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Expanded endothelial progenitor cells
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Abstract

Endothelial progenitor cells (EPCs) improve survival and reduce organ failure in cecal ligation and puncture-induced
sepsis; however, expanded EPCs may represent an even better approach for vascular repair. To date, no study has
compared the effects of non-expanded EPCs (EPC-NEXP) with those of expanded EPCs (EPC-EXP) and mesenchymal
stromal cells of human (MSC-HUMAN) and mouse (MSC-MICE) origin in experimental sepsis. One day after cecal
ligation and puncture sepsis induction, BALB/c mice were randomized to receive saline, EPC-EXP, EPC-NEXP,
MSC-HUMAN or MSC-MICE (1 × 105) intravenously. EPC-EXP, EPC-NEXP, MSC-HUMAN, and MSC-MICE displayed
differences in phenotypic characterization. On days 1 and 3, cecal ligation and puncture mice showed decreased
survival rate, and increased elastance, diffuse alveolar damage, and levels of interleukin (IL)-1β, IL-6, IL-10, tumor
necrosis factor-α, vascular endothelial growth factor, and platelet-derived growth factor in lung tissue. EPC-EXP and
MSC-HUMAN had reduced elastance, diffuse alveolar damage, and platelet-derived growth factor compared to
no-cell treatment. Tumor necrosis factor-α levels decreased in the EPC-EXP, MSC-HUMAN, and MSC-MICE groups.
IL-1β levels decreased in the EPC-EXP group, while IL-10 decreased in the MSC-MICE. IL-6 levels decreased both in
the EPC-EXP and MSC-MICE groups. Vascular endothelial growth factor levels were reduced regardless of therapy. In
conclusion, EPC-EXP and MSC-HUMAN yielded better lung function and reduced histologic damage in septic mice.
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Findings
Background
Mesenchymal stem cell (MSC) treatment has been
widely used in many experimental models including sep-
sis [1–6]. MSC mechanisms of action might include: a
decrease in alveolar–capillary barrier permeability [4, 6,
7]; enhanced alveolar fluid clearance [8, 9]; a shift in
macrophage profile from pro-inflammatory to anti-
inflammatory [10]; improved bacterial clearance [11, 12];
and mitochondrial transfer [13].
Sepsis leads to several immunological events that alter

endothelial function in the macrocirculation and micro-
circulation [14]. Endothelial barrier dysfunction and

microvascular leak contribute critically to the pathogen-
esis of organ failure in sepsis and of sepsis-related com-
plications such as acute respiratory distress syndrome
(ARDS) [15]. Therefore, reconstitution of the endothelial
layer might be initiated via migration and proliferation
of surrounding mature endothelial cells (ECs). Since
differentiated ECs have a low proliferative potential,
their capability to substitute damaged endothelium is re-
stricted. Studies have observed that endothelial progeni-
tor cells (EPCs) are increasingly mobilized during sepsis
and that their migration is associated with clinical out-
come [16, 17]. EPCs are precursor cells that can differ-
entiate into mature ECs and create new blood vessels
[18]. Generally, EPCs can be identified on the basis of
their expression of CD133, CD34, KDR, and/or VE-
cadherin cellular markers [19]. A recent study reported
that EPCs improve survival and reduce organ failure in
experimental sepsis [20]. Nevertheless, expanded EPCs
represent an even better approach for vascular repair in
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myocardial ischemia [20, 21]. To date, no study has com-
pared the effects of non-expanded EPCs (EPC-NEXP),
expanded EPCs (EPC-EXP), and MSCs of human
(MSC-HUMAN) and mouse (MSC-MICE) origin in
experimental sepsis.
Within this context, we hypothesized that human

umbilical cord blood-derived EPCs would be non-
inferior or superior to MSCs at improving survival,
lung function, and histology in experimental sepsis.
The aim of the present study was to compare the ef-
ficacy of expanded and non-expanded human EPCs
and human or murine MSC therapy in treating lung
injury in a murine model of sepsis.

Methods
This study was approved by the Ethics Committee of the
Health Sciences Centre, Federal University of Rio de
Janeiro (CEUA-019). All animals received humane care
in compliance with the “Principles of Laboratory Animal
Care” formulated by the National Society for Medical
Research and the “Guide for the Care and Use of La-
boratory Animals” prepared by the National Academy of
Sciences, USA.

Isolation and expansion of EPCs
Mononuclear cells were isolated from human umbilical
cord blood. EPCs (CD133+) were selected using CD133-
coupled magnetic microbeads (Miltenyi Biotech, Bergisch
Gladbach, Germany), following the manufacturer’s in-
structions. After isolation, CD133+ cells were expanded
as described elsewhere [22]. Immunophenotypic ana-
lysis was performed by staining 5 × 105 isolated and ex-
panded EPCs. EPCs were analyzed after isolation,
whereas expanded cells were analyzed after 30 days of
culture. The cells were incubated with various conju-
gated monoclonal antibodies against the following hu-
man antigens: CD133; CD34; CD45; CD14; CD31;
CD105; and von Willebrand factor. Quantitative ana-
lyses were performed using a FACSCalibur flow
cytometer and FlowJo software (Flowjo, Ashland, OR,
USA) [22].

Isolation and expansion of human MSCs
Bone marrow-derived human MSCs were isolated and
expanded as described elsewhere [23].
Immunophenotypic analysis was performed by stain-

ing 5 × 105 expanded human MSCs. The cells were
incubated with conjugated monoclonal antibodies
against the following human antigens: CD45; CD14;
CD 90; CD73; CD166; CD105; HLA-DR; CD34; CD29;
and CD19. Quantitative analyses were performed
using a FACSCalibur flow cytometer and FlowJo soft-
ware (Flowjo) [22].

Isolation and expansion of mouse MSCs
MSCs from mice were isolated from 8-week-old BALB/c
mouse femur and tibia bone marrow stromal cells as
described elsewhere [2]. Immunophenotypic analysis was
performed by staining 1 × 105 expanded mouse MSCs.
The cells were incubated with conjugated monoclonal
antibodies against the following antigens: CD19; CD34;
CD45; CD29; and Sca1+. Quantitative analyses were
performed using a FACSCalibur flow cytometer and
FlowJo software (Flowjo).

Experimental protocol
BALB/c mice (8–10 weeks old, n = 169) were used.
Sepsis was induced by cecal ligation and puncture (CLP)
on day 0 [3]. Briefly, animals were anesthetized with
sevoflurane and a midline laparotomy was performed.
The cecum was carefully isolated and a 3–0 cotton liga-
ture was placed below the ileocecal valve to prevent
bowel obstruction. Finally, the cecum was punctured
twice with an 18-gauge needle. In the sham group, an
abdominal incision was made, but there was no cecal
ligation or perforation. Both layers of the abdominal cav-
ity were closed, followed by fluid resuscitation (sterile sa-
line) subcutaneously. Sham and CLP animals received
tramadol (0.05 mg/kg body weight, subcutaneously) for
postoperative analgesia, repeated every 8 hours. After
this step, animals were returned to their cages, where
they received water and food ad libitum.
On day 1, the mortality rate in the CLP group was

34 %. The surviving animals were randomized to be eu-
thanized for evaluation of lung mechanics, histology,
and inflammatory mediators in lung tissue, or treated
with the following therapies: saline (0.05 ml), EPC-EXP,
EPC-NEXP, MSC-HUMAN, or MSC-MICE (1 × 105 in
0.05 ml saline, intravenously), after which animals were
analyzed on day 3. EPC-NEXP were extracted and
injected, whereas EPC-EXP, MSC-HUMAN and MSC-
MICE were used at the third passage. To evaluate the cell
viability, cells were subjected to trypan blue exclusion
assay. For trypan blue staining, cell suspension was mixed
with 0.4 % trypan blue solution at a 1:1 ratio. After 1–2
minutes incubation at room temperature, the mixture was
loaded onto one chamber of a Neubauer hemocytometer
and squares of the chamber were observed under a light
microscope. The viable/live (clear) and non-viable/dead
(blue) cells were evaluated. The number of viable cells was
calculated using the formula: (number of live cells
counted/total number of cells counted) × 100. From the
number of viable cells, we calculated the exact concentra-
tion to obtain 1 × 105 cells in 0.05 ml.
Lungs mechanics, histological data and mediators in

lung tissue homogenate (n = 8 for each experimental
group) were measured, as described in the following
sections.
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Lung mechanics
On days 1 and 3 after induction of sepsis, mice were se-
dated (diazepam 1 mg, intraperitoneally), anesthetized
(thiopental sodium 20 mg/kg, intraperitoneally), tracheo-
tomized, paralyzed (vecuronium bromide 0.005 mg/kg,
intravenously), and mechanically ventilated. The anterior
chest wall was surgically removed and a positive end-
expiratory pressure of 2 cmH2O was applied. After a
10-minute ventilation period, lung static elastance
(Est,L) was measured by the end-inflation occlusion
method [24].

Lung histology
The left lung was fixed in 4 % buffered formaldehyde so-
lution, paraffin-embedded, cut into slices (4 μm thick),
and stained with hematoxylin and eosin. Diffuse alveolar
damage (DAD) was quantified using a weighted scoring
system. In brief, values from 0 to 4 were used to repre-
sent the severity of edema, inflammation and atelectasis,
with 0 standing for no effect and 4 for maximum sever-
ity. In addition, the extent of each score characteristic
per field of view was graded on a scale of 0 to 4, with 0
standing for no visible damage and 4 for complete in-
volvement. Scores were calculated as the product of se-
verity and extent of each feature, and ranged from 0 to
16. Finally, the overall DAD score was calculated as the
sum of single score characteristics, yielding values from
0 to 48 [25].

Protein expression of inflammatory mediators and
growth factors
Protein expression of interleukin (IL)-1β, IL-6, IL-10,
tumor necrosis factor (TNF)-α, vascular endothelial
growth factor (VEGF), and platelet-derived growth factor
(PDGF) was measured in the lung tissue of EPC-NEXP,
EPC-EXP, MSC-HUMAN, and MSC-MICE animals
using commercially available enzyme-linked immuno-
sorbent assay kits, in accordance with manufacturer
instructions.

Statistical analysis
Functional variables were tested with one-way analysis
of variance followed by Tukey’s post-hoc test (Prism for
Mac, Version 5.0a, GraphPad Software). The Kruskal-
Wallis test followed by Dunn’s post-hoc test was used to
compare DAD scores and molecular biology data. Sur-
vival rates were compared by log-rank test. Data are
expressed as mean ± standard deviation or as median
and interquartile range as appropriate. Significance was
accepted at P < 0.05.

Results
Phenotypic characterization
The staining patterns of cells are provided in Table 1.

Table 1 Phenotypic characterization

EPC-NEXP EPC-EXP MSC-HUMAN MSC-MICE

CD45 3.52 % 1.54 % 0.25 % 0.32 %

CD34 68.6 % 22.5 % 0.17 % 0.24 %

CD14 – 0.48 % 1.79 % –

CD133 94.9 % 23.0 % – –

CD105 – 99.6 % 82.0 % –

CD73 – – 84.4 % –

CD29 – 96.8 % 86.2 % 99.1 %

CD90 – – 92.6 % –

CD166 – 87.9 % 63.4 % –

CD19 – – 0.17 % 0.71 %

CD31 – 82.6 % – –

HLA-DR – – 0.98 % –

CD146 – 95.1 – –

Sca-1 – – – 88.6 %

vWF – 97.5 % – –

EPC-CD Cluster of differentiation, EXP expanded endothelial progenitor cell,
EPC-NEXP non-expanded endothelial progenitor cell, HLA Human leukocyte
antigen, MSC-HUMAN Mesenchymal stem cell of human origin, MSC-MICE
Mesenchymal stem cell of mouse origin, Sca-1 Stem cell antigen-1, vWF Von
Willebrand factor

Fig. 1 Static lung elastance on days 1 and 3. Mice were subjected to
cecal ligation and puncture (CLP). A sham-operated group was used
as a control CLP. At day 1, some animals were euthanized after
establishment of ARDS in order to evaluate static lung elastance
(Est,L), while other animals were randomized to receive saline or
non-expanded endothelial progenitor cells (EPC-NEXP), expanded
endothelial progenitor cells (EPC-EXP), human mesenchymal stem
cells (MSC-HUMAN), or mouse mesenchymal stem cells (MSC-MICE),
intravenously. Values expressed as mean ± standard deviation of
eight animals in each group. *P < 0.05, versus respective sham group.
**P < 0.05, versus CLP group at day 3. #P < 0.05, versus EPC-NEXP
group. &P < 0.05, versus MSC-MICE group
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Survival rate
The survival rate of untreated animals (CLP) was 66 %
on day 1 and 59 % on day 3 (out of 100 % on day 0). On
day 3, the survival percentage did not differ among
untreated CLP animals, and the MSC-MICE, MSC-
HUMAN, EPC-NEXP, and EPC-EXP groups (89, 96, 82,
76, and 100 % respectively). These percentages were cal-
culated from the CLP animals that had survived through
day 1 (See Additional file 1).

Expanded EPCs and human MSCs ameliorated lung
mechanics
Est,L was significantly increased in CLP mice at days 1
and 3 compared to sham-operated animals (P < 0.01).
Est,L was reduced significantly in the EPC-EXP and
MSC-HUMAN groups compared to CLP. The EPC-
NEXP and MSC-MICE groups showed no significant
difference from CLP. MSC-HUMAN animals exhibited
lower Est,L compared to the EPC-NEXP and MSC-
MICE groups (Fig. 1).

Expanded EPCs reduced the DAD score
Histological evaluation revealed greater edema, neu-
trophil infiltration, atelectasis, and total DAD score in

CLP compared to sham animals at days 1 and 3. The
total DAD score was reduced after EPC-EXP and
MSC-HUMAN therapies compared to CLP; however,
animals in the MSC-HUMAN group had higher total
DAD scores than sham-operated animals. Edema was
significantly decreased in the EPC-EXP, MSC-HUMAN
and MSC-MICE groups compared to CLP. Inflammation
and atelectasis were significantly reduced in EPC-EXP
compared to CLP (Fig. 2). EPC-EXP led to reduced
edema and inflammation compared to EPC-NEXP.
EPC-EXP yielded decreased atelectasis compared to
MSC-MICE.

Effects of different cell therapies on inflammatory
mediators and growth factors in lung tissue
Levels of inflammatory mediators and growth factors in
lung tissue were higher in CLP compared to sham
animals at days 1 and 3 (Fig. 3). TNF-α levels were
decreased after cell therapies in the EPC-EXP, MSC-
HUMAN, and MSC-MICE groups. IL-1β levels were
decreased only by expanded EPC therapy, while IL-10
was decreased only by mouse MSC therapy. IL-6 level
was decreased both after expanded EPC and after mouse
MSC therapies. VEGF levels were decreased by all cell

Fig. 2 Diffuse alveolar damage in animals with lung injury induced by sepsis. Cecal ligation and puncture (CLP) animals were randomized to
receive saline or non-expanded endothelial progenitor cells (EPC-NEXP), expanded endothelial progenitor cells (EPC-EXP), human mesenchymal
stem cells (MSC-HUMAN), or mouse mesenchymal stem cells (MSC-MICE), intravenously. Values expressed as a box-and-whiskers plot of eight
animals in each group. *P < 0.05, versus respective sham group. **P < 0.05, versus CLP group at day 3. #P < 0.05, versus EPC-NEXP group. &P < 0.05,
versus MSC-MICE group. DAD Diffuse alveolar damage
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therapies. PDGF was decreased by expanded EPC and
human MSC treatments (Fig. 3).

Discussion
In the present study we observed that exogenously ad-
ministered expanded human cord blood-derived CD133
+ cells (EPC-EXP) and MSC-HUMAN were effective in
improving lung morpho-function compared to CLP mice
treated with saline.
Disruption of the vascular barrier is a critical step in

the development of multiple organ failure in sepsis [26].
Several studies have demonstrated the role of circulating
EPCs in sepsis [16, 27]. Some demonstrated that septic
patients have increased numbers of circulating EPCs as
compared with control subjects [16, 17]; however, an-
other study indicated that patients with sepsis have
significantly reduced numbers of circulating EPCs [27].
A recent experimental study demonstrated that mice
subjected to CLP-induced sepsis had reduced circulating
EPC counts at 24 hours, and that exogenous EPC ad-
ministration improved survival [20].
The protective effect of expanded EPCs observed in

this study is consistent with the beneficial effects of
MSCs in sepsis [3, 20]. Activated MSCs could repro-
gram macrophages, resulting in reduced TNF-α and

IL-6 but increased IL-10 production [4], which is in
accordance with our results with expanded EPC ad-
ministration. The EPC-EXP group experienced greater
improvement of lung function and reduction of lung
inflammation, whereas MSC-MICE animals exhibited
reduced lung inflammation. Human MSCs also led to
lung function recovery, while reducing levels only of
TNF-α. One interesting finding was that IL-1β expression
decreased only after EPC-EXP administration, which
could explain the better overall results achieved with this
therapy. IL-1β mediates inflammatory and proliferative
effects in many experimental models of lung injury,
including sepsis, ventilator-induced lung injury, and
bleomycin [28–30]. Increased levels of IL-1β are found
in the bronchoalveolar lavage fluid and serum of
patients with ARDS [31, 32].
The endothelium plays an important role in sepsis,

and the clinical outcome of septic patients is largely
dependent on their ability to reconstitute damaged
endothelium. Angiogenic factors, including VEGF signal-
ing pathways, have recently been receiving great atten-
tion in critically ill patients, including those with sepsis
[33], because of their pivotal roles in both angiogenesis
and microvascular permeability. In our study, we ob-
served a decrease in VEGF expression levels regardless

Fig. 3 Lung inflammation on days 1 and 3. Lung tissue protein expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10, vascular
endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF). Cecal ligation and puncture (CLP) animals were randomized to receive
saline or non-expanded endothelial progenitor cells (EPC-NEXP), expanded endothelial progenitor cells (EPC-EXP), human mesenchymal stem cells
(MSC-HUMAN), or mouse mesenchymal stem cells (MSC-MICE), intravenously. Values expressed as a box-and-whiskers plot of eight animals in each
group. *P < 0.05, versus respective sham group. **P < 0.05, versus CLP group at day 3. #P < 0.05, versus EPC-NEXP group. ##P < 0.05, versus EPC-EXP
group. †P < 0.05, versus MSC-HUMAN group
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of the cell therapy administered. Additionally, VEGF
plays an important role in mobilizing EPCs under patho-
logic conditions such as cancer and sepsis [34]. While
the decrease in circulating EPCs observed after anti-
VEGF treatment is beneficial in cancer, it may not be so
in sepsis, which may explain why expanded EPCs were
effective in CLP-induced sepsis in the present study.
Several studies have shown that PDGF can accelerate

tissue repair and wound healing in acute injury and in
some forms of chronic injury, such as radiation-induced
chronic non-healing wounds [35, 36]. Nevertheless, it is
unclear whether PDGF has beneficial effects in acute
critical conditions such as sepsis. Our results demon-
strated that administration of expanded EPCs decreased
PDGF expression levels. In a rodent model of traumatic
hemorrhagic shock, administration of exogenous PDGF
improved animal survival and increased tissue blood
flow and mitochondrial function in vital organs [37].
However, our results demonstrated that EPC-EXP re-
duced PDGF expression levels, which may be explained
by the different experimental models used in the afore-
mentioned study by Liu et al. [37], in accordance with
previous work published by our group with cell therapy
and endotoxemia [1].
A recent study evaluated the efficacy of expanded and

non-expanded EPCs in modulating myocardial function
[22]. The authors observed that both expanded and non-
expanded EPCs improved cardiac function. However, in
our model of sepsis, in contrast to the morphofunctional
benefits of EPC-EXP, EPC-NEXP did not improve lung
function or histology. The reasons whereby expanded
EPCs led to better lung morphofunction and reduced
inflammation as compared with non-expanded EPCs
remain to be elucidated, but may be associated with
differences in the immunophenotype of these cells.
EPC-NEXP exhibited immunophenotypic markers as-
sociated with immature cells able to differentiate into
both hematopoietic and endothelial cells, depending
on stimuli [20]. In contrast, EPC-EXP were already
committed to the endothelial lineage and able to
promote rapid neovascularization in ischemic areas
immediately after infusion, thus improving the envir-
onment with nutrients and engraftment of stem cells
that may act both on immunomodulation and repair
of damaged tissues [20, 21]. Since these cells were
studied during a short period, we may hypothesize
that the mechanisms of action of EPC-EXP could be
attributable to an immunomodulatory effect rather
than to engraftment.

Conclusions
In septic mice, expanded cord blood-derived EPCs and
human MSCs were associated with specific improvement
in lung function and histology, while the other cellular

types analyzed, MSC-MICE and EPC-NEXP, were not so
effective. Further studies are needed to better under-
stand the therapeutic potential of EPC-EXP, especially as
a novel therapy for sepsis.

Additional file

Additional file 1: Survival rate in untreated CLP animals and
those treated with cells. Survival rate at days 1 and 3 are related
to day 0; values in parentheses are survival rate related to day 1.
(DOCX 12 kb)
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