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ABSTRACT: We present a theory of adaptive optimization
for umbrella sampling. With the analytical bias force constant
obtained from the constrained thermodynamic length along
the reaction coordinate, the windows are distributed to
optimize the overlap between neighbors. Combining with
the replica exchange method, we propose a method of adaptive
window exchange umbrella sampling. The efficiency gain in
sampling by the present method originates from the optimal
window distribution, in which windows are concentrated to
the region where the free energy is steep, as well as
consequently improved random walk.

■ INTRODUCTION

The potential of mean force (PMF), X( ), as a function of a
set of collective variables (CVs), X, can be formally written as

∫ δ= − ′ − β−k TX R X R X( ) ln{ d [ ( ) ]e }U R
B

( )
(1)

where kB is the Boltzmann constant, T is the temperature, β =
(kBT)

−1, δ(z) is a delta function of z, U is the potential energy,
and R is a particular configuration of the system. Clearly, the
quality of the calculated PMF relies on sampling in the
configuration space, {R}. Extensive sampling to obtain the
PMF of a complex system is generally difficult even by long
molecular dynamics (MD) or Monte Calro (MC) simulations.
To better sample along the CVs, especially in steep-PMF
regions, the umbrella sampling (US) method1 has been
extensively employed.
There have been many excellent US methods such as the

adaptive US,2 self-healing US,3 Gaussian mixture adaptive US,4

and self-learning adaptive US5 to name a few. Except the last
one, all the mentioned methods aim to achieve uniform
sampling along the CVs by applying an adaptively estimated
umbrella potential, which would eventually allow diffusive
sampling along the CVs. The last method aims to efficiently
determine (multidimensional) free energy landscape around
the transition (minimum free energy) pathway by gradually
adding windows over low free energy regions.
A typical system for (regular) US simulations consists of a set

of windows with umbrella potentials that restrain the CVs near
the center of each window, and the simulation data are
postanalyzed to calculate the PMF by the weighted histogram
analysis method6 or the mean force integration.7,8 For
meaningful and efficient US simulations, the overlap between
neighboring windows should be sufficient and well controlled.
However, there has been no general theory to control the fine
overlap because the window centers are system-dependently

shifted to the nearest PMF minimum. In order to control the
overlap systematically, there should be a quantitative measure
of the overlap between a pair of windows. The average
acceptance probability Pa is such a measure, which has been
originally derived in the theory of replica exchange (REX)
methods.9−13 Pa describes the overlap between two replicas
quantitatively and thus can be directly applied to control the
overlap between neighboring windows in US as well.
Recently, there have been efforts in the systematic control of

the overlap between windows for the US REX method.9,14 The
first approach in this direction is our previous work,9 where we
derived a simple relationship between the window force
constant k and the window spacing d based on an analytical
expression for Pa,

β=z kd /2opt
2 2

(2)

where zopt = 0.8643, which provides the optimal window
overlap (i.e., Pa ≈ 0.39) based on the first passage time
optimization of REX methods.9−11 Equation 2 assumes that the
PMF has minimal effects on shifts of the window centers.
However, when the effect of the PMF becomes significant, the
window parameters based on eq 2 are no longer optimal,
although it still provides a good initial guess. In addition, the
optimal number of windows for efficient US simulations still
needs to be determined in an empirical (and system-
dependent) manner.
More recently, Dashti and Roitberg14 proposed a protocol

for the optimization of US REX by realizing uniform Pa
between replicas, which provides a way to determine where
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to put windows and how many windows are needed. However,
the bias force constant were kept constant and there were only
the examples with the fixed number of windows. Without
optimization of the bias force constant, the statistical
uncertainty in the calculated PMF from US would not be
minimized15,16 and thus its convergence would be slow.
The concept of the thermodynamic length15−18 provides a

rigorous way to minimize the statistical uncertainty by finding a
pathway that minimizes the dissipation,15,16,18 which have been
applied in optimization of thermodynamic processes.19−21

Using the information theory, the connection between the
thermodynamic length and the statistical uncertainty in the free
energy calculation has been studied.15,22−24 In these studies, it
has been shown that the statistical uncertainty is minimized
when intermediate states are spaced along a minimum distance
pathway connecting these states,15,16,18 which lies on the
geodesic connecting the end states.15,16

In this work, to resolve these general issues in US simulations
(efficient sampling with minimal statistical uncertainty), we
present a theory of adaptive optimization for umbrella
sampling, which is based on equidistant window distribution
along the thermodynamic length. Here, we consider one-
dimensional US (X = ξ), which can be readily combined with
REX methods.25,26 In the following, the theoretical background
for the present method is described. Then, we derive an
analytical expression for the optimal (PMF-dependent) bias
force constant for US and describe an adaptive optimization
that distributes the windows with the optimal bias force
constant by constraining Pa. We validate the method and
explore its sampling efficiency along the hidden (or orthogonal)
degrees of freedom (DOF) by using a toy-model. We then
examine the efficacy and the limitation of the present method
by applying it to a more realistic (and complicated) example,
the assembly of the transmembrane domain of glycophorin A
(GpA-TM).

■ THEORETICAL BACKGROUND
Let us consider a system whose canonical distribution of ξ is
g i v e n b y ξ β ξ= −p Z( ) exp[ ( )]/ , w h e r e

∫ ξ β ξ= −Z d exp[ ( )]. The corresponding (regular) US
system consists of N windows and each window i is under
the effective potential, Ueff(R) = U(R) + wi(ξ|ξi), where wi(ξ|ξi)
is the window potential to restrain sampling of ξ near ξi (i = 0,
1,...,N − 1). We assume that the sampling range Λ is
continuous (i.e., Λ = [ξmin, ξmax]). The sampling range at
window i, Λi, can be conveniently described by the variance of
sampled ξ, σξi

2 , and then, their average for the entire windows

becomes σξ
2 = ∑iσξi

2/N. For the uniform sampling along ξ, σξi
2 =

σξ
2 should hold, which is equivalent to the minimization of the
total variance, ∑iσξi

2 (see Figure 1A for schematic description).
Note that the adaptive bias force and potential methods27−30

aim to achieve this criterion by flattening the effective potential
along ξ.
However, in the framework of US, this criterion does not

imply the optimal sampling for efficient PMF calculations
because the variance of the estimated PMF at each window,
σ 2

i
, is larger where the PMF changes faster and is smaller near

the PMF minima, which increases the statistical errors and thus
results in slow convergence of the calculated PMF. It has been
known that the minimization of the statistical errors in the
calculated free energy is equivalent to that of the total variance

of the PMF estimated from intermediate states (i.e., windows in
US) connecting two end states.15,16,23,24 In the context of US,
the equidistant window distribution along the thermodynamic
length corresponds to the window distribution that minimizes

σ∑i
2

i
, which would result in the maximized PMF convergence

(with the least statistical errors). Therefore, we consider the
thermodynamic length as an alternative metric rather than ξ.
The thermodynamic length along a given path connecting

two states can be defined as the length traveled along the free
energy coordinate.15−18 Assuming that the PMF is known (or
can be estimated from the data of the previous US simulations),

can be written as

∫ ∫ξ ξ ξ ξ= | ′ | = | ′ |
ξ ξ

ξ

∈Λ
d ( ) d ( )

min

max

(3)

where z ̅ ≡ βz. Similarly, we define the thermodynamic length
for a given window i, i, as the length between two states, ξi

eff

− δξi and ξi
eff + δξi, where ξi

eff is the center of the window and
δξi is its half-range, which is defined by δξi ≡ ασξi. Then, we
define the range Λi = [ξi

eff − δξ, ξi
eff + ξi] as the thermally

accessible range of ξ at window i, that is, 2kBT range of ξ with
respect to the effective PMF,9 which is the sum of the PMF and
the window potential. The above definition is reasonable
because the majority of sampled ξ is within this range. With the
Gaussian approximation of the sampled ξ-distribution31 (i.e.,
the harmonic approximation of the effective PMF), one can
determine α = 2 (see below). Note that Λi is wider than that
from the equipartition of for optimal overlap between
neighboring windows. The sampling along the free energy
coordinate (PMF) would be optimal when λ=i (constant)
for all the windows16 (schematically shown in Figure 1B),
which results in the following constraint:

∫ ξ ξ λ= | ′ | =
ξ δξ

ξ δξ

−

+
d ( )i

i i

i i

eff

eff

(4)

A naturally arising question is how to determine the optimal
bias force constant (eq 12) for each window that satisfies eq 4.

Optimal Bias Force Constant. To address this question,
let us consider a typical harmonic window potential, wi(ξ|ξi) =
ki(ξ − ξi)

2/2. We start with the assumption that the distribution
of sampled ξ, pb(ξ|ki,ξi), can be well approximated by a
Gaussian distribution pG(ξ|ki

eff, ξi
eff), that is, pb(ξ|ki, ξi) ≈ pG(ξ|

ki
eff, ξi

eff), where ki
eff is the effective bias force constant and ξi

eff is
a shifted center from the (original or input) window center ξi
due to the PMF effect:31

Figure 1. Schematic description of the equidistant window distribution
with respect to (A) the sampling range Λ and (B) the thermodynamic
length calculated from the PMF in (A) by eq 3. By equipartitioning
Λ or (blue arrows), the boundaries for each window can be easily
determined (vertical gray dashed lines) and the midpoint can be
assigned to the center of each window (red circles). Note that the
windows are not equally distributed along ξ in (B).
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ξ ξ ξ ξ

ξ ξ ξ ξ

| ∝ − ̅ − −

| ∝ − −

p k x k

p k k

( , ) exp[ ( ) ( ) /2]

( , ) exp[ ( ) /2]

i i i i

i i i i

b
2

G
eff eff eff eff 2

(5)

w h e r e k ̅ ie f f = 1 / σ ξ i

2 . T h e e ff e c t i v e PM F ,

ξ ξ ξ ξ≡ + −k( ) ( ) ( ) /2i i i
eff 2 , is then approximated to

ξ ξ ξ≈ −k( ) ( ) /2i i i
eff eff eff 2 . Near ξ i

e f f , ξ( ) can be
approximated to

ξ ξ ξ ξ
ξ

ξ≈ + ′ Δ +
″

Δ( ) ( ) ( )
( )
2

( )i i i
i

i
eff eff

eff
2

(6)

where Δξi = ξ − ξi
eff. By substituting eq 6 into eq 5 and

comparing the exponents between pb(ξ|ki,ξi) and pG(ξ|ki
eff, ξi

eff),
one can obtain the relations between the window parameters
and the effective ones:

ξ

ξ ξ ξ ξ

− = ″

− = ′ ″ −

k k

k

( )

( )/[ ( ) ]

i i i

i i i i i

eff eff

eff eff eff eff
(7)

It should be noted that, without properly chosen ki
eff, eq 4 is not

satisfied in general. Therefore, for an optimal US, one needs to
find a set of {ki

eff, ξi
eff} that satisfies eq 4 for all the windows. The

corresponding set of window parameters ({ki,ξi}) for the
subsequent US simulations are then determined by eq 7.
An analytic solution of eq 4 can be obtained as follows. We

start from rewriting eq 4 as

∫ ∫ξ ξ ξ ξ λ= | ′ | + | ′ | =
ξ δξ

ξ

ξ

ξ δξ

−

+
d ( ) d ( )i

i i

i

i

i i

eff

eff

eff

eff

(8)

By noting that ξ ξ ξ| ′ | ≈ | ′ + ″Δ | ≤ | ′| + | ″Δ |( ) i i i i i i
for ξ near ξi

eff, we obtain

λ δξ δξ ασ ασ≤ | ′| + | ″| = | ′| + | ″|ξ ξ2 2 ( ) ( )i i i i i i i i
2

, ,
2

(9)

where ξ′ = ′( )i i
eff and ξ″ = ″( )i i

eff . Then, by
assuming the equality in eq 9 and solving it, we obtain

α
λ

λ

λ λ

= ′ + | ″|

+ ′ + | ″| − ″⎜ ⎟

⎡
⎣
⎢⎢
⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

k
2

2

2 4

i i i

i i i

eff
2

2
2

2
2 2

2

(10)

The (unknown) parameters α and λ in eq 10 can be
determined as follows. By noting that the effective PMF can
be approximated to a harmonic function, the thermodynamic
length with respect to ξ( )i

eff for Λi can be written as

∫ ξ
ξ

σ α α= = =
ξ δξ

ξ δξ

ξ
−

+
kd

d
di

i
i

eff
eff

eff 2 2 2

i i

i i

ieff

eff

(11)

Because we defined Λi as the thermally accessible range,
= 4i

eff , we obtain α = 2. Hereafter, we omit the window
index unless it is necessary, and consider k and keff as a function
of ξ. One can show that λ ≤ α2 for US, which implies that the
maximum i cannot exceed =( 4)i

eff . By matching i and

i
eff (λ = α2 = 4), we obtain an analytical expression for the

optimal effective bias force constant keff(ξ)

ξ = ′ + | ″| + ′ + | ″| − ″
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k ( )

2 2
eff

2 2 2
2

(12)

Adapative Optimization for Umbrella Sampling. With
the effective bias force constant (eq 12) that satisfies eq 4 (i.e.,
the equidistant constraint along the thermodynamic length),
the next question for optimal US is how to distribute windows
with well controlled overlap between neighbors. To achieve
this, we make use of Pa (the average acceptance probability) as
a quantitative measure of the overlap between a pair of
windows, which can be formally written for US as

∫ ∫ ξ ξ ξ ξ ξ ξ≈ | |P P p k p kd d ( , ) ( , )i i j ja 1 2 ex G 1
eff eff

G 2
eff eff

(13)

where subscripts 1 and 2 are indices for a pair of windows i and
j, Pex = min{1,exp(−βΔ)} is the metropolis criterion for the
exchange between the pair with Δ being the difference between
the effective potential before and after the exchange of the
windows. In the theories of the optimization of REX
methods10−13 and in our previous work,9 the optimal
performance of window exchange umbrella sampling
(WEUS) is achieved when Pa between neighboring windows
is a constant whose value is in 0.28−0.4, depending on the
exchange schemes. In this work, we set Pa to 0.4, which is
optimal for the so-called “even-odd” exchange scheme.9,10 For
efficient evaluation of eq 13, we obtained an accurate analytic
expression for Pa (see Appendix for details).
With eqs 7, 12, and 13, for a given ξ( ) calculated after a

(short) US simulation, the windows can be optimally
redistributed over Λ as follows. Let us consider a window at
one fixed end-point, ξ0 = ξmin. The effective window
parameters, ξ0

eff and k0
eff = keff(ξ0

eff), and the (updated) bias
force constant k0 are determined from eqs 7 and 12. The ξ1

eff

and k1
eff of the next window 1 are then determined by satisfying

the constraint, Pa = 0.4, and the corresponding ξ1 and k1 are
obtained by eq 7. This procedure is repeated until Λ is covered
by the windows. It should be noted that the extensive
evaluation of Pa can be efficiently performed by using the
analytic expression for eq 13. After the redistribution, an
estimate of the optimal number of windows, Nopt, is obtained as
an outcome, which may be different from N for the previous
simulation.
In a typical US simulation, however, N is not changed. By a

simple modification of eq 12 and the window distribution
procedure, one can still optimize US with a fixed N. First, let us
consider keff(ξ) when N > Nopt (ρ < 1 where ρ = Nopt/N). In
this case, one can naturally scale λ by ρ (λ→ ρλ) in eq 4. Then,
keff(ξ) for optimal US with N windows can be obtained by
substituting ′ and ″ with ρ′/ and ρ″/ in eq 12 as

ξ
ρ ρ ρ ρ ρ

= ′ + | ″| + ′ + | ″| − ″⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k ( )

2 2
eff

2

2

2

2

2 2

2

(14)

When N < Nopt (ρ > 1), the above scaling cannot be applied
because k(ξ) could be negative around the PMF minima. By
decreasing the target value of Pa for the distribution of
windows, keff(ξ) for ρ = 1 can still be used in the optimization
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procedure. However, lowering Pa implies localized sampling
around the window centers. Therefore, to maintain Pa, we
sacrifice the optimal sampling by adding a bias force constant

ξ ρ ξ= − | ″ |−k ( ) (1 ) ( )a
eff 1

(15)

so that the same scaling can be applied for ρ > 1 as well.
Therefore, the optimization of the distribution of N windows
can be performed with the adjustable parameter ρ. This
modified optimization procedure can be readily combined with
the WEUSMD method, which is termed adaptive WEUSMD
(aWEUSMD).

■ SIMULATION DETAILS
To validate and explore the sampling efficiency of aWEUSMD
along the hidden (or orthogonal) DOF, we considered two
systems: (1) a toy model and (2) the assembly of the GpA-TM.
The toy model is designed to examine not only the sampling

along an explicit CV but also an efficiency gain in sampling
along the orthogonal DOF if any. In the model, a particle
(whose mass is the same as phosphorus) is moving under the
potential U(x,y) = U0(x,y) + UR(x,y) (in kcal/mol). As shown
in Figure 2A, it has four Gaussian wells and barriers along x-
and y-directions, which are described by U0(x,y):

= − − −

− + +

− − − − − −

− − − −

U x y

H H

( , ) 4 2e 4e 2e

4e e ey
y

x
x

r r r r r r

r r

0
/2 /2 /2

/2 /2 /2

1
2

2
2

3
2

4
2 2 2

(16)

where r = (x,y), r1 = (4,4), r2 = (−4,4), r3 = (−4,−4), r4 = (4,−
4), Hx = 5, and Hy is the adjustable barrier along y-direction.
The particle is restrained in a bounded area by UR(x,y):

= | | − + | | −

=
≥⎧⎨⎩

U x y R x R y

R z
z z

( , ) 1.5[ ( 5) ( 5) ]

( )
if 0

0 otherwise

R
2 2

(17)

By varying Hy from 5 to 6.5 with the increment of 0.5, we
performed 120-ns Langevin dynamics MD simulations of
USMD, WEUSMD, and aWEUSMD for a set of the number of
windows, N ∈ {21,31,41,51,61}, with two fixed end points at
xmin = −6 Å and xmax = 6 Å. Initially, the windows were equally
distributed along x with d = (xmax − xmin)/(N − 1) and k was
obtained from eq 2. We have performed nine simulations for
each set of Hy and N, where the initial x-coordinate was set to

each window center. The initial y-coordinate y0 was set to y0 =
3.8 + 0.05r, where r ∈ {0,1,···,8}.
For a more realistic (and complicated) example, we

considered the assembly of the right-handed GpA-TM dimer
because it has been extensively studied for transmembrane
(TM) helix assembly32−35 and represents one of the tightest
interfacial packing (with the well-known GxxxG motif) among
all the known TM helix interfaces. Such tight packing makes it
challenging to sample the conformational space (e.g., right-
handed to left-handed dimer at short helix−helix distance rHH)
and thus makes the GpA-TM to be a valuable target to assess
the sampling power.35 We defined the GpA-TM as 72EITLI
IFGVM AGVIG TILLI SYGIR96, in which we have chosen Cα

atoms of residues 76−92 to define the helix principal axis for
rHH and the crossing angle Ω.36,37 For the NMR structure
(PDB: 1AFO),38 the calculated rHH and Ω are 6.59 Å and
−39.2°, respectively.39 To test and compare the sampling
power of WEUSMD and aWEUSMD, we prepared three sets of
initial configurations of GpA-TM: left-handed (IS1, Ω < 0),
right-handed (IS2, Ω > 0), and parallel (IS3, Ω ≈ 0) helix−
dimer interfaces.
The initial configurations were generated from the NMR

structure by translating each helix along rHH and then by
rotating the helices along the helix−helix distance vector for a
desired Ω. A total of 80 windows were generated for each initial
configuration set in a rHH range 5.2−21 Å with d = ΔrHH = 0.2
Å and the restraint force constant k obtained from eq 2 for
WEUSMD (initial k for aWEUSMD). Then, we have
performed 200-ns WEUSMD and aWEUSMD for IS1, IS2,
and IS3. For computational efficiency, the IMM1 implicit
membrane model40 was used with the hydrophobic thickness of
23 Å to mimic a dimyristoylphosphatidylcholine (DMPC) lipid
bilayer.
All the simulations were performed using CHARMM.41 For

GpA-TM simulations, we used the SHAKE algorithm and
default IMM1 options. We used a time step of 2 fs and the
collision frequency γ = 5 ps−1, which is a typical value for
Langevin dynamics with proteins. Window exchanges were
attempted every 1 ps and controlled by the REPDSTR
module42 in CHARMM. In aWEUSMD, the window
parameters were updated every 0.2 ns. The adaptive update
were controlled by in-house Python scripts, which take the
window parameters and the time series of ξ (x or rHH) for all
the windows from the previous simulation as input. The
derivatives of the PMF ( ′ and ″) were calculated, for the
numerical stability, using the cubic spline interpolation of ′
obtained by the umbrella integration method.31 The resulting
derivatives were used to obtain the updated window parameters
for the next simulation by eqs 7 and 12−15. We limited the
maximum shift of ξi in one update cycle by d/4 for its smooth
evolution.

■ RESULTS AND DISCUSSION

Toy Model. In this section, we show the results from a
representative parameter set, Hy = 6 and N = 31 (see
Supporting Information section S1 for the results from all the
tested parameter sets). The one-dimensional (1D) PMF,

x( ), calculated from the results of USMD, WEUSMD, and
aWEUSMD for y0 = 4.1 are shown in Figure 2B. The accuracy
of the aWEUSMD-PMF is the best among the three methods,
while the WEUSMD-PMF is marginally better than the
USMD-PMF. The most obvious reason for the improved

Figure 2. (A) Potential energy, U(x,y), of the model system with Hy =
6 in eq 16. (B) The one-dimensional PMF, x( ), calculated from
U(x,y) (black) and the results of 120-ns simulation data from USMD
(red), WEUSMD (green), and aWEUSMD (blue) with N = 31
windows. x( ) from U(x,y) is calculated by eq 1 and those from
simulations are calculated by WHAM.
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accuracy of the PMFs from WEUSMD and aWEUSMD over
USMD is the regular window exchange attempts, which
facilitates the sampling of configurations. This improvement
is clearly shown in Figure 3 by comparing the conditional
probability, P(y|x) ≡ P(x,y)/P(x), where P(x) and P(x,y) are
the populations sampled by simulations.
The sampling power (i.e., the accuracy of the sampling

compared to the reference) can be quantitively estimated by
the Kullback−Leibler divergence43

∑| || | =
| |

|

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥D P y x P y x

P y x

N

P y x

P y x
[ ( ) ( )]

( )
ln

( )

( )i j

j i

x

j i

j i
KL r

,

r

bin,

r

(18)

where Pr(y|x) is calculated from U(x,y), Nbin,x is the number of
bin size along x, and xi and yj are the i- and j-th bins along x and
y, respectively. Smaller values of DKL indicate better agreement
of P(y|x) with Pr(y|x), and DKL vanishes when they are identical.
In addition, the relaxation time of DKL, τ, can be a measure of
the efficiency, estimated by fitting DKL(t) to an exponential
function: DKL(t) = a+b exp (−t/τ). As shown in Figure 4A, the
WEUSMD-DKL (τ = 18.6 ± 1.1 ns) decays much faster than
USMD-DKL (τ = 68.5 ± 14.4 ns), and aWEUSMD-DKL (τ =
8.91 ± 0.47 ns) relaxes even faster; similar results are obtained
for most parameter sets examined (Supporting Information
Figure S1 and Table S1).
The efficiency gain in aWEUSMD over WEUSMD can be

attributed to the optimal window distribution (Pa = 0.4) with
keff(x), where the windows are concentrated in steep PMF
(high | ′|) regions. In these regions, the y-barrier is lower than
those around 1D-PMF minima (x = 4 or −4 in Figure 2B),
which results in better sampling along y-direction in aWE-
USMD, that is, the increased number of y-barrier crossing Ncross
(Figures 4C and D). As expected, there is no meaningful
increase in Ncross from WEUSMD compared to that from
USMD (Supporting Information Figure S2 and Table S2).
Considering the fact that aWEUSMD optimizes WEUSMD
only along the explicit CV (i.e., the x axis), the increase in Ncross
(along the y axis) is noteworthy.

In addition, there is an efficiency gain from the improved
random walk of replicas, which can be quantified as the fraction
of replicas that have visited the lowest-index window most
recently,11,44

= + −f i n i n i n i( ) ( )/[ ( ) ( )]N0 0 1 (19)

where n0(i) is the accumulated number of replicas with
traveling state “0” monitored at window i during the course of
simulation and nN−1(i) is similarly defined. The traveling state
of a given replica is assigned (or updated) to “0” or “N − 1”
only when it reaches at the lowest- or the highest-index
window, 0 or N − 1, respectively. For the ideal random walk of
replicas, f(i) should be linear.11,44 By comparing eq 3 with eq 25
in ref 45 (a work for the optimization of replica’s random walk),
it is clear that aWEUSMD indeed improves the random walk as
well, as shown in Figure 4B; similar results are obtained for
most parameter sets examined (Supporting Information Figure
S3).

GpA-TM Assembly. In this section, we show the results
from the WEUSMD and aWEUSMD for the assembly of the
GpA-TM starting with the initial configurations with left-
handed (IS1) and right helix−dimer interfaces (IS2) (see
Supporting Information section S2.2 for the results from the
parallel TM dimer initial configurations, IS3). Figure 5 shows
the 1D-PMF as a function of rHH, (rHH), for IS1 and IS2.
There is significant difference between the IS1-PMF and the
IS2-PMF from WEUSMD, which is originated from incomplete
sampling (see Figures 6A and C). The agreement between the
IS1-PMF and the IS2-PMF from aWEUSMD is significantly

Figure 3. Conditional probability, P(y|x), calculated from (A) U(x,y),
(B) USMD, (C) WEUSMD, and (D) aWEUSMD for Hy = 6 and N =
31. P(y|x) is normalized by max{P(y|x)|| x| ≤ 6 and |y| ≤ 6} and the
binwidth is 0.1 Å for both x- and y-directions.

Figure 4. (A) Kullback−Leibler divergence DKL calculated from 10-ns
blocks of P(y|x) from USMD (black), WEUSMD (red), and
aWEUSMD (blue) by eq 18. Shown together are the exponential
fits of DKL (dashed lines). (B) The fraction of replicas that have visited
the lowest-index window, f(i), in eq 19, from WEUSMD (red) and
aWEUSMD (blue) simulations. Shown together is f(i) for the ideal
random walk of replicas (black line). (C−D) The histogram of the
number of y-barrier crossing, Ncross(x), from (C) WEUSMD and (D)
aWEUSMD simulations. Ncross(x) is the sum of the number of crossing
from y > 0 to y < 0, N1(x) (green), and that in the opposite direction,
N2(x) (red). The total number of y-barrier crossing is denoted by
Ncross and similarly by N1 and N2. In all the figures, the data are
averaged over nine independent simulations and the error bars
represent the standard errors.
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improved, which we attribute to the improved sampling power
of aWEUSMD over WEUSMD.
The improved sampling efficiency of aWEUSMD over

WEUSMD is supported by the conditional probability P(Ω|
rHH), as shown in Figure 6. The agreement between P(Ω|rHH)
calculated from aWEUSMD for IS1 and IS2 is improved up to
shorter rHH ≈ 7 Å (Figures 6B and 6D) compared to the results
from WEUSMD, which show good agreement for rHH > 9 Å.
This improvement allows the sampling of the right-handed
NMR structure-like conformations in aWEUSMD with IS1
(Figure 6B and Supporting Information Figure S4B), indicating
that aWEUSMD indeed promotes the sampling along Ω, where
no restraint potential was applied.
The sampling power of aWEUSMD and WEUSMD for the

GpA-TM assembly are quantitatively compared by DKL of Pt(Ω|
rHH) with respect to Pr(Ω|rHH) from the results of 2D-
WEUSMD in our previous work,35 where Pt(Ω|rHH) is
calculated from the trajectories up to time t. As shown in
Figure 7, the aWEUSMD-DKL relaxes faster to its estimated
steady-state value, DKL

ss , compared to the WEUSMD-DKL. For
IS1, the estimates of (DKL

ss ,τ) from aWEUSMD and WEUSMD
are (0.515 ± 0.004,10.27 ± 0.53 ns) and (1.538 ± 0.002,14.20
± 0.76 ns), respectively. For IS2, these estimates are (0.185 ±

0.003,12.84 ± 0.89 ns) and (0.541 ± 0.021,37.89 ± 3.59 ns) for
aWEUSMD and WEUSMD, respectively. Although DKL is a
quantity that dictates both the accuracy and the efficiency of the
sampling, it should be noted that this quantity is not always
available in general because the probability distribution of the
reference state needs to be known a prior.
In aWEUSMD, as shown in Figure 8, the window parameters

relax to their limiting values once the PMF is converged (albeit
with fluctuations). The relaxation time of the window centers
(including the effective ones) was estimated to be about 4 ns
(20 update cycles). The estimated τ of the bias force constants
(including the effective ones) are about 20 ns and 26.5 ns for
IS1 and IS2, respectively. Interestingly, τ for the bias force
constants are well correlated to that of DKL. This good
correlation enables us to estimate the efficiency by τ of window
parameters without the need of DKL. However, it should be
noted that the converged window parameters does not
guarantee the convergence of the PMF to the true one because
aWEUSMD does not actively sample along the hidden DOF.

■ DISCUSSION
A fundamental requirement for proper US is that the sampling
along ξ should cover entire Λ with sufficient overlap between
neighboring windows. With poorly chosen window parameters,
the sampling along ξ could be fragmentized into disconnected
partitions in Λ. Such poor sampling would be observed in the
cases, for example: (1) equidistant window distribution with
too high bias force constant and (2) window distribution with
too low bias force constants around steep barriers along ξ. In
these cases, the quality of the calculated PMF would be poor
because of the lack of the overlap between neighboring
windows in certain regions (especially around the barriers).
This is an intrinsic limitation (overlap problem) of any US-type
methods.

Figure 5. PMF as a function of rHH, (rHH), calculated from
WEUSMD (red) and aWEUSMD (blue) starting from the initial
configurations of (A) left-handed (IS1) and (B) right-hand (IS2)
helix-dimer interfaces. For the PMF calculation, we used trajectories
from 40 ns to 200 ns. The error bars represent the standard deviations
calculated from 16 10-ns block average PMFs.

Figure 6. Conditional probability, P(Ω|rHH), calculated from the
results of (A) WEUSMD and (B) aWEUSMD for IS1. P(Ω|rHH)
calculated from the results of (C) WEUSMD and (D) aWEUSMD for
IS2. P(Ω|rHH) is normalized by max{P(Ω|rHH)} and the binwidth is
ΔrHH = 0.05 Å and ΔΩ = 6°.

Figure 7. Kullback−Leibler divergence DKL calculated using Pt(Ω|rHH)
from WEUSMD (red) and aWEUSMD (blue) for (A) IS1 and (B) IS2
by eq 18 with respect to Pr(Ω|rHH) calculated from 2D-PMF in ref 35.
Pt(Ω|rHH) is calculated from trajectories up to time t. Shown together
are the exponential fits of DKL (dashed lines).

Figure 8. (A) Time-series of windows center (rHH,i) for three windows
(i = 19,59, and 75). (B) The average relaxation time τ of window
parameters for IS1 (red) and IS2 (blue). The error bars are the
standard errors of the average τ over the entire windows.
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Such an overlap problem can be alleviated in the present
optimization method because of (1) the minimization of the
shift in the windows center by the adaptively optimized (PMF-
dependent) bias force constants and (2) the concentrated
window distribution in the steep PMF regions with well-
controlled overlap between neighboring windows by constrain-
ing Pa. However, it should be noted that, when N ≪ Nopt (ρ ≫
1), aWEUSMD with fixed N cannot overcome this problem
although it performs better than WEUSMD and USMD (data
not shown). By relaxing the fixed N condition, aWEUSMD
would be free of the overlap problem along ξ.
In this work, the efficiency of all the tested methods (USMD,

WEUSMD, and aWEUSMD) was estimated by the relaxation
time (τ) of DKL. We observed that τ of DKL is well correlated
with that of window parameters which would be stable once the
PMF is converged. Therefore, even in a situation in which one
cannot calculate DKL because of unknown reference state, the
sampling efficiency (especially, convergence rate) can be
estimated by τ of the window parameters (see Figure 8).
As shown in Figure 4A, the efficiency and sampling power of

aWEUSMD and WEUSMD are significantly better than those
of USMD due to the REX. The quality of REX is improved by
aWEUSMD compared to that in WEUSMD, which is more
clearly shown for smaller N but becomes less obvious as N
increases (Figure S3). In Figure 9, we plotted f(i) obtained

from the results of WEUSMD and aWEUSMD for the GpA-
TM assembly. Although the quality of REX was improved by
aWEUSMD, the significant nonlinearity in f(i) indicates that
aWEUSMD has limited power in optimization of the flux of
replicas, which we attribute to the incomplete sampling along
the hidden DOF due to high barriers (>6 kcal/mol).
The REX itself does not improve the barrier crossing along

the hidden DOF for a given replica (see Supporting
Information Figure S2). However, in aWEUSMD, where the
windows are more densely distributed in the steep PMF regions
(with optimal bias force constants), there are more barrier
crossing events than WEUSMD and USMD. This implies that
the present adaptive optimization method indeed improves the
sampling efficiency of US along the hidden DOF. However, it
should be noted that aWEUSMD does not actively sample the
hidden DOF, as attempted in some recent efforts.28,29

Therefore, the efficiency gain in aWEUSMD over WEUSMD
is limited by the barrier height along the hidden DOF. The
results from the toy-model suggests that aWEUSMD can
overcome the barriers along the hidden DOF, whose height is
up to about 6 kcal/mol. It is consistent with the results from
the GpA-TM assembly in that the sampling along Ω is
improved up to rHH ≈ 7 Å, at which the barrier height along Ω
is about 6 kcal/mol.35

■ CONCLUDING REMARKS

In this work, we present a theory of adaptive optimization for
umbrella sampling for optimal PMF calculations based on two
constraints: (1) the uniform thermodynamic length for all the
windows ( = 4i ) and (2) the uniform average acceptance
probability between neighboring windows (Pa = 0.4). From the
first constraint, we obtained an analytic expression for the
effective bias force constant keff(ξ). Then, the windows are
distributed by constraining Pa = 0.4, which is known to be
optimal for the exchange scheme chosen for the present work.
As an immediate consequence of the present theory, an

estimate of the optimal number of windows Nopt and a
parameter ρ (=Nopt/N) are obtained. The latter provides a
criterion from which one can judge whether the given number
of windows N is sufficient or not: when ρ ≈ 1, N is close to
Nopt. Sampling along ξ by aWEUSMD would be proper as long
as ρ ≤ 1, whose efficiency can be conveniently estimated by the
relaxation time (τ) of the window parameters. However, when
N ≪ Nopt, aWEUSMD with fixed N cannot overcome the
overlap problem, which is an intrinsic limitation of any US-type
methods. By relaxing the fixed N condition, aWEUSMD would
be free of the overlap problem along ξ.
The efficiency gain in aWEUSMD over WEUSMD originates

from the optimal window distribution concentrated in the steep
PMF regions, where more barrier crossing along the hidden (or
orthogonal) DOF are feasible, and also from the consequently
improved random walk of replicas. As a result, the synergetic
improvements in the sampling along both explicit and hidden
DOF by aWEUSMD make the PMF converge faster than
WEUSMD. However, it should be noted that the advantage of
aWEUSMD over WEUSMD is limited by the barrier height
along the hidden DOF. The results from the two test cases
suggest that aWEUSMD can help sampling along the hidden
DOF, whose barrier height is up to about 6 kcal/mol.
In this work, we fixed N in aWEUSMD for comparison with

USMD and WEUSMD with the same N. If we relax this
condition, a better performance of aWEUSMD would be
achieved by employing self-learning scheme, analogous to that
in the self-learning adaptive US.5 In this scheme, windows are
added gradually until N reaches Nopt starting from aWEUSMD
with small N. Then, aWEUSMD would be free of the overlap
problem and would exploit its other advantages over
WEUSMD (improved random walk of windows and sampling
along the hidden DOF) simultaneously. This version of
aWEUSMD (self-learning aWEUSMD) would be more useful
in one-dimensional US simulations for efficient sampling and
PMF calculations.

■ APPENDIX: AN ACCURATE ANALYTIC
EXPRESSION FOR PA

Here, we derive an accurate analytical approximate expression
for Pa between a pair of windows i and j for arbitrary window
parameters (ξi,ki) and (ξj,kj), whose corresponding effective
window parameters, (ξi

eff, ki
eff) and (ξj

eff, kj
eff). Formally, Pa

between the pair of windows is given by the integral,

∬
∬

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

= | |

≈ | |

P P p k p k

P p k p k

d d ( , ) ( , )

d d ( , ) ( , )

i i j j

i i j j

a 1 2 ex b 1 b 2

1 2 ex G 1
eff eff

G 2
eff eff

(20)

Figure 9. Fraction of replicas that have visited the lowest-index
window, f(i), in eq 19, from WEUSMD (red) and aWEUSMD (blue)
simulations for (A) IS1 and (B) IS2. Shown together is f(i) for the
ideal random walk of replicas (black line).
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where subscripts 1 and 2 are indices for a pair of windows i and
j, Pex = min{1,exp(−βΔ)} is the metropolis criterion for the
exchange between the pair, and Δ is

ξ ξ ξ ξ
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ξ ξ

Δ = − + −

− − + −

= − − +

− −
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It can be shown easily that

∬ ξ ξ ξ ξ ξ ξ= | |
Δ>

P p k p k2 d d ( , ) ( , )i i j ja
0

1 2 G 1
eff eff

G 2
eff eff

(22)

Simply, one can evaluate Pa by the numerical integration of
eq 13 (or eq 22). However, its analytical expression can provide
deeper understanding and insights, which is helpful in further
applications. For example, when ki

eff = kj
eff, the exact analytical

expression of eq 13 is available,9 which is utilized to obtain eq 2
for the relationship between the window force constant and the
window spacing for WEUSMD. In general cases (when ki

eff ≠
kj
eff), there has been no such analytical expression for Pa, which
we are in need of, for fast and accurate evaluation of eq 13 in
order to redistribute windows in our adaptive optimization for
US method.
The starting point is rewriting eq 13 in a symmetric form as

∫ ∫= − ′ + ′
∞ ∞

P xK x K x xK x K x1 d ( ) ( ) d ( ) ( )j i j ia
0 0 (23)

where, for m ∈ {i,j}, the kernels in eq 23 are defined as
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and erf(x) is the error function of x, fm = zm
2 /(zi

2 − zj
2), zm ≡

|Δξj,ieff|/(√2σm), Δξj,ieff ≡ |ξj
eff − ξi

eff|, and σm = (βkm
eff)−1/2.

Hereafter, we assume that kj
eff > ki

eff (zi > zj). When kj
eff < ki

eff,
one can use the result after exchanging indices i and j.
To make eq 23 be integrable, we introduced a Gaussian

approximation of the error function,

≈ − | | +x x c x c xerf( ) sign( )[1 exp(2 )]1 2
2

(25)

where sign(x) is the sign function of x. With 100 000 equally
distributed supporting points along x in a range of [1.0 ×

10−20,5.0], the coefficients c1 and c2 are determined from the

numerical fit to log[1−erf(x)] = 2c1x + c2x
2 as c1 = −0.425672

and c2 = −0.913347, respectively. After substitution of eqs 24

and 25 into eq 23, the integrals become those of Gaussian,

whose analytic solution is available46
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Using eq 26, we obtained an analytic approximate expression

for Pa as a function of z1 and z2,
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Figure 10. (A) The average acceptance probability, Pa(z), calculated from the exact solution, eq 4 in ref 9. (black), and the equal z limit of eq 27, eq
29 (green). Shown together is erfc(z) (blue), which is the first term of the approximate expression of Pa given by eq 29. (B) The average acceptance
probability as a function of z1 and z2, Pa(z1,z2), given by eq 27.
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Here, erfc(x) = 1−erf(x) is the complementary error function,
Ω(x) = exp(x2)erfc(x), W(x,y) = exp(x2)erfc(x + y), f = f i + f j,
and am,n = 1 − c2(zm/zn)

2 and bm,n,r = rzm − c1(zn/zm) for m ∈
{i, j} and n ∈ {i,j} (m ≠ n).
We compared the exact expression for Pa for ki

eff = kj
eff (zi = zj

≡ z), eq 4 in ref 9, with the equal z limit of eq 27 obtained by
taking limit zi → z and zj → z,
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As shown in Figure 10A, eq 29 agrees excellently with the exact
solution. The absolute error is less than 1.48% (at z = 0.856)
for any z ≥ 0 and the relative error is less than 8.94% (at z =
2.459) for z ∈ [0,6], which verified the accuracy of eq 27. In
Figure 10B, eq 27 as a function of z1 and z2, Pa(z1,z2), is shown,
in which the green area is the region of the interest (Pa ∼ 0.4)
for the optimal overlap between neighboring windows.
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