity 0.905,

specificity 0.748) and random forest (CV AUC 0.822, sensitivity 0.809, specificity 0.721).

XGBoost detection of non-PD SWEDDmatched 1–2 years curated diagnoses in 81.25%

(13/16) cases. In both early PD/control and early PD/SWEDD analyses, and across
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all models, hyposmia was the single most important feature to classification; rapid

eye movement behavior disorder (questionnaire) was the next most commonly high

ranked feature. Alpha-synuclein was a feature of import to early PD/control but not early

PD/SWEDD classification and the Epworth Sleepiness scale was antithetically important

to the latter but not former.

Interpretation: Non-motor clinical and biomarker variables enable high CV

discrimination of early PD vs. controls but are less effective discriminating early PD

from SWEDD.

Keywords: predicting Parkinson’s, SWEDD, random forest, XGBoost, logistic regression

INTRODUCTION

The second most common neurodegenerative disease (1),
Parkinson’s disease (PD) does not have a sudden onset but
develops along a continuum. Indeed decades prior to emergence
of cardinal motor dysfunction approximately one-third of
substantia nigra pars compacta dopamine neurons may be lost
(2–4). Further, non-human primate research has confirmed gross
motor symptoms, such as bradykinesia, rigidity and resting
tremor, occur subsequent to 70% loss of striatum dopaminergic
synapses, verifying the development of pathology well in advance
of PD motor symptom onset (5, 6). This potential for insidious
development of PD pathology underlines the importance of
early detection.

As concluded in commentary (7), there is overwhelming
evidence of PD pathology incipience predating cardinal motor
symptoms (resting tremor, postural instability, rigidity, and
bradykinesia) likely stemming from early brainstem involvement
and manifested in non-motor sense alteration such as olfaction
and eye-movement behavior disruption. The olfactory system in
particular is a candidate entry point for environmental insults
that may be the inception point of pathological proteins (α-
synuclein and other proteins such as ubiquitin and Tau) of which
Lewy bodies are composed (8–11). Moreover, brainstem (e.g.,
the vagus nerve dorsal motor nucleus) and spinal cord Lewy
body pathology could also explain preclinical PD occurrence of
gastrointestinal complication and constipation (1, 12–14).

A prospective analysis demonstrated a 10% risk of conversion
of PD-asymptomatic relatives of PD patients positive for
hyposmia (olfactory deficit) to PD at 24 months from baseline
(15). Single-photon emission computed tomography (SPECT)
scans of 4 of 25 hyposmic relatives, asymptomatic for PD,
indicated dopamine transporter (DAT) uptake reduction but
at a subclinical level (16). Further, early stage PD hyposmia

Abbreviations: Aβ1−42, Amyloid beta 1−42; CSF, Cerebral spinal fluid;

DAT, Dopamine transporter; ESS, Epworth sleepiness scale; GAM, General

additive model; MoCA, Montreal cognitive assessment; PD, Parkinson’s disease;

pTau, Phosphorylated tau181; RDB, Rapid eye-movement behavior disorder;

RBDQ, Rapid eye-movement behavior disorder questionnaire; REML, Restricted

maximum likelihood; PPMI, Parkinson’s Progression Marker Initiative; SMOTE,

Synthetic minority oversampling technique; SPECT, Single-photon emission

computed tomography; SWEDD, Scans without evidence of dopamine deficit; Tp,

thin plate smoother function; Tree, Decision tree model; tTau, Total tau; XGBoost,

Extreme gradient boosting model.

is associated with reduced striatal dopamine uptake (15, 17),
and there is a particularly strong (positive) correlation between
putamen DAT uptake and hyposmia (17). In addition, hyposmia
has been reported associated with idiopathic rapid eye movement
(REM) behavior disorder (RBD), where 29 of 30 RBD patients
had RBD comorbid with hyposmia and 3 of 11 who underwent
SPECT scans had indication of nigrostriatal dopamine neuron
degeneration (18). RBD is a sleep disorder typified by vivid,
action-filled dreams, but most uniquely by loss of REM-sleep
muscle atonia with consequent dream enactment including
violent behavior such as punching (19). A high association
of hyposmia, RDB and beta amyloid 1–42 (Aβ1−42) with
cognitive decline has predicted cognitive decline 24 months after
assessment; male gender did not contribute to the predicted
cognitive impairment (20).

Individuals without PD but with hyposmia or RDB have

achieved a positive predictive value for PD of≥ 40% (21–23), and
in the majority of those with RBD a Lewy body disorder develops

(24). But RBD has shown a particular sensitivity to α-synuclein
pathology such as it occurs in PD (21, 25), and has a prevalence
in PD of ∼37–47% (26, 27) compared to the general population

prevalence of 5% (28).
Cerebral spinal fluid (CSF) constituents, readily accessible and

inexpensive to acquire, provide a window to central nervous
system pathological states (29). Relative to controls, research

on drug naïve early PD has demonstrated reduced levels of
CSF biomarkers associated with early PD pathology. Specifically,
lower CSF levels of phosphorylated tau181, (pTau), total tau
(tTau), amyloid beta 1−42 (Aβ1−42), and α-synuclein were found

in early PD relative to controls (30); findings that were confirmed
by the same research team in a subsequent study using a larger

cohort (31), though Aβ1−42 in this study was not significantly
lower in early PD relative to controls. In the first of the latter
two studies reduced levels of pTau and Aβ1−42 were associated

with PD diagnosis; reduced levels of α-synuclein and tTau were
associated with heightened motor disruption (30).

Prior to emergence of cardinal motor symptoms, early phase

PD diagnosis is further complicated by a category of pathology
that fulfills PD clinical diagnostic criteria but without evidence of

dopaminergic deficit- a PD lookalike. This particular pathology
category designated scans without evidence of dopaminergic

deficit (SWEDD) presents with some extent of parkinsonian
motor symptoms but normal striatal dopamine neuron status
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and DAT uptake. A range of 1–15% of those diagnosed with PD
demonstrate SWEDD group membership (32–34), and remain
in the SWEDD category for at least 4 years after diagnosis
(35). Accuracy of SPECT assessment in general, using visual
or sem-quantitative methods is reduced by the potential PD-
intermediate SWEDD condition (32, 35). SWEDD constitutes a
heterogeneous category; a small portion may represent a subtype
of PD, but most cases have other conditions (e.g., dystonia,
essential tremor, fragile X permutation, etc.), and most of those
categorized as SWEDD have been misdiagnosed (36).

There is an established early premotor-dysfunction phase of
PD (37) to which non-motor clinical variables, notably olfactory
acuity and RBD, as well CSF biomarkers (e.g., α-synuclein)
have demonstrated early PD stage detection sensitivity (38–
43). Hyposmia and RBD are not specific to PD, yet hyposmia
in particular has been the predictor of greatest import in
early PD predictive modeling (43), the dominant predictive
model driver for those with genetic risk (41), and of secondary
import only to imaging in other early PD predictive modeling
research (42). Biomarkers, including CSF α-synuclein, pTau
and tTau, can distinguish early PD from healthy controls
but are inadequate for screening (38, 39) and have <80%
diagnostic utility (29, 44, 45). Usage of both non-motor clinical
and biomarker variables may lend clinical variables (notably
hyposmia and RBDQ) enhanced PD-specific responsiveness, a
heightened PD-specific responsiveness derived from biomarker
(possibly alpha synuclein) putative PD-specific sensitivity (43).
Accordingly, development of predictive models that combine
non-motor clinical variables and biomarkers is a promising
avenue of research. Moreover, although DAT scan imaging
is arguably tantamount to a PD gold standard diagnostic
measure it is quite expensive to acquire, and considerably
less definitive distinguishing early PD from the SWEDD
condition (35).

There is a scarcity of cross-validated classification research
utilizing combined non-motor clinical and biomarker features
in predictive models to distinguish early PD from healthy
controls or from SWEDD. One such study (46) also included
dopaminergic-imaging markers while other research (43)
forwent imaging as a predictor and based model development
only on combined non-motor clinical and biomarker features.
The studies just referenced built models using data obtained
from Parkinson’s Progression Marker Initiative (PPMI), an
invaluable resource of longitudinal PD-related data.

The current work had 3 main objectives. The first objective
was to demonstrate a consistently high level of early PD/control
(binary) cross-validated classification accuracy across 5 distinct
models types utilizing non-motor clinical and biomarker
data sourced from the PPMI. It was posited that the five
algorithmically distinctmodels would classify idiopathic early PD
relative to healthy controls with high cross-validation accuracy
(i.e., AUC > 0.80) when applied to validation/test data unseen by
the models. Although each of the differing model algorithms was
not expected to perform identically, a close range of performance
among models if achieved would provide a level of consistency
further validating the early PD discriminatory usefulness of non-
motor clinical and biomarker variables.

The second objective was to broaden understanding of
the PD disease-predictor relationship by, in addition to
the early PD/control classification analysis, conducting an
early PD/SWEDD (binary) classification analysis. An early
PD/SWEDD analysis was prompted by preliminary assessments
suggesting predictor importance to model class prediction
might differ for early PD/SWEDD relative to early PD/control.
Moreover, because of the known diversity of the SWEDD
category (36) early PD/SWEDD discrimination was expected
to be less definitive and typified by lower AUC and other
performance metric scores when applied to validation/test data
unseen by the models. Of note, it was expected that modeling
early PD vs. SWEDD would result in a classifier(s) advantageous
for differentiation of SWEDD category patients without PD
pathology from those with incipient PD pathology. Such a
model could be used in clinical practice or research to reduce
SWEDD category heterogeneity. The third objective was simply
to report model selection and rank of features of import to early
PD/control vs. early PD/SWEDD classification. Differing feature
selection and rank of features by a given model between analyses
has clinical diagnostic and research implications.

There is never a guarantee that one model will outperform
another (47). Comparing performance of several models to
reveal the highest performing classifier(s) is one means to
potentially improve study caliber. The five distinct classifiers used
were logistic regression, binary general additive (GAM) (48–
51), decision tree (52, 53), random forest (54), and XGBoost
(55). Model classification performance was compared using the
receiver operator characteristic area under the curve (AUC),
sensitivity, specificity, general accuracy and the Kappa statistic.
Feature collinearity in all models was restricted (i.e., rs < 0.75)
and all models were tested on a validation partition unseen
by models during training. To the best of our knowledge,
unique to the current work was the set of five classifiers used
and the dual early PD/control and early PD/SWEDD analyses
approach adopted.

METHODS

Procedures
As already stipulated, classification performance was compared
for logistic regression, general additive (GAM) (48–51), decision
tree (52, 53), random forest (54), and XGBoost (55) models
in two separate analyses: early PD vs. control and early PD
vs. SWEDD (scans without evidence of dopamine deficit). This
amounted to building 10 (5 × 2) classifiers. The AUC was
the main performance metric. Sensitivity, specificity, general
accuracy and the Kappa static were also determined. The general
sequence of data analysis steps is depicted in Figure 1. Also
the two highest performing classifiers from the early PD vs.
control classification analyses were applied to SWEDD test data
to assess conversion of SWEDD to PD. The case-wise percentage
of model predicted SWEDD to PD conversion that conformed
to (available) longitudinal PPMI curated 12–36 months diagnosis
was then assessed. Further, the case-wise percentage of early PD
vs. SWEDD model sensitivity and specificity that conformed to
(available) PPMI curated longitudinal 12–36 months diagnoses
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FIGURE 1 | Analyses flow chart. CV, cross-validation; GAM, general additive

model; GLM, logistic re-gression; AUC, receiver operator characteristic area

under the curve; RF, random forest; SMOTE, synthetic minority oversampling

technique; SN, sensitivity, SPE, specificity; SWEDD, scans without evidence of

dopamine deficit.

was also determined for the two highest performing early
PD vs. SWEDD classifiers. Longitudinal 12–36 months DAT
scan mean putamen values provided an imaging measure
of disease.

After screening, the SWEDD minority class rate became
13% (43/338), and the random stratified training/validation data
split further reduced the SWEDD training cohort of just 22
cases (and 148 early PD). To improve data symmetry early
PD/SWEDDmodels were trained on SMOTE (syntheticminority
oversampling technique) subsampled data.

It is underlined that to prevent leakage of test data information
into training data, model features were selected only from
training data; models were trained only on training data. This
mitigated overly optimistic model performance estimates on
the test data. To ensure reproducibility, one specific seed value
was set prior to partitioning of data and model execution.
All data used can be obtained from https://github.com or the
corresponding author.

Participant Data
Data used in the preparation of this article was obtained from
the Parkinson’s Progression Markers Initiative (PPMI) database
(www.ppmi-info.org/data). For up-to-date information on
the study, visit www.ppmi-info.org. The PPMI is a landmark,
multicenter, longitudinal research effort mandated to identify
PD markers (4). It is a public-private partnership funded by
the Michael J. Fox Foundation for Parkinson’s Research and
the funding partners, include AbbVie, Allergan, Amathus
Therapeutics, Avid Radiopharmaceudicals, Biogen, BioLengend,
Bristol-Myers Squibb, Celgene, Denali Therapeutics, GE
Healthcare, Genentech, GSK, Lilly, Lundbeck, Merck, Meso
Scale Discovery, Pfizer, Piramal Imaging, Prevail Therapeutics,
Roche, Sanofi Genzyme, Servier, Takeda, Teva, UBC, Verily,
and Voyager.

Subject data was anonymized while also allowing individual
subjects to be tracked across different studies. Acquired subject
data (downloaded July 31, 2019) included three cohorts: 423 early
(de novo) PD, 196 healthy controls (controls or HC), and 64
scans without evidence of dopamine deficiency (SWEDD). With
respect to the models developed, only baseline data was used,
and such baseline data originated within 2 years of PPMI project
enrolment. It warrants mention that the PPMI early PD baseline
cohort is drug naïve but symptomatic.

After screening (see 2.4 Screening) and random stratified
partitioning of data in to train and validation (test) data sets,
train and validation data instances were as follows: the early
PD/control training data set, had 207 early PD (133 male) vs. 91
controls (55 male); the validation set had 88 early PD (59 male);
and 39 controls (26 male). The two top early PD/control models
were also tested on all 43 SWEDD and the 39 controls from the
early PD/control test set. For the early PD/SWEDD classification,
a SMOTE-based training set of 44 early PD (30 male) and 44
SWEDD (30 male) was used for all early PD/SWEDD model
training, except with respect to the decision tree. The early
PD/SWEDD decision tree model used SMOTE data, but SMOTE
data obtained during resampling, which had a higher AUC
compared to the model based on standard SMOTE subsampling
[See Supporting Information V Section Decision Tree Early PD
vs. SWEDD Classification Results (SMOTE-Based Model)]. This
resulted in a decision tree training set of 88 early PD (63 male)
and 66 SWEDD (41 male). The validation or test set used for
early PD/SWEDD (not altered or subsampled) consisted of 147
early PD (92 male) and 21 SWEDD (11 male).

Feature Elimination and Hyper-Parameter
Tuning
Final features (predictors), selected only from training set data,
were determined by model-based feature elimination coupled
with the AUC: models with features amounting to the highest
model AUC constituted the final models applied to the test data
sets. For tree-based models, caret package (56) internal cross-
validation (10-fold, 5 repeats) resampling was used to tune hyper-
parameters and arrive at the optimal feature set (see Modeling
and the caret package Supporting information IV). Stepwise
regression employing the Akaike information criterion (AIC)
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(57) was used for logistic regression feature elimination. GAM
models used the same features as logistic regression. For the
logistic regression GAM, the intent was to use the GAM to
supplement and corroborate GLM results but also as a distinct
classification model. The logistic regression GAM was executed
using the same stepwise regression features selected for logistic
regression. The caret package 0–100% ranking scale of feature
importance to classification was used. Model built-in indices of
feature rank is juxtaposed to carrot package feature ranking in
Supporting Information V.

Clinical Assessments and Cerebral Spinal
Fluid Assays
Features (14 total) in prior research (see introduction)
demonstrating promise discriminating early PD were assessed.
Biological predictors, the biomarkers, were cerebral spinal
fluid (CSF) levels of beta-amyloid 1-42 (Aβ1−42), α-synuclein,
tau phosphorylated at threonine 181 (pTau), and total tau
(tTau). With respect to biomarkers, because hemoglobin
contamination can influence the biologic measures, exclusion
of samples with > 200 ng/ml has been recommended (45);
this screening recommendation was adopted in the current
work. The non-motor clinical measures included anxiety,
depression, cognition, constipation, daytime sleepiness, rapid
eye movement sleep behavior disorder questionnaire (RBDQ)
(58) and olfactory acuity (hyposmia) based on University
of Pennsylvania Smell Identification Test (UPSIT) (59). The
latter was reverse scaled here: higher is proportional to lesser
olfactory acuity. The biomarkers are continuous variables, and
the clinical variables are continuous or semi-continuous scales.
Note, for all clinical measures, except cognition, higher scores
are generally suggestive of pathology while the reverse typically
holds for the biologics, where lower CSF biological values
suggest pathology.

Screening
The main screening criteria were complete records across all
modeled variables for a given subject’s data as well as low
hemoglobin blood contamination [< 200 ng/mL (45)]. Complete
imaging records (caudate and putamen SPECT DAT uptake)
and MDS-UPDRS III, (60) scale data were also required. Strict
adherence to the blood contamination criterion eliminated
131 cases, reducing the data-set to 151 controls, 328 early
PD, and 47 SWEDD. Control group case number was further
reduced by two missing UPDRS III scores, three missing anxiety
scores, two missing MoCA scores, and 14 missing striatal
DAT uptake values. For early PD, case number was further
reduced by 15 cases of incomplete RDBQ scores, two incomplete
instances of depression, one incomplete daytime sleepiness score,
three incomplete MoCA records, and 12 incomplete dopamine
transporter (DAT) uptake records. For SWEDD, there was
one ESS missing record, one missing MoCA record and two
missing olfaction records. Subsequent to this screening the final
number of participants was 468 (130 controls; 295 early PD;
43 SWEDD).

Imaging
Because dopamine active transporter (DAT) uptake and clinical
motor (MDS-UPDRS III) status measures are virtually ever-
present in PD assessments, they were included as background
indices to help quantify extent of pathology. Single Photon
Emission Computed Tomography (SPECT) dopamine
transporter (DAT) uptake (i.e., striatal binding ratio) data was
used as the striatal (dopamine) measure of neurodegenerative
status. A complete technical specification and operations SPEC
manual is provided by PPMI and is available at http://www.
ppmi-info.org/wp-content/uploads/2017/06/PPMI-TOM-V8_
09-March-2017.pdf.

Statistical Analyses
The type I error rate was set at.05 (α = 0.05). Statistical analysis
was conducted in R (61). The univariate distribution of all
variables was initially examined for indications of relative data
normality using descriptive statistics, density plots, and numeric
(62) analyses. Gender proportion within groups was assessed
with binomial tests; two-sample tests for equality of gender
proportion were used to assess gender proportion between early
PD and HC groups and early PD and SWEDD groups. Boxplots
were used to show the range, or spread of variable data values
for early PD, control and SWEDD groups. Bivariate variable
relationships were assessed with correlation tests and scatterplots.
The SPECT DAT values were included in these bivariate
assessments to help link the broadly acknowledged disease
indicator SPEC DAT with the non-motor clinical and biomarker
predictors; imaging values then, provided an indication of
disease-relation to predictors (but imaging was not included in
the classification analyses). Because the data was generally non-
normally distributed, robust t-tests (63) were used to compare
variables between groups. Models initially included (controlled
for) age, education and gender.

Collinearity can make logistic regression coefficients unstable,
less precise (64, 65). It can result in GAM concurvity (a form
of co-linearity where one smooth term approximates another)
(66). For tree models, however, concern for collinearity of
variables is controversial (67). But considering random forest,
for example, one of two or more correlated features can be
randomly selected without preference; impurity removed by
the selected feature potentially masks additional impurity that
could have been removed by the correlated features (68). Indeed,
with correlated features, less relevant features can take the place
of more importance features (69) and feature ranking can be
inaccurate (70). Because collinearity is certainly problematic
for logistic regression, can potentially bias feature selection,
ranking and hence classification of GAM and tree models, the
current work adopted a multicollinearity of cut off of rs =

0.75, which is relatively sensitive to pairwise correlations (71).
To prioritize unbiased feature selection and classification for all
models, features exceeding the cutoff were not combined within
the same model. Note however, that for all models, all 14 non-
motor clinical and biomarker features were included in initial
model-based feature elimination. The collinearity cut offwas only
applied to the final model feature set to increase reliability of
feature importance ranking and classification.
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The lone parametric model was logistic regression.
Details on logistic regression assumption assessments (see
Supporting information I) and the handling of assumption
violation can be found in Supporting information V [see
Sections Logistic Regression and General Additive Model
Classification Analyses, Early PD vs. Controls and Logistic
Regression and General Additive Classification Analysis,
Early PD vs. SWEDD (SMOTE-Based Model)]. The logistic
general additive model (GAM) was used to corroborate logistic
regression model (GLM) results. MoCA in the early PD/control
analysis and years of education in the early PD/ SWEDD analysis
violated linearity of the logit [Box-Tidwell (72)]. Transforms
were attempted (e.g., the square root, log, cube root) with only
minor improvement. Consequently, the offending two variables
were simply converted from continuous to categorical variables
(quartiles) but at the likely cost of information loss, information
retained by a GAM smoothing function applied to the same
variables. Accordingly, logistic regression GAMs in addition to
being distinct classification models, also added perspective to
logistic GLM output.

The GAM model thin plate smoother function (the default
smooth function in the mgcv package) (51) was the basis used.
The restricted maximum likelihood (REML) function (with
thin plate smoother as a random effects term) was chosen
as the smoothness selection method governing the extent of
wiggle in the wiggly parts of the thin plate smoother basis
function. The REML method was used because it effectively
penalizes overfitting (50). The degrees of freedom associated
with a smoothed predictor, initially set by REML, were checked
by ensuring the effective degrees of freedom (edf) of a given
smoothed predictor was less than k (the upper limit on
the degrees of freedom). The GAM parameter output and a
diagnostic qqplot is provided in Supporting Information II.
Deviance, pseudo R2 (73) and explained deviance values
of the logistic GLM and GAM respective models are in
Supporting Information V.

Classification Performance Metrics
The AUC, rather than simple misclassification error, was used
in the process of model-based feature elimination to select
optimal features. The AUC was also employed to select tree-
model optimal hyper-parameters settings using the caret package
(56). Early PD was the predicted class in the early PD/control
classification; SWEDD was the predicted class in the early
PD/SWEDD classification. Model performance was based on
model and cross-validated test set AUC, sensitivity, specificity,
accuracy and Kappa values. The latter performance metrics
are summarized in Section Model Classification Results. The
confusionmatrices for sensitivity, specificity, accuracy andKappa
are outlined in Supporting Information IV and further details
are provided in Supporting information III.

At the default 0.50 cut-off classification threshold predictive
classification probabilities > 0.50 are categorized as positive
events: early PD rather than control; SWEDD rather than
early PD. However, the default 0.50 cutoff often provides
a less than ideal balance of confusion matrix performance
metric values. Therefore, for each model, sensitivity, specificity,
Kappa and accuracy metrics were reported at the optimized

classification threshold (Supporting information V includes
confusion matrix performance metrics at the 0.50 cutoff). The
optimized model threshold was selected by the pROC package
(74) utilizing a modified (75) version of the Youden Index (76).
There were two exceptions where the optimal threshold point
of balanced of sensitivity and specificity was point closest to the
ROC curve top left. The AUC non-parametric method (77, 78)
was used as implemented in pROC (74) because it has relaxed
normality assumptions. In addition to AUC values and graphs
for each model, a roc test for correlated (referring to the same
response variable used by different models) ROC curves (74) was
used to determine if the two highest performing models from
each classification analyses significantly differed. Bonferroni
family-wise error correction was used for AUC comparison
between more than two models. In the current work, AUC ≥

80% but < 90% were regarded as indicative of good classification
performance; values ≥90% are regarded as an excellent level of
classification performance.

RESULTS

Following a descriptive statistics section, a summary of the
main model classification outcomes (4.0 Model classification
results) is provided. As specified in the methods section, only
cases satisfying data requirements (i.e., low blood contamination
with complete clinical and biologic data for all predictors)
were retained. Also subsampling, not used in the early
PD/control classification, was employed in the early PD/SWEDD
classification in aid of addressing the SWEDDminority class rate
of 13% (training set: 22/148).

Descriptive Statistics and t-Tests
Tables 1, 2 provide variable descriptive statistics and pairwise
(t-tests; Wilcox, 2005): Table 1 pertains to early PD vs. control
groups; Table 2 pertains to early PD vs. SWEDD. Density plots in
Supporting information V (see Figure SV-1) convey the largely
non-normal distribution of the variables. Nine of eleven (82%)
clinical and biologics in Table 1 significantly differed between
early PD and control groups. By contrast, only 3/11 (27%)
clinical and biologics significantly differed between early PD and
SWEDD groups in Table 2, two of which, Epworth sleepiness
scale (79) (ESS) and years of education, did not significantly
differ between early PD and control groups (Table 1). The clinical
variable University of Pennsylvania Smell Test (59), reverse-
scaled in the current work (Upsit-rev), was significantly higher
(higher reverse-scaled UPSIT is indicative of greater olfactory
loss, more severe hyposmia) in early PD compared to controls
as well as in early PD compared to SWEDD. The reverse-scaled
UPSIT values are otherwise identical to standard (non-reverse
scaled) UPSIT values. SPECT dopamine transporter uptake
(DAT uptake) was also significantly different across both groups.
Motor symptoms (MDS-UPDRS III) (60) significantly differed
between early PD and controls but not between early PD and
SWEDD. The number of years of education significantly differed
between early PD and SWEDD but not between early PD and
controls. With respect to gender proportions not tabulated, a
binomial test for controls revealed a proportion of 0.27 females,
which significantly differed from the expected proportion of 0.5
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TABLE 1 | Descriptive statistics and t-tests, early PD/controls.

N, 425 Early PD, n, 295: 192 male, 103 female HC, n, 130: 81 male, 49 female

M sd Mdn min max skew M sd Mdn min max skew t-testa

CLINICAL

Anxiety 33 10 31 20 63 1 29 7 27 20 53 1 p < 0.001

CNST 0 1 0 0 3 2 0 0 0 0 3 4 p < 0.001

ESS 6 3 6 0 17 1 6 3 5 0 15 1 p = 0.269

GDS 5 1 5 1 11 1 5 1 5 1 15 3 p = 0.270

MoCA 27 2 28 17 30 −1 28 1 28 27 30 0 p = 0.007

RBDQ 5 3 4 0 13 1 3 2 2 0 11 1 p < 0.001

Upsit-rev 22 8 22 5 43 0 7 5 6 2 26 2 p < 0.001

BIOLOGICS

AB 1−42 885 379 835 239 2572 1 1043 526 941 239 3297 1 p = 0.017

CSF a-syn 1488 662 1374 472 5257 2 1698 756 1581 601 4271 1 p = 0.004

pTau 14 5 13 8 33 1 17 9 15 8 74 3 p = 0.001

tTau 164 56 154 79 345 1 192 81 170 79 581 1 p = 0.004

SOCIODEM

Age 61 10 62 34 85 0 61 12 62 31 84 −1 p = 0.868

Yrs ed. 16 3 16 5 26 0 16 3 16 8 24 0 p = 0.167

DAT UPTAKE

CaudL 2 1 2 0 4 0 3 1 3 1 5 0 p < 0.001

CaudR 2 1 2 0 4 0 3 1 3 1 5 0 p < 0.001

PutL 1 0 1 0 2 1 2 1 2 1 4 0 p < 0.001

PutR 1 0 1 0 3 1 2 1 2 1 4 0 p < 0.001

ave. Caud 2 1 2 0 4 0 3 1 3 1 5 0 p < 0.001

ave. Put 1 0 1 0 2 1 2 1 2 1 4 0 p < 0.001

MOTOR

UPDRS III 22 10 21 5 62 1 1 2 0 0 10 2 p < 0.001

Anxiety, STAI trait subscale; CNST, MDS-UPDRS I NP1CNST: 0, none, 1, slight, 2, mild, 3, moderate, 4, severe; CaudL, left caudate; CaudR, right caudate; DAT, dopamine transporter;

PutL, left putamen; PutR, right putamen; av. Caud = (left + right caudate)/ 2; av. Put, (left + right putamen)/2; UPDRS III, MDS-UPDRS III total; Upsit-rev (olfactory loss) = University of

Pennsylvania Smell Identi-fication Test (a reverse scaled version); AB 1−42, beta-amyloid 1−42; CSF a-syn, cerebral spinal fluid α-synuclein; pTau, CSF phosphorylated Tau; tTau, CSF

total tau; MoCA, Montreal Cognitive Assessment; Yrs. ed., years of education; PD, early Parkinson’s patient data; HC, healthy control data; SocioDem, socio-demographic; arobust

t-test based on Wilcox, 2005.

(50%), p < 0.001. Similarly, a binomial test for the early PD
group indicated a proportion of 0.26 females, which significantly
differed from the expected 50%, p < 0.001. Finally, a binomial
test for the SWEDD group revealed a proportion of 0.30 females,
which significantly differed from the expected 50%, p < 0.01.
The proportion of male and female cases between early PD and
control groups did not significantly differ, χ2

1 = 0.303, p= 0.582.
Similarly, there was not a significant gender proportion difference
between early PD and SWEDD groups, χ2

1 = 0.788, p= 0.375.
Boxplots in Figure 2 visually encapsulate properties (e.g.,

dispersion) of a few clinical predictors across groups. Hyposmia
(Upsit-rev), rapid eyemovement behavior disorder questionnaire
(58) (RBDQ) and ESS proved to be important model variables.
Similarly, the boxplots in Figure 3 characterized cerebral spinal
fluid (CSF) biologic variables across groups.

Bivariate Analyses
Because of the largely non-normal distribution of variables,
non-parametric Spearman correlations were used rather than
Pearson r. Figure 4 depicts variable correlations for all data

ignoring groups. Circle size in Figure 4 is proportional to the
Spearman correlation: larger circles reflect stronger correlations;
correlations are color-coded, red indicating a negative correlation
and blue indicating a positive correlation. For example, a strong
negative association between hyposmia (reverse-scaled UPSIT:
Upsit-rev) and DAT scan putamen values is evident; a strong
negative association between hyposmia and DAT scan caudate
values is also evident. Additionally, strong positive correlations
exist among Aβ1−42, α-synuclein, p-Tau and t-Tau. A complete
correlation table is available in Supporting information V

(Table SV-20).
Multicollinearity beyond the cutoff (0.75) was found for

pairwise combinations of CSF pTau, tTau and α-synuclein, as
such these features were not combined in the same model (see
Methods, 2.6 regarding collinearity). The correlation between
pTau and tTau was rs= 0.98. The correlations of α-synuclein
and the tau proteins were rs= 0.82 for pTau and α-synuclein
and rs= 0.81 for tTau and α-synuclein. While several other
predictors demonstrated significant correlations (details available
on request) these correlations did not exceed 0.75. Figure 4
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TABLE 2 | Descriptive statistics and t-tests, early PD/SWEDD.

N, 338 Early PD, n, 295: 192 male, 103 female SWEDD, n, 43: 25 male, 18 female

M sd Mdn min max skew M sd Mdn min max skew t-testa

CLINICAL

Anxiety 33 10 31 20 63 1 36 10 32 22 59 1 p = 0.237

CNST 0 1 0 0 3 2 0 1 0 0 4 2 p = 0.956

ESS 6 3 6 0 17 1 8 5 8 0 19 0 p = 0.032

GDS 5 1 5 1 11 1 6 2 5 2 11 1 p = 0.299

MoCA 27 2 28 17 30 −1 27 3 27 18 30 −1 p = 0.563

RBDQ 5 3 4 0 13 1 6 3 5 0 13 0 p = 0.107

Upsit-rev 22 8 22 5 43 0 10 7 9 2 29 1 p < 0.001

BIOLOGICS

AB 1-42 885 379 835 239 2572 1 960 338 982 374 1897 0 p = 0.044

CSF a-syn 1488 662 1374 472 5257 2 1654 716 1370 488 4041 1 p = 0.188

pTau 14 5 13 8 33 1 15 5 14 8 33 1 p = 0.157

tTau 164 56 154 79 345 1 177 56 170 79 344 1 p = 0.112

SOCIODEM

Age 61 10 62 34 85 0 60 10 62 39 79 0 p = 0.573

Yrs ed. 16 3 16 5 26 0 15 4 15 8 24 0 p = 0.034

DAT UPTAKE

CaudL 2 1 2 0 4 0 3 1 3 1 4 0 p < 0.001

CaudR 2 1 2 0 4 0 3 1 3 1 4 0 p < 0.001

PutL 1 0 1 0 2 1 2 1 2 1 3 0 p < 0.001

PutR 1 0 1 0 3 1 2 1 2 1 3 0 p < 0.001

ave. Caud 2 1 2 0 4 0 3 1 3 1 4 0 p < 0.001

ave. Put 1 0 1 0 2 1 2 1 2 1 3 0 p < 0.001

MOTOR

UPDRS III 22 10 21 5 62 1 18 11 17 5 45 1 p = 0.007

Anxiety, trait subscale from the State-Trait Anxiety Inventory; CNST, constipation based on MDS-UPDRS I;CaudL, left caudate; CaudR, right caudate; PutL, left putamen; DAT, dopamine

transporter; PutR, right putamen; av. Caud, (left+ right caudate)/ 2; av. Put, (left+ right putamen)/2; UPDRS III, MDS-UPDRS III total; Upsit-rev (olfactory loss), University of Pennsylvania

Smell Identification Test (a reverse scaled version); AB 1-42, beta-amyloid1-421-421-42 1-42; CSF a-syn, cerebral spinal fluid α-synuclein; pTau, CSF phosphorylated Tau; tTau, CSF

total tau; MoCA, Montreal Cognitive Assessment; Yrs. ed., years of education; PD, early Parkinson’s patient data; HC, healthy control data; SocioDem, socio- demographic; arobust

t-test based on Wilcox, 2005.

conveys the finding that both Upsit-rev and MDS-UPDRS III
exhibited by far the strongest associations (negative associations)
with DAT uptake (bilateral caudate and putamen). DAT uptake
and MDS-UPDRS III, not modeled as predictors, are used here
only as indices of disease (see Section Statistical Analyses).
Figure 4 also indicates linkage of hyposmia (Upsit-rev) and
DAT putamen, caudate uptake values, as does Figure 5. Again,
olfactory loss or hyposmia is based on reverse-scaled UPSIT
scores (i.e., higher values reflect greater hyposmia).

MODEL CLASSIFICATION RESULTS

Parameters (for logistic regression) and hyper-parameter settings
are detailed in Supporting information V. As outlined in
Methods (Feature Elimination and Hyper-Parameter Tuning)
features, selected only from training set data, were determined
by model-specific (e.g., stepwise feature elimination using
AIC in regression) or built-in (e.g., mean Gini decrease in
random forest) feature elimination, with the final feature set
determined by the combination of features resulting in the

highest AUC. Summary graphs in Figures 6, 7 are based on
caret generic feature of importance ranking (56): it conveniently
ranks the import of predictors of the different model types
on the same common 0–100% scale but utilizes model-
specific information and can incorporate between predictor
correlation into calculation of feature importance. Figure 6

pertains to the early PD/control classification ranking of
features of importance; Figure 7 pertains to early PD/SWEDD
classification ranking of feature of importance. The caret
genetic ranking of features and the model-built-in ranking
were identical for the top ranked feature (hyposmia: Upsit-
rev), similar for the top 2nd and 3rd ranked features but
ranking typically varied to some extent for lower ranked
predictors. See the individual model feature importance tables
in Supporting information V for details. The GLM ranking
of features by coefficient z-scores was identical to the caret
generic feature ranking. The GAM features of importance are
not shown in Figures 6 and 7. The GAM model used the
same predictors as the logistic regression model (see GLM in
Figures 6, 7) but the rank of features to classification, with
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FIGURE 2 | Clinical predictor boxplots. (A) Upsit-rev, University of Pennsylvania Smell Inventory Test score reverse-scaled; (B) anxiety, trait subscale from the

State-Trait Anxiety Inventory; (C) RBDQ, rapid eye movement behavior disorder questionnaire; (D) ESS, Epworth Sleepiness Scale; HC, healthy controls; PD, early

PD; SWEDD, scans without evidence of dopamine deficit.

the exception of hyposmia, differed. In descending order of
importance the rank of features to GAM early PD/control
classification was hyposmia, RBDQ, age, pTau, constipation,
and MoCA. In descending order of importance the rank of
features to GAM early PD/SWEDD classification was Upsit-
rev, RDBQ, age, years of education, gender, and depression.
Overall, hyposmia was the top ranked predictor of importance
and RBD was consistently of high rank for all models in
both the early PD/control and early PD/SWEDD classification
analyses. Otherwise there was variation inmodel feature selection
and feature ranking between classification analyses, including
variation within the same model types across early PD/control
and early PD/SWEDD analyses.

The model performance results (from models applied
to test validation data unseen by models during training)
are summarized in Table 3. The AUC, accuracy, Kappa
statistic, sensitivity and specificity outcomes are listed. Table 3
superscript notation reflects tree-model k-fold resampling
of tuning parameters and if subsampling (i.e., synthetic
minority oversampling technique [SMOTE]) was used.
SMOTE was used only to augment the early PD/SWEDD
training data.

Reviewing the early PD/control results first, all models
achieved an early PD/control classification AUC of >80%. Three
pairwise AUC tests were run, which was sufficient to gain

a comparative perspective on model early PD/control cross-
validated (CV) AUC scores. Using Bonferroni correction for
family-wise error, and rounding two figures, α was set at.02
(0.05/3 = 0.0167) to control for family-wise error. A modified
(74) bootstrap (n, 2,000) test (80) was used for AUC pairwise
comparisons of correlated ROC curves. All models except the
GLM (CV AUC.907) had significantly higher AUC values (p <

0.01) relative to the decision tree model CV AUC (0.860), but
there was not a significant AUC difference among the GAM,
GLM, random forest and XGBoost models (p > 0.01). The
GAM and XGBoost models were the highest performing early
PD/control classifiers (see Table 3). The AUC of both models is
graphed in Figure 8.

In the early PD/SWEDD CV results, model classification
performance metrics were lower relative to those in the early
PD/control analysis. XGBoost and random forest were the
most efficient early PD/SWEDD classifiers (see Table 3). In the
comparison of correlated ROC curves (74), the XGBoost AUC
(0.863), the highest CV AUC outcome in the early PD/SWEDD
analysis, was not significantly different from the lowest CV AUC
from the decision tree model (0.743), D = 1.89, p = 0.06. Other
models were not significantly different from either the decision
tree or XGBoost CV AUC outcomes (p > 0.01). The early
PD/SWEDDCVAUC of the random forest and XGBoost models
is provided in Figure 9.
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FIGURE 3 | Biologics predictor boxplots. (A) beta amyloid Aβ 1−42; (B) alpha-synuclein; (C) pTau; and (D) tTau. HC, healthy controls; PD, early PD; SWEDD, scans

without evidence of dopamine deficit.

Model Prediction and Long-Term Diagnosis
The GAM and XGBoost models were the best performing
(highest AUCs) early PD/control classifiers (see Table 3 and
Figure 8). These models were applied to the SWEDD/control
validation data (SWEDD: n= 43, 25 male; controls: n = 39
controls, 26 male) to assess usefulness of early PD/control
models to predict SWEDD to PD conversion. The control
data was the same controls test set used for early PD/control
model cross-validation. The GAM model achieved an AUC
of 0.863 (optimal cut-off 0.389: sensitivity =0.814; specificity
=0.846) distinguishing SWEDD from controls. In the available
longitudinal PPMI curated 12–24 months data, 12/38 (32%)
GAM model SWEDD cases predicted to be PD-like were
diagnosed as idiopathic PD. However, the majority of GAM
model PD-like cases, 26/38 (68%), were not diagnosed as
idiopathic PD longitudinally but rather were a mix of almost a
dozen non-PD pathologies (e.g., essential tremor, psychogenic
illness, etc.) and apparently normal cases. Four of those predicted
by the model to convert to idiopathic PD (4/12) and re-
diagnosed by 24 months as PD had DAT scan evidence of
likely dopaminergic dysfunction as suggested by relatively low
mean putamen DAT scan values (M = 1.24, SD = 0.73).
The mean putamen value of 26/38 predicted by the model
to convert from SWEDD to PD but that converted to status
other than PD was 2.01 (SD = 0.47), and the mean putamen

value of the model predicted control cohort was 2.14 (SD =

0.57). The 24-months time point diagnosis data also indicated
that none of the 33 model predicted controls converted
to PD.

The XGBoost model applied to SWEDD/control validation
data achieved an AUC of 0.831 (optimal cut-off 0.378: sensitivity
= 0.837; specificity = 0.769) distinguishing SWEDD from
controls. In the available longitudinal PPMI curated 12–24
months data, 13/43 (30%) SWEDD predicted by the XGBoost
model to be PD-like had converted from SWEDD to idiopathic
PD. But, as with the GAMmodel, the majority of XGBoost model
PD-like data instances, 34/43 (79%), were not classified in the 12–
36 months longitudinal data as idiopathic PD but diagnosed as a
collective of diverse disorders similar to those noted for the GAM
model. The XGBoost model predicted conversions also included
the same four SWEDD subjects found by the GAM model with
lower DAT scan values suggestive of dopaminergic dysfunction.
The mean putamen value of the remaining 20/34 (59%) cases
predicted by the model to convert to PD but that converted to
status other than control or PD was 2.05 (SD = 0.49); the mean
putamen value of the controls was 2.09 (SD = 0.57). As with the
GAMmodel, none of themodel predicted controls was diagnosed
at 12–24 months as PD.

Longitudinal curated diagnoses available for the two top
performing early PD/SWEDD classifiers, random forest and
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FIGURE 4 | Predictor correlations (Spearman). Circle size is proportional to

Spearman correlation; red indicates a negative correlation and blue a positive

correlation; Anxiety, trait subscale from the State-Trait Anxiety Inventory; CNST,

constipation based on MDS-UPDRS I; CaudL, left caudate; CaudR, right

caudate; PutL, left putamen; PutR, right putamen; meanCaud, left + right

caudate /2; meanPut, left + right putamen /2; UPDRS3, MDS-UPDRS III;

Upsit-rev (hyposmia), University of Pennsylvania Smell Identification Test (a

reverse scaled version); AB 1-42, beta-amyloid1-42; CSF a-syn, cerebral

spinal fluid α-synuclein; pTau, CSF phosphorylated Tau; tTau, CSF total tau;

MoCA, Montreal Cognitive Assessment; Yrs. ed., years of education. Note,

CaudL, CaudR, PutL, PutR are dopamine transporter (DAT) DAT scan

measures.

XGBoost (see Table 3 and Figure 9), demonstrated again the
largely non-PD diversity of pathologies that constitute the
SWEDD category noted in the preceding paragraph. Here,
however, the main interest was estimating long-term model
accuracy or fidelity in terms of estimated model long-
term sensitivity (percentage of model classification non-PD
SWEDD matching curated long-term diagnosis) and specificity
(percentage model classification of PD matching curated long-
term diagnosis). At its optimal cutoff (0.461), random forest long-
term sensitivity amounted to 12/16 (75%) correctly predicted
non-PD SWEDD cases that matched the 12–24 months curated
diagnoses records available. The mean putamen DAT scan value
averaged across all (non-PD) SWEDD at 12–36 months was
2.06 (SD= 0.50). Random forest model-approximated long-term
specificity amounted to 92/128 (71.87%) cases (true negatives)
correctly classified by the model as PD at 12–24 months. The
mean putamen DAT scan value of these PD confirmed cases,
averaged across all PD cases at 12–36 months, was 0.69 (SD
= 0.27). For XGBoost, and at its optimal cutoff (0.542), long-
term model sensitivity to non-PD SWEDD amounted to 13/16
(81.25%) class predictions that correctly matched 12–24 months
curated diagnoses. The mean putamen DAT scan value averaged
across all (non-PD) SWEDD at 12–36 months was 2.0 (SD
= 0.50). XGBoost long-term specificity amounted to 97/128

(75.78%) cases (model true negatives) correctly classified by as
PD. The mean putamen DAT scan value of the PD classified
segment, averaged across all PD diagnosed cases at 12–36
months, was 0.70 (SD= 0.31).

DISCUSSION

Unique to the current work was the particular set of five classifiers
used and the dual early PD/control and early PD/SWEDD
analyses approach adopted. There is never a guarantee that one
model type will outperform another (47). By comparing several
classifiers, here five, we were able to determine the optimal
model for the data, and the optimal model differed for the
early PD/control relative to the early PD/SWEDD classification
analyses. The GAM was top performing early PD/control
classifier, and the XGBoost model was the top performing
early PD/SWEDD classifier. Overall, the XGBoost model had
the most consistent classification performance, achieving the
second highest performance in the early PD/control analysis
and the highest early PD/SWEDD outcome (see Table 3

for details). Moreover, as made apparent in Figures 6, 7,
conducting the dual classification analysis revealed differential
importance of certain features to early PD/SWEDD vs. early
PD/control discrimination. Notably, Epworth sleepiness scale
(ESS) and years of education figured as prominent features
of import to early PD/SWEDD classification but were of little
to no consequence to early PD/control classification. In both
classification analyses hyposmia (based on the University of
Pennsylvania Smell Test—reverse scaled) was inevitably the
single most important feature to model classification. Rapid
eye-movement behavior disorder questionnaire (RBDQ) was the
next most common feature of relatively high rank importance
to classification for all models in both analyses (MoCA was
also quite consistently important to classification). Biomarkers
CSF α-synuclein and pTau were features of greater importance
to early PD/control classification than to early PD/SWEDD
classification, and age assumed greater importance in early
PD/SWEDD classification.

Predictive model results from recent studies using Parkinson’s
Progressive Markers Initiative (PPMI) data incorporating either
clinical and genetic risk (41) or clinical variables and biologics
(43) achieved high early PD vs. control AUC scores without
including an imaging (DAT scan) predictor: 0.923 (sensitivity
83.4%; specificity 90.3%) (41); 0.927 (sensitivity 89.7%, specificity
80.4 %) (43). Predictive models in the current work, also
incorporating PPMI clinical and biologics (not genetic risk) data,
achieved similarly high AUC scores discriminating early PD vs.
control. The two top performing models, as already noted, were
the GAM and XGBoost classifiers. The GAMmodel had an AUC
of 0.946 (sensitivity 91.3%; specificity 80.7%) and the XGBoost
model an AUC of 0.958 (sensitivity 93.7%, specificity 83.5%).
The Nalls et al. (41) and Yu et al. (43) studies both used logistic
regression. Comparing apples to apples, our logistic regression
model had an AUC of 0.920 (sensitivity 91.2%, specificity 81.2%).
The marginally lower logistic regression model AUC we obtained
was due in part to a smaller training set: we divided the PPMI
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FIGURE 5 | Mean putamen and caudate dopamine transporter (DAT) update against hyposmia. (A) mean putamen DAT uptake against Upsit-rev, University of

Pennsylvania Smell Test, reverse-scaled; (B) mean caudate DAT uptake against Upsti-rev; HC, healthy controls; PD, early PD; SWEDD, scans without evidence of

dopamine deficit.

data, using random stratification, into train and test sets while the
above referenced studies used all the early PD/control PPMI data
to train models and validatedmodels in different cohort data sets.
In addition, our stringent data filtering for only complete cases
across 14 variables resulted in further data instance reduction.
Moreover, while hyposmia (based on the UPSIT scale) and
age were common features selected by the logistic regression
stepwise process among the Nalls et al., Yu et al. and the current
work, feature elimination in our study otherwise resulted in a
different final set of predictors. The Nalls study, which included
genetic risk, not part of our study, used five features: hyposmia,
genetic risk, family history, age and gender. The Yu et al. study
used hyposmia, age, CSF α-synuclein and gender. The logistic
model stepwise (AIC) feature elimination procedure in our study
determined hyposmia, rapid eye-movement behavior disorder
questionnaire (RBDQ), pTau, age, MoCA and constipation as
the most important features to early PD/control classification.
With respect to gender in our study, and SWEDD test data in
particular, the random stratified split of SWEDD data into train
and test sets left gender under represented. However, in the
early PD/SWEDD as well as the early PD/control classification
gender was a feature of low or no importance. Further, Yu et al.
commented that their model’s outcome was similar whether or
not gender was included.

Note, to avoid collinearity exceeding rs 0.75 neither pTau
jointly with tTau, nor α-synuclein and either pTau or tTau
were used concurrently in the same model. The correlations
of α-synuclein and pTau and α-synuclein and tTau were rs=
0.82 and rs= 0.81, respectively. The correlation between pTau
and tTau was rs= 0.98 (see Section Bivariate analyses). We

adopted the relatively low collinearity cut off of 0.75, sensitive
to pairwise correlations (71), to prioritize unbiased feature
selection and classification consistency for all models (69, 70) (see
Statistical analyses).

Another recent study also using PPMI data reported features
important to early PD/control classification including hyposmia,
RBDQ, CSF α-synuclein, pTau, tTau, and notably DAT scan
values (46). The DAT scan values (striatal binding ratios for
the left and right caudate and putamen) made the greatest
contribution to model performance and further heightened AUC
scores to >0.98 for all five models in the latter study. However,
like the Nalls and Yu analyses we did not include SPECT
DAT scan values as predictors. SPECT imaging is not always
accessible and a single scan can be costly (typically over $1,800
in the US).

Importantly, our early PD vs. control classification models
applied to validation data, unseen by models during training
(the cross-validated [CV] outcome), achieved high classification
accuracy. The highest performing model, the GAM, had
a CV AUC of 0.928 (at the optimal threshold of 0.534,
sensitivity 89.9%, specificity 89.7%). The second highest CV
AUC from the XGBoost model was 0.923 (at the optimal
threshold of 0.660, sensitivity 87.5%, specificity 89.7%). Overall,
and as hypothesized, the non-motor clinical and biologic
features used achieved >0.80% AUC classification accuracy
across all models (decision tree, logistic regression, general
linear, random forest, and XGBoost), a level of consistency
supporting the validity and reliability of these features to
differentiate early stage PD pathology from age-matched normal
healthy subjects with relatively high classification accuracy. This
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FIGURE 6 | Predictor importance, Early PD vs. controls. GLM, logistic regression; TREE, decision tree; RF, random forest; XGB, Extreme gradient boosting; Anxiety,

state trait anxiety; AB 1-42, beta amyloid 1−42; Alpha-syn, CSF α-synuclein; CNST, constipation; ESS, Epworth sleepiness scale; Depression, Geriatric depression

scale; MoCA, Montreal Cognitive Assessment; MoCA med, MoCA median; Upsit-rev, reverse scaled Upsit-rev, (UPSIT) University of Pennsylvania Smell Identification

Test, reverse-scaled; pTau, CSF phosphorylated Tau; RBDQ, rapid eye movement behavior disorder questionnaire; Sex, gender. Predictors ranked on a 0 to 100%

scale of importance.

consistency, across all models adds to the growing body of
research (30, 40, 41, 43, 46) demonstrating the usefulness of
non-motor clinical and biomarker features in early stage PD
discrimination. In addition, the AUC of all models with the
exception of decision tree were very similar. The decision
tree model had a significantly lower AUC of 0.860 (at the
optimal threshold of 0.586, sensitivity 81.8%, specificity 89.7%)
compared to the other four model types. The logistic regression
model (GLM) offered, arguably, the best blend of simplicity,
parsimony of predictors and performance. In addition, as a
parametric model, it had the benefit of quantifying predictor
contribution to the model (e.g., see model coefficients in
Supporting information V). But with a non-linear feature–
logit relation, exemplified by the MoCA feature in the early

PD/control classification, the GAM, random forest or XGBoost
models may be more appropriate.

We had also posited that outcome of the second classification
analysis involving early PD vs. SWEDD discrimination would be
less definitive and typified by lower AUC results for all models.
This also proved true. Results for both early PD/control and
early PD/SWEDD classification analyses are provided in Table 3.
The discrepancy ofmodel performance between early PD/control
and early PD/SWEDD classification is, at least in part, due
to the wide range of disorders encompassed by the SWEDD
category. The diversity of clinical entities within the SWEDD
category, reported in other research (35, 36, 81, 82), was evident
in current study longitudinal findings, where SWEDD proved to
be largely a mix of almost a dozen clinical entities (Alzheimer’s
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FIGURE 7 | Predictor Early PD vs. SWEDD. GLM, logistic regression; TREE, decision tree; RF, random forest; XGB, Extreme gradient boosting; Anxiety, state trait

anxiety; AB 1-42, beta amyloid 1−42; Alpha-syn, CSF α-synuclein; CNST, constipation; Depression, Geriatric depression scale; EDYRS Q2, lower quartile for number

of education years; EDYRS Q3, upper quartile for number of education years; EDYRS Q4, number of education years of those exceeding the upper quartile; ESS,

Epworth sleepiness scale; GDS, Geriatric depression scale; MoCA, Montreal Cognitive Assessment; Upsit-rev, University of Penn-sylvania Smell Identification Test,

reverse-scaled;RBDQ, rapid eye movement behavior disorder questionnaire; Predictors ranked on a 0 to100% scale of importance.

disease case, polyneuropathy, lateral sclerosis, essential tremor,
psychogenic illness, apparently normal etc.). The heterogeneity of
the SWEDD category, in general adds complexity and confusion
to PD pathology differentiation. Indeed, removal of the term
or category SWEDD, as currently conceptualized, has been
recommended (35, 36).

Developing a model (s) to disentangle non-PD SWEDD cases
from actual cases of early PD pathology was one objective
of our study. The two top performing early PD/SWEDD
classifiers, XGBoost and random forest, were able to discriminate
non-PD pathology SWEDD from early PD with moderate
sensitivity to detect non-PD SWEDD cases. From random forest
results 12/16 (75%) SWEDD non-PD predicted cases matched
the SWEDD non-PD case diagnoses in PPMI curated 12–
24 months (available) records. From XGBoost results 13/16
(81.25%) SWEDD non-PD predicted cases matched the SWEDD
non-PD case diagnoses in the 12–24 months records. The
random forest long-term specificity (to early PD) amounted
to 92/128 (71.87%) cases matching the 12–24 months available

diagnoses; XGBoost long-term specificity amounted to 97/128
(75.78%) cases matching the 12–24 months available diagnoses.
These results suggest that either model could be useful to help
differentiate non-PD SWEDD category patients from those with
actual incipient PD pathology.

In a brief review of descriptive statistics, including the
UPDRS III and DAT scan putamen and caudate values not
used in models, compared to healthy controls we observed
more severe hyposmia, rapid eye-movement behavior disorder
(questionnaire-based [RBDQ]), anxiety traits, and constipation
in early PD compared to healthy controls. Montreal cognitive
assessment (MoCA) scores were also lower for the early PD
cohort as were caudate and putamen DAT scans from the early
PD cohort compared to controls. As might be expected UPDRS
III scores were also much higher, typical of PD, and DAT scan
caudate and putamen values lower in early PD compared to
controls. Comparing SWEDD to early PD, hyposmia was more
severe for early PD, Epworth sleepiness scale (ESS) was higher
(worse) for SWEDD, and there were fewer years of education for
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TABLE 3 | Performance summary.

Models Train Test (cross-validation)

Metric AUC (95% CI) SN SP Opt.Thr AUC (95% CI) ACC Kappa SN SP

EARLY PD VS. HC

GLM 0.920 (0.888-0.953) 0.912 0.812 0.462 0.907 (0.849-0.964) 0.898 0.764 0.909 0.872

GAM 0.946 (0.922-0.970) 0.923 0.850 0.534 0.928 (0.878-0.978) 0.898 0.768 0.898 0.897

Treea 0.872 (0.831-0.913) 0.857 0.879 0.586 0.860 (0.799-0.922) 0.842 0.659 0.818 0.897

RFa 0.999 (0.999-1.00) 0.990 1.00 0.534 0.913 (0.858-0.968) 0.898 0.764 0.909 0.872

XGBa 0.958 (0.937-0.979) 0.898 0.901 0.660 0.923 (0.875-0.972) 0.882 0.736 0.875 0.897

EARLY PD VS. SWEDD

GLMb 0.938 (0.863-0.972) 0.909 0.841 0.504 0.779 (0.677-0.880) 0.744 0.265 0.667 0.755

GAMb 0.955 (0.916-0.994) 0.886 0.909 0.437 0.787 (0.689-0.886) 0.756 0.299 0.714 0.762

Treea,b 0.932 (0.894-0.971) 0.864 0.920 0.486 0.743 (0.617-0.869) 0.798 0.343 0.667 0.816

RFa,b 1.00 (1.00-1.00) 1.00 1.00 0.461 0.822 (0.746-0.899) 0.732 0.302 0.809 0.721

XGBa,b 0.997 (0.993-1.00) 0.977 0.954 0.542 0.863 (0.777-0.948) 0.768 0.381 0.905 0.748

Superscript a, 10-fold, 5 repeats resampling of the model tuning parameter(s), whereby the optimal hyper-parameter setting was determined by the AUC; ACC, accuracy; superscript

b, synthetic minority oversampling technique (SMOTE); AUC, receiver operating characteristic area under the curve; CI, DeLong confidence interval; Kappa, Cohen’s Kappa; SP,

specificity; SN, sensitivity; GAM, general additive model; GLM, logistic regression generalized linear model; RF, random forest; Tree, decision tree; XGBoost, Extreme gradient boosting;

thr, threshold; Bold model names, highest cross-validated AUC.

FIGURE 8 | AUC, GAM, and XGBoost. GAM AUC =0.928; XGB AUC

=0.916;GAM, general additive model; XGB, Extreme gradient boosting model;

TPR, true positive rate (sensitivity); FPR, the False positive rate (1–specificity).

SWEDD. T-tests (63) demonstrated significant early PD/control
and early PD/SWEDD differences for all of these variables (see
Tables 1, 2), findings consistent with prior research (40). Also in
agreement with other research (31, 40), we observed significantly
reduced cerebral spinal fluid biomarker values of Aβ1−42, α-
synuclein, pTau and tTau in early PD compared to healthy
controls. In addition, we found significantly increased Aβ1−42

in SWEDD compared to early PD, and while this agreed with
findings from Marek et al. (40), contrary to the latter study we
did not find significantly differing α-synuclein between early PD
and SWEDD (see Tables 1, 2). Finally, in agreement with other

FIGURE 9 | AUC, Random forest and XGBoost. RF AUC = 0.822. (sensitivity

0.809; Specificity 0.721); XGB AUC =0.863 (sensitivity 0.905; specificity

0.743); RF, random forest; XGB, Extreme gradient boosting model; TPR, true

positive rate (sensitivity); FPR, the False positive rate (1–specificity).

research (30, 83), moderate to high correlations (rs > 0.75) were
found among CSF α-synuclein, pTau and Ttau.

The median age in the PPMI data used in the current
work was 62, which along with other PPMI demographic data
(education, ethnicity, and gender) is consistent with clinical trial
demographics (84–86). Age, though, poses the single highest
risk factor for neurodegenerative diseases such as idiopathic PD
(87). Further, as there is an age related increase in hyposmia
(88) for instance, age is a variable with increasing confounding
potential in more elderly cohorts (e.g., 85+). We found age was
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positively correlated with hyposmia (higher age was associated
with more severe hyposmia), though the correlation was well
under the 0.75 limitation set (rs =0.22, p <0.001). Also,
including age in all our models controlled for this variable.
However, while age in age-matched groups can be controlled
for in the statistical sense, classifiers trained on younger cohorts
would, in general, help to isolate the importance of features
related to diagnosis of PD neurodegeneration independent
of age.

As reported in the first paragraph of this discussion, Epworth
sleepiness scale (ESS) in particular but also years of education
were important features to early PD/SWEDD but not to early
PD/control discrimination (see Figures 6, 7). Both features also
significantly differed between early PD and SWEDD but not
early PD and controls (see Tables 1, 2). These findings, in
concert with other PPMI data research (40, 89), warrant further
investigation. Is the difference in years of education, fewer
years of education in SWEDD, just specific to the particular
SWEDD cohort used? If not, how does more extensive education
relate to PD pathology? With respect ESS, an even more
important early PD/SWEDD group differentiator, a question
to be probed is how does dozing-off in certain situations
(ESS measures dozing-off rather than fatigue) relate differently
to the non-PD clinical entities of SWEDD compared to
early PD?

It warrants note that hyposmia, the main model driver
here as in other research (41, 43) and of secondary import
only to DAT scan imaging in yet another study (46), is
not specific to PD pathology (59, 90–93). It has been
suggested that CSF α-synuclein, which is synucleinopathy-
specific, may increase specificity for PD-type pathology
when combined with other features (e.g., hyposmia) in a
model (43). But if so, it is critical to first determine the
species of α-synuclein specific to PD pathology. While
variations of glia-to-glia, glia-to-neuron and neuron-to-
neuron spread of α-synuclein are likely (94–96), the form
of this toxic misfolded protein to be targeted for diagnostic
and prognostic purposes remains to be established: α-
synuclein monomers, oligomers or the misfolded fibril? A
recent study demonstrated that α-synuclein fibrils injected
into the mouse brain acted as agents recruiting monomeric
endogenous α-synuclein and induced PD indicators including
loss of substantia nigra pars compacta and striatal dopamine
terminals as well as dysfunctional motor behavior (97).
However, the root cause may involve an oligomer pre-fibril
state. For reviews on this subject see Mead et al. (98) and
Xu and Pu (99).

CONCLUSION

We undertook dual early PD/control, early PD/SWEDD
classification analyses to broaden understanding of non-motor
clinical and biomarker feature utility to discriminate preclinical,
early PD. In agreement with other research, hyposmia, RBD,
and CSF biomarkers distinguished early PD vs. controls with
high classification performance. Indeed, as a testament to the

classification efficacy of features used, we demonstrated that
five different models could achieve >0.80% AUC cross-validated
classification accuracy without imaging or motor predictors.
Most distinctive in the current work however, was the dual
binomial classification approach. Relative to early PD/control
results, early PD/SWEDD model classification performance
was lower (for all models), the optimally performing model-
type differed, and, with the exception of hyposmia, there
was variation in feature selection or rank of features by
models for early PD/control compared to early PD/SWEDD
analyses- informative findings that justified the dual analysis
approach. Moreover, data at 12–36 months from baseline
indicated longitudinal model sensitivity of up to about 81%
to distinguish non-PD SWEDD cases from PD pathology.
The model may be useful to screen SWEDD category
patients with actual incipient PD pathology from those
non-PD SWEDD category patients. Without such screening,
the heterogeneity in the SWEDD category will diminish
the capacity of future models to link to and discriminate
PD pathology.

LIMITATIONS

After filtering for only completed cases, and only cases meeting
our screening criteria (e.g., exclusion of samples with>200 ng/ml
hemoglobin levels), data sets were quite small, particularly
the SWEDD validation data-set. However, with respect to
PD/SWEDDdata, SMOTE subsampling augmented training data
instances while also balancing groups. It should be mentioned
that ratios of biomarkers or (biomarkers and clinical variables)
were not included in the current work, and would have added
more depth to evaluations. In addition, a multinomial rather
than binomial approach could have been used. However, in
respect to the latter, most current classification research has
used the binomial approach, which facilitates comparison among
study outcomes.
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