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Purpose: To evaluate if a three-component model correctly describes the diffusion signal in the kidney and whether it
can provide complementary anatomical or physiological information about the underlying tissue.
Materials and Methods: Ten healthy volunteers were examined at 3T, with T2-weighted imaging, diffusion tensor imag-
ing (DTI), and intravoxel incoherent motion (IVIM). Diffusion tensor parameters (mean diffusivity [MD] and fractional
anisotropy [FA]) were obtained by iterative weighted linear least squares fitting of the DTI data and mono-, bi-, and
triexponential fit parameters (D1, D2, D3, ffast2, ffast3, and finterm) using a nonlinear fit of the IVIM data. Average parame-
ters were calculated for three regions of interest (ROIs) (cortex, medulla, and rest) and from fiber tractography. Good-
ness of fit was assessed with adjusted R2 (R2

adj) and the Shapiro-Wilk test was used to test residuals for normality. Maps
of diffusion parameters were also visually compared.
Results: Fitting the diffusion signal was feasible for all models. The three-component model was best able to describe
fast signal decay at low b values (b < 50), which was most apparent in R2

adj of the ROI containing high diffusion signals
(ROIrest), which was 0.42 6 0.14, 0.61 6 0.11, 0.77 6 0.09, and 0.81 6 0.08 for DTI, one-, two-, and three-component
models, respectively, and in visual comparison of the fitted and measured S0. None of the models showed significant
differences (P > 0.05) between the diffusion constant of the medulla and cortex, whereas the ffast component of the
two and three-component models were significantly different (P < 0.001).
Conclusion: Triexponential fitting is feasible for the diffusion signal in the kidney, and provides additional information.
Level of Evidence: 2
Technical Efficacy: Stage 1
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Diffusion magnetic resonance imaging (MRI) of the kid-

ney is a growing field of research, as it allows assessment

of tissue characteristics. The method makes no use of ionizing

radiation and does not require extraneous contrast agents that

might impede kidney function. Research has shown that it is

feasible to differentiate between different renal tissue types

(ie, cortical and medullar tissues) using diffusion tensor imag-

ing (DTI) MRI-derived parameters such as mean diffusivity

(MD)—quantifying the magnitude of diffusion—and frac-

tional anisotropy (FA)—a measure for diffusion anisotropy.1,2

Several studies have demonstrated that in healthy subjects the

cortical MD is higher than the MD in the medulla, whereas

cortical FA is lower than medullar FA.3–10 The higher diffu-

sion anisotropy is usually attributed to the radial organization

of tubules and vasculature in the renal pyramids.1,4–9,11 In

addition, it has been shown that it is possible to differentiate

between healthy and diseased tissue using diffusion tensor

MRI parameters MD and FA, for example, in follow-up of

kidney transplants12,13 and in the early detection of diabetic

nephropathy.14
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In addition to the microscopic motion of water in tis-

sue, diffusion MRI is also sensitive to processes such as vas-

cular perfusion and tubular flow.15 Because the signal

attenuation due to perfusion is much greater than attenuation

caused by diffusion, both signals can be separated by using a

two-component intravoxel incoherent motion (IVIM) model.

This is done by fitting of the diffusion signal decay over a

range of b-values to a biexponential function, in which the fast

signal decay at lower b-values (b < 200) is attributed to fast

water movement processes, "pseudodiffusion," and the decay at

higher b-values to hindered diffusion.15 The two-component

model was shown to be a better fit to the diffusion signal in

the kidney than the one-compartment models.16 Several studies

showed IVIM parameters to be sensitive to pathological pro-

cesses in the kidney, such as allograft rejection,17 renal

tumors,18,19 renal artery stenosis,20 renal dysfunction,21 cortical

defects,22 and vesicoureteral reflux.23

However, there is great variability between the

obtained values for diffusion D, pseudodiffusion D*, and

pseudodiffusion signal fraction f. These differences are in

part a consequence of the use of different acquisition or

processing protocols, for example, the b-values used,9,24 or

of using different fitting algorithms.3,25 However, there

might also be physiological causes for this variability; for

example, pseudodiffusion was found to correlate with perfu-

sion in an electrocardiogram (ECG)-triggered time-resolved

study of healthy kidneys,26 while IVIM-derived parameters

were also shown to be sensitive to diuretic challenges.27

This has led to the belief that pseudodiffusion in the kidney

consists of a perfusion and a tubular, or free water flow,

component.3,28

Therefore, we propose a three-component model for

the diffusion signal in the kidney, to account for a pure dif-

fusion, an ultrafast, and an intermediate component.29 A

three-component model has been applied in other abdomi-

nal organs, ie, the liver30,31 and the prostate,32 where the

intermediate component was believed to reflect free diffu-

sion31,32 or microperfusion.30

In this study we compare the three-component model for

the diffusion signal in healthy human kidneys with commonly

used models, ie, DTI and IVIM. The purpose was to evaluate

if the three-component model correctly describes the signal and

whether it can provide complementary anatomical or physiolog-

ical information about the underlying kidney tissue.

Materials and Methods

Subjects
Local Institutional Review Board approval was obtained for this

study and written informed consent was given prior to the MRI

examination. Ten healthy volunteers with no previous history of

kidney disease were included. Subjects were not given any restric-

tions regarding fluid or food intake.

MRI Acquisition
Volunteers were examined on a 3T MR clinical scanner (Philips,

Achieva, Philips Healthcare, Best, The Netherlands), using a

16-element body coil (SENSE XL Torso coil). Volunteers underwent

coronal T2-weighted anatomical imaging and diffusion weighted

imaging (DWI), which consisted of two scans: a DTI scan with b 5 0,

100, and 300 s/mm2 in 15 gradient directions, and an IVIM scan

with b 5 10, 25, 40, 75, 100, 200, 300, 500, 700 s/mm2 in three gra-

dient directions. All image acquisitions were navigation-triggered7,10,33

(see Table 1 for the MRI acquisition details). After acquisition, all raw

images were assessed for data quality. Images were evaluated by the

principle investigator (S.v.B., 1 year of experience) in agreement with

experienced MRI scientists (A.L. and M.F., 10 years of experience)

and an experienced pediatric urologist (P.D., 25 years of experience)

on a three-point scale (1 5 bad, 2 5 sufficient, 3 5 good) for the pres-

ence of visible blurring, signal dropouts, susceptibility artifacts, and

distortions. Datasets with a score of 2 or 3 were considered of adequate

quality for further processing.

Image Preprocessing
All preprocessing was performed with DTITools34 and "Explor-

eDTI"35 and were comprised of the following steps. First, because

of differences in the motion of the left and right kidneys, the data

were cropped in two separate datasets, containing the left and right

kidney, respectively, which were processed independently. Next, all

DWI data were corrected for motion due to breathing and eddy

current-induced deformations by a two-step registration process.

First, all diffusion-weighted images were registered to the unweight-

ed images10,33 using a nonrigid 2D b-spline (Elastix36,37 registration

algorithm, aligning the slices within the diffusion-weighted volumes

as well as the volumes to each other and the unweighted volume.

Second, these motion-corrected data were registered to the T2-

weighted anatomical images, using an 3D affine registration algo-

rithm. At each step, the B-matrix was adjusted to take any rotational

components into account.38 In order to obtain corresponding resolu-

tions, the diffusion-weighted data and the anatomical images were

resampled to 2 mm isotropic resolution. To segment the kidney vol-

ume from the background, masks were obtained by manually draw-

ing regions of interest (ROIs) around the kidney in the sagittal slices

of the T2-weighted TSE scans using ITK snap (www.itksnap.org39).

Data Analysis
To obtain diffusion parameters the corrected DTI and IVIM data-

sets were analyzed with four different methods, ie, DTI and mono-,

bi-, and triexponential fitting (see Table 2). Diffusion tensors were

computed from the DTI data using an iterative weighted linear

least squares (iWLLS) algorithm with outlier rejection,40,41 after

which the FA and MD were calculated for each voxel. The IVIM

data were processed using three different isotropic diffusion decay

models, ie, with one, two, and three diffusion components. The

single-component model is expected to be most similar to the MD

obtained from the tensor model, as the tensor model is also mono-

exponential. The two-component model (the IVIM model) has

been used before in diffusion imaging of the kidney and allows

one to separate the fast (pseudo)diffusion of urine and blood from

the slower tissue diffusion. The three-component model allows for

both a fast and intermediate diffusion component in addition to

the slower tissue diffusion. Mono-, bi-, and triexponential models

were fitted using a nonlinear least squares method (Levenberg-
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Marquardt). For the two- and three-component models the models

were first fitted to the average signals from the whole kidney vol-

ume to obtain values for Dfast2, Dinterm, and Dfast3. Next, with

Dfast2, Dinterm, and Dfast3 fixed to the average value of all kidneys

of all subjects the voxel wise fit for S0, D1,D2,D3, finterm, ffast2, and

ffast3 was performed. These voxelwise fits result in maps that were

used for visual comparison: fitted S0 was compared to the

measured S0 for each model, the diffusion D1,D2,D3 were

compared to each other and the fraction maps for the two- and

three-component fits were compared to each other and to the ana-

tomical T2 maps to analyze the relation to anatomical structures.

ROI Selection
ROIs selecting the cortex, medullae, and the rest of the kidney

(which includes the pyelum, large renal vessels, and other high-

signal regions) were defined using an automated algorithm. First,

after smoothing the maps with a Gaussian kernel with a radius of

two voxels, masks were computed by selecting all regions that had

TABLE 2. Signal Equations for the DTI Model and the One-, Two-, and Three-Component Models

Model Equation

DTI Sb5S0e2b g*D g* [1]

IVIM1 Sb5S0
2bD1 [2]

IVIM2 Sb5S0

�
ð12ffast ;2Þe2b D21ffast;2e2bDfast;2

�
[3]

IVIM3 Sb5S0

�
ð12finterm:2ffast ;3Þe2bD31finterm:e2bDinterm:1ffast ;3e2bDfast ;3

�
[4]

S0 is the unweighted signal; Sb is the diffusion weighted signal; b is the b-value; g* is the gradient direction; D the diffusion tensor;
D1,D2, and D3 the diffusion constants obtained from the one-, two-, and three-component IVIM models, respectively; Dfast ;2 and
Dfast ;3 the fast diffusion constants from the two- and three-component model, respectively; Dinterm the intermediate diffusion constant
from the three-component model; ffast ;2; finterm and ffast ;3 the signal fractions of the Dfast;2;Dinterm;Dfast ;3 component.

TABLE 1. MRI Acquisition Details

Sequence T2-TSE DTI IVIM

Respiratory correction Trigger Trigger Trigger

Scan time per respiration 0:02.04 0:01.3 0:01.3

Acquisition plane Coronal Coronal Coronal

Field of view 450x450 336x204 336x204

TSE factor 20 — —

TR/TE (msec) 2418/100 1267/39 1344/45

Startup echoes 0 — —

b-value (s/mm2) — 0, 100, 300 0, 10, 25, 40, 75,
100, 200, 300, 500, 700

Flip angle (deg) 90 —

Gradient directions — 15 3

EPI factor (ETL) — 55 55

SENSE factor 4 1.5 1.5

Acquisition matrix 4003320 112368 112368

Acquisition voxel size (mm3) 1.13 3 1.41 3 3.0 3.0 3 3.0 3 3.0 3.0 3 3.0 3 3.0

Half Fourier scan factor — 0.655 0.655

Slice thickness/gap (mm) 3.0 /- 3.0/- 3.0/-

Number of slices 25 30 30

Number of averages 6 3 (b50, 12) 2 (b50, 8)

Type of fat suppression No SPIR SPIR

Total acquisition time (min) 4:03.0 10:18.0 06:54.0
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an MD (DTI model) and an D1 (monoexponential model) greater

than 5.0 mm2/s (faster than free water at 378), and defined as the

ROI containing “the rest,” ie, ROIrest. Next, the mask that was

drawn manually to segment the kidney (see section Image Prepro-

cessing) was eroded by three voxels. This eroded mask and the

ROIrest were subtracted from the manual mask to obtain the ROI

that contained the cortex, ROIcortex. Finally, the ROImedulla was

defined by subtracting the ROIcortex and the ROIrest from the man-

ually drawn mask of the kidney.

In addition to ROI-based analysis, tractography-based analy-

sis was performed. Whole volume fiber tracts were generated from

the tensors obtained from the DTI data with a seeding distance of

2 3 2 3 2 mm3. Tractography was allowed in voxels with an FA

between 0.05 and 0.9 and an MD between 0.1 and 5.0 mm2/s and

was terminated if tracts changed more than 20 degrees per 1-mm

step. From the whole volume fiber tractography results, tract densi-

ty (TD) maps were generated (amount of tracts per voxel).42 To

segment renal pyramids, regions with a high tract density were

selected from the tract density map: knowing that tubules and col-

lecting ducts congregate in papillae, papillae were segmented by

selecting regions that had a TD higher than 10% of the mean TD

of the kidney. The tract density threshold was established

experimentally, balancing between optimally selecting papillae and

eliminating spurious tracts.

Statistical Analysis
The goodness of fit of the mono-, bi-, and triexponential signal

decay models as well as the DTI model was assessed by analysis of

the model residuals. First, the adjusted R2 (R2
adj) was calculated,

where a high value of R2
adj indicated that the model describes the

data appropriately. Second, the residuals were tested for normality

using the Shapiro-Wilk test. If the residuals have a normal distri-

bution the test parameter W will converge to the value of 1 and

the P-value is greater than 0.05.

The diffusion parameters, signal fractions, W and R2
adj were

calculated per ROI (ie, cortex, medulla, and rest) as well as for the

tract volume. Differences between the regions were evaluated using

analysis of variance (ANOVA) analysis and corrected for multiple

comparisons using a Bonferroni post-hoc test. Values were consid-

ered different if the P-value of the post-hoc test was smaller than

0.05. For W, only voxels that had a P-value greater than 0.05 were

used in the ROI analysis and the percentage of rejected voxels was

calculated.

FIGURE 1: Unprocessed data, the cropped data, and effect of registration. A: T2-weighted anatomical image of both kidneys. The
red square indicates the cropped area to select a single kidney (G). B–F: Diffusion-weighted images for b-value of 0, 10, 100, 300,
and 700 s/mm2, respectively. G: Cropped kidney (left T2-weighted, right diffusion-weighted image after registration), the vertical
red dashed line in the diffusion-weighted image indicates the cross-section shown in H,I. H,I: Cross-section of diffusion-weighted
images before (H) and after (I) registration.
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The correlations between FA and signal fractions were inves-

tigated using a Spearman’s rank test. If the parameters are correlat-

ed the test parameters will converge to one. The correlation was

considered significant if the P-value was smaller than 0.05.

Results

Subjects
All volunteers (three males, seven females; ages 28.2 6 9.5;

range 23–55 years old) were successfully scanned. After

examination of the scans by a radiologist, one kidney was

excluded from further analysis because of a cyst, and for one

dataset the IVIM data were lost, leaving 19 kidneys for DTI

analysis and 17 for IVIM analysis.

MRI Acquisition and Image Preprocessing
All acquired datasets had sufficient data quality (four scans

in category 2 and 15 scans in category 3, out of 10 DTI

scans and 9 IVIM scans) and could be used for further anal-

ysis. An example of the T2, DTI, and IVIM data is shown

in Fig. 1A–F. After each kidney was cropped into a separate

dataset (Fig. 1G) the diffusion data were registered to cor-

rect for residual breathing motion (Fig. 1H,I). Figure 2

shows the automatic selection of the three ROIs selecting

the cortex, medulla, and rest, based on the manually drawn

whole kidney mask.

Data Analysis
Figure 3 shows mono-, bi-, and triexponential fits of the

whole volume. The signal averaged over the whole kidney

volume as a function of b-values for all kidneys of all sub-

jects are plotted separately in one graph for the one-, two-,

and three-component models in the left column of Fig. 3A.

Theses plots show almost identical relations between b-value

and average signal for each kidney. Therefore, the signal

from all kidneys were taken together and averaged to obtain

the values for Dfast2, Dinterm, and Dfast3, which is demon-

strated in Fig. 3A in the right column. These values fitted

from the average data of all kidneys were used for a voxel

wise fit for S0, D1,D2,D3, finterm, ffast2, and ffast3. Comparing

the maps of the fitted S0 to the measured S0 suggests that

the mono- and biexponential fits were not able to accurately

fit S0, especially in the regions with a high diffusion signal

(white arrow, Fig. 3B, left two columns). Furthermore, the

diffusivity found with the mono- and biexponential fits (D1

and D2) are similar but higher than that of the triexponen-

tial fit (D3).

Considering the consecutive images for all b-values in

Fig. 4A, the three-component model allows one to differen-

tiate between the fast signal decay occurring between b 5 0

and b 5 10 s/mm2 and the intermediate signal decay occur-

ring between b 5 10 and b 5 200 s/mm2. For example, in

the images for b 5 0 s/mm2 the signal from fast-flowing

FIGURE 2: Automatically generated mask for selecting the regions of interest, ie, cortex (yellow), medulla (red), and rest (blue). A:
Masks for two subjects. B: T2-weighted anatomical images. C: Masks overlaid on the anatomical images.
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water in renal arteries is visible, but it is completely absent

in b 5 10 s/mm2. The signal from free water in the pyelum

is visible in all maps up to b 5 200 s/mm2. In the two-

compartment model, this last process with an intermediate

decay rate and its corresponding structure (the pyelum) is

added to the slow diffusion compartment and visualized in

the 1-ffast2 fraction map in the two-compartment model. As

demonstrated in Fig. 4B, the two-, and three-component

models show a very similar signal fraction of the fast diffusion

component ffast2 and ffast3. However, the three-component

model allows for an additional intermediate diffusion signal

fraction ffastinterm. This allows for the visualization of comple-

mentary structures, such as the kidney pyelum, the cortex,

and renal columns in the intermediate compartment. The

complementarity of the fraction maps is visualized in Fig. 4C,

which shows the three signal fractions of the three-component

model as RGB maps next to the anatomical T2-weighted

image. For all the imaged kidneys, a similar pattern is found

(see Fig. 4D) in which ffast3 mostly corresponds to the renal

arteries and veins, finterm mostly corresponds with the renal

cortex, renal columns, and renal pelvis, and f1-interm-fast reflects

kidney parenchyma.

DTI analysis and fiber tractography was feasible in all

kidneys. A TD map of whole volume tractography is shown

in Fig. 5A. The regions with high tract density that were

used to select the fiber tracts are shown in Fig. 5B. The

resulting fiber tracts that only belong to the renal pyramids

are shown in Fig. 5C. Figure D–F show the direction color

coded FA map, direction color encoded fiber tracts, and

MD color encoded fiber tract, respectively. Regions that

allow fiber tractography showed very uniform FA and MD.

Furthermore, the fiber tracts also have in general very uni-

form signal fractions as obtained from the three component

IVIM model, as shown in Fig. 5G–I.

Statistical Analysis
Values of R2

adj for the DTI and the mono-, bi-, and triexpo-

nential fits of one kidney are shown in Fig. 6B and average

values for all ROIs and tracts of all kidneys are given in

Table 3 and all P-values for differences between ROIs are

also given in the Supplementary Table. Highest and most

homogeneous values for R2
adj were obtained using the three-

component model and lowest values were obtained using

the DTI model (see Table 3). The two-component model

showed similar values for R2
adj with the exception of those

obtained in the rest ROI and those obtained from the tracts.

For the cortex the mono-, bi-, and triexponential models

performed similarly.

The test statistics of the Shapiro-Wilk test of one kid-

ney are shown in Fig. 6C and the average values of the per-

centage of voxels with a P < 0.05 for all ROIs and tracts of

all kidneys are given in Table 3. The highest percentage of

voxels with normally distributed residuals were obtained

using the three-component model. The two- and three-

FIGURE 3: Fits of the whole kidney volume signal using mono-, bi-, and triexponential IVIM fits and the fitted S0 and D maps. A:
The whole volume diffusion-weighted signal as a function of b-value with the corresponding model fits. The left column shows all
the data and fits of the individual subjects and kidneys (n 5 17). The right column shows the average signal of all subjects and kid-
neys together with the models fits and its individual components. B: The measured unweighted signal S0 together with the fitted
S0 and D. Both the one- and two-component models are unable to correctly describe the signal attenuation resulting in an under-
estimation of S0. For the two-component model this is only apparent in the bright signals, as indicated by the red arrow. The esti-
mated diffusion becomes lower with increasing components in the IVIM model.
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component models showed similar results in the cortex and

medulla, whereas the one-component model had a much

lower percentage of voxels with normally distributed resid-

uals in the medulla. Furthermore, the DTI model had a

lower percentage of voxels with normally distributed resid-

uals compared to the mono-, bi-, and triexponential models

with the exception of the rest ROI and the medulla in the

single-component model.

Average parameter values from the DTI and mono-,

bi-, and triexponential fits for all ROIs and tracts are given

in Table 3 and all P-values for differences between ROIs

are also given in the Supplementary Table. The FA in the

ROIcortex was significantly lower than in the tracts and

ROIrest. Furthermore, the FA was the only parameter that

differed significantly between the ROImedulla and the tracts,

where the medulla had a significantly lower FA. The MD

and the diffusion constants from the one-, two-, and three-

component models (ie, D1, D2, and D3, respectively) all

showed significant differences between the ROIrest and the

ROIcortex, ROImedulla, and tracts. These values were not sig-

nificantly different between the ROIcortex and ROImedulla

(P 5 1, P 5 1, P 5 0.363, and P 5 1, respectively). The MD

was higher than D1, D2, and D3. Additionally, with increas-

ing components in the signal decay models the values for D

decreased. The signal fractions ffast2 and ffast3 showed signifi-

cant differences between all ROIs and tracts with the excep-

tion of the ROImedulla and the tracts (P 5 0.762 and

P 5 1.000). The signal fraction finterm was only significantly

different between the ROIrest and the ROImedulla and tracts.

Figure 7 shows the correlation between the average

values of FA and the signal fractions ffast2, finterm, and ffast3

for all ROIs of all kidneys. Both ffast2 and ffast3 showed a sig-

nificant (P < 0.001) and high correlation with FA from the

DTI model, 0.751 and 0.756, respectively.

Discussion

We compared a three-component model for the diffusion

signal in healthy human kidneys with commonly used mod-

els, ie, DTI and IVIM using the whole volume signal and

voxelwise fits allowing ROI-based analysis. In addition, visu-

al assessment was also performed to assess consistency and

complementarity of the different diffusion metrics. For all

automatically generated ROIs the three-component fit had

the lowest R2
adj and the highest percentage of voxels with

normally distributed residuals. Additionally, we showed that

the ffast2 and ffast3 from the two- and three-component mod-

els showed a high and significant correlation with FA from

the DTI model. DTI and IVIM are well-established fitting

methods that have been applied in numerous diffusion MRI

studies of the kidneys with consistent results,5–9,11,16,26–28,33,43

which are in line with our results.

The diffusion coefficient (MD for DTI, D1, D2, and

D3 for mono-, bi-, or triexponential fitting, respectively)

decreases when more components are used, suggesting that

the diffusion signal of the kidney partly includes a signal

fraction that originates from fast-moving water instead of

normal diffusion. IVIM fitting can differentiate between

slow and fast-moving water, as was put forward by earlier

IVIM studies in the kidneys.15,16,20,21,24,26–28 With the

triexponential fit, the diffusion coefficient further decreases,

suggesting that biexponential fitting does not fully differen-

tiate between pure diffusion and other water motion pro-

cesses and that introducing an additional intermediate

component allows to further distinguish between them. The

value of D3 is more in range of MD values found in other

organs such as muscle,44 heart,45 and brain.46

Considering the goodness of fit for all diffusion mod-

els, the bi- and triexponential models result in lower

FIGURE 4: Signal fraction maps resulting from the bi-, and
triexponential IVIM fits. A: Diffusion-weighted IVIM data for b-
values 0 to 700 s/mm2. B: Signal fraction maps in percentage
for the bi- and triexponential IVIM fits. C: Merged signal frac-
tion maps of the triexponential IVIM fit color coded as red
green and blue for the 1-finterm-ffast2, finterm, and ffast2, respec-
tively, next to the anatomical T2-weighted images. It is appar-
ent that finterm and ffast2 correspond well to the urine and
blood in the anatomical images, respectively.
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residuals than a one-compartment (monoexponential and

DTI) model. This is in line with an earlier study in which

Wittsack et al have shown that the IVIM model is preferred

over monoexponential models for fitting the diffusion signal

in the kidney.16 In the ROIrest fast-moving water is located,

for example, within the renal vessels and the pyelum. The

three-component model seems better equipped to handle

these regions than the IVIM model, resulting in a higher

R2
adj and normally distributed residuals, although the differ-

ences between the two- and three-component models are

not statistically significant and might be attributed to over-

fitting because of a higher number of parameters. The good-

ness of fit for the renal parenchyma is similar for the IVIM

and three-component model, but these regions may also

contain vessels or other structures containing both fast and

intermediate water motion processes that cannot be accu-

rately modeled using a biexponential fit. Therefore, we pro-

pose that using a triexponential signal decay fit provides

more information on the component of the signal that is

associated with intermediate diffusion rate, in the order of

magnitude of free water. Our findings agree with earlier

application of triexponential fits to the liver and the pros-

tate, where the additional component is believed to corre-

spond with free water37,38 or microperfusion.36

Assessment of the fits demonstrates the plausibility of

an additional, intermediate component, especially the

FIGURE 5: Fiber tracts and tract selection from the DTI model color coded for diffusion parameters and signal fractions. A: Tract
density map from whole volume fiber tractography. B: Tract selection regions generated from the tract density map, where the
tract density is greater than 10% of the average tract density. C: Fiber tracts selected with the tract density regions, color coded
for the tract density. D: Color coded FA map. E: Fiber tracts color coded for FA and direction as indicated by the red green and
blue arrows. F: Fiber tracts color coded for MD. G–I: Fiber tracts color coded for the signal fractions of the three-component IVIM
model.
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intermediate b-value regions (10 < b < 300 s/mm2) but

also b 5 700 s/mm2 are better described with the three-

component model. Comparing the measured S0 to the fitted

S0 suggests that the triexponential fit is more accurate than

the monoexponential fit as well as the biexponential fit.

Especially at those regions where fast-moving water is

expected (outside of the kidney parenchym), which is also

demonstrated by the R2
adj maps and Shapiro-Wilk residual

maps. In a two-component model, the conventional IVIM

model is a more suitable fit for the diffusion signal in the

kidney parenchyma than monoexponential models. Areas

with fast water motion, such as blood flow in large vessels,

are more accurately fitted with a three-component model.

In the cortex and medulla the pattern of D1, D2, and

D3 also changes with increasing model components. In the

D1 and D2 maps, high values are found in the cortex and

the renal columns between the renal pyramids. Using a

three-component model this pattern in the D3 maps disap-

pears and is almost completely described by the intermediate

diffusion constant Dinterm and the its corresponding signal

fraction finterm.

Comparing the signal fraction maps with T2 images

suggests that the intermediate component reflects free water,

which is predominantly found in the pyelum, where urine is

collected after filtering in the nephron. In comparison to T2

images, the fast component reflects blood flow, which is pre-

dominantly found in the large vessels. In the renal paren-

chyma it is more difficult to pinpoint the structure or

physiological process to which the signal fractions refer by

comparing to the T2 images. Flow of blood and urine in

the nephrons and collecting ducts in the same order of mag-

nitude within one voxel cannot be distinguished. Adding an

intermediate component affects the diffusion fraction

(1-ffast2 for the biexponential fit and 1-finterm-ffast3 for the

triexponential fit) map: in the biexponential fit this map is

largely homogeneous in the renal parenchyma, whereas in

the triexponential fit a pattern that reflects the pyramidal

structure in the renal parenchyma is visible. This corre-

sponds to the observations in the changes in D as a result of

adding additional components described above. These obser-

vations suggest that fraction maps derived from triexponen-

tial fitting provide additional information on structures

associated with intermediate water flow processes. These

findings may be employed in the development of imaging

tools that aid in the diagnosis of patients with renal pathol-

ogies that alter physiologic water motion processes, such as

renal artery stenosis, chronic parenchymal disease, or renal

lesions such as scarring, cysts, or tumors.

FIGURE 6: R2
adj maps and test statistics from Shapiro-Wilk test. A: The anatomical T2-weighted images of the left and right kidney.

B: The voxelwise R2
adj values for the DTI and mono-, bi-, and triexponential IVIM fits. C: The voxelwise P-values and W from the

Shapiro-Wilk test. P-values < 0.05 are color coded red.
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ROI-based analysis shows that the fast signal compo-

nent for biexponential as well as triexponential fitting is

most useful to distinguish between different tissue types in

the kidneys, which might be due to differences in vasculari-

zation between cortex and medulla. Our study did not show

significant differences between FA or MD in ROIcortex and

ROImedulla, as most publications did.3–10 A reason for this

could be the ROI selection method: where most studies use

manually drawn ROIs to specifically select ROIs that only

contain medullar tissue, we have developed an automated

method to eliminate user selection biases. The ROImedulla

obtained by this method also includes other regions, most

importantly renal columns that do not have the anisotropic

tissue structure characteristic of the medulla. This is

reflected in the diffusion values we found for the medulla

that are higher than typically reported in the literature.

The tractography-based parameters of all models are

most similar to those of the medulla, which is in agreement

with the widely accepted belief that diffusion anisotropy

originates in the radially oriented structures in the medul-

la.4–10,12–14,27 However, tract-based FA is significantly

higher than ROI-based FA in the medulla. This is a bias of

the methods used, where tractography seeks out the highest

anisotropy in the area and terminates when FA is too low,

TABLE 3. R2
adj, Percent Of Voxels With P< 0.05 From the Shapiro-Wilk Test, and DTI and Mono-, Bi-, and Triex-

ponential Fitting Parameters for Each ROI and Track Volume

Cortex Medulla Rest Tracts

R2
adj DTI 0.80 6 0.10 0.76 6 0.09 0.42 6 0.14 0.70 6 0.11 b, d, f

1-comp 0.91 6 0.03 0.87 6 0.03 0.61 6 0.11 0.82 6 0.07 b, d, f

2-comp 0.92 6 0.03 0.91 6 0.03 0.77 6 0.09 0.87 6 0.05 b, d, f

3-comp 0.92 6 0.03 0.91 6 0.03 0.81 6 0.08 0.89 6 0.04 b, d, f

% voxels S-W
test with P< 0.05

DTI 28.40 6 8.94 27.30 6 9.61 24.50 6 5.34 27.20 6 10.10

1-comp 20.10 6 12.40 32.00 6 11.70 53.00 6 14.40 29.80 6 12.00 a, b, d, f

2-comp 20.80 6 12.60 16.30 6 9.17 28.50 6 11.50 16.90 6 9.39 d, f

3-comp 20.10 6 11.90 16.70 6 8.83 25.00 6 10.80 17.80 6 9.17

DTI FA 0.22 6 0.04 0.23 6 0.03 0.28 6 0.03 0.28 6 0.03 b, c, d, e

MD [1023 mm2/s] 2.17 6 0.10 2.11 6 0.11 2.52 6 0.25 2.14 6 0.13 b, d, f

1-comp D1 [1023 mm2/s] 2.12 6 0.09 2.09 6 0.11 5.52 6 3.84 2.32 6 0.32 b, d, f

2-comp ffast,2 [%] 9.72 6 1.66 15.80 6 2.76 30.80 6 8.49 17.50 6 5.98 a, b, c, d, f

D2 [1023 mm2/s] 2.04 6 0.08 1.93 6 0.08 2.15 6 0.21 1.98 6 0.11 b, d, f

3-comp finterm. [%] 25.60 6 4.34 22.40 6 5.75 30.40 6 7.67 24.80 6 8.33 d, f

ffast,3 [%] 6.15 6 2.03 13.20 6 4.00 26.90 6 8.83 14.30 6 6.31 a, b, c, d, f

D3 [1023 mm2/s] 1.51 6 0.10 1.45 6 0.10 1.12 6 0.26 1.36 6 0.21 b, d, f

P< 0.05 for: a cortex vs. medulla; b cortex and rest; c cortex and tracts; d medulla and rest; e medulla and tracts; f rest and tracts.

FIGURE 7: Correlation between ffast2, finterm, and ffast3 and FA for each of the three ROIs. The correlation values and P-values were
obtained from Spearman’s rank test. Only the ffast2 and ffast3 showed a high and significant correlation with FA.
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pushing FA in the tracts up, whereas our ROImedulla selects

the entire inner structure of the kidney, including renal col-

umns, as well as renal pyramids. Furthermore, the tracts

were mostly concentrated in the medulla and absent in the

renal columns, but this did not result in significant differ-

ences between the tracts and cortex either.

We have shown that FA from DTI is correlated to the

fast components in bi- and triexponential fits: the higher the

signal fraction of the fast component, the higher the FA. This

suggests that diffusion anisotropy in the kidneys not only orig-

inates in the radially oriented tissue structure of tubules in the

kidney medulla, as is usually assumed in kidney diffusion stud-

ies, but also in fast water movements, such as perfusion or

tubular flow. This is in agreement with an earlier combined

DTI and IVIM study concluding that both flow and tissue

structure contribute to medullary diffusion anisotropy.28

Although we found similar patterns in all our subjects,

a limitation of our study is the limited number of subjects

and the lack of any clinical information that we could relate

to the imaging results. Furthermore, subjects were not given

any restrictions on water or food intake, which might have

increased the variability of the parameters between subjects.

Another limitation to our study is that there is no standard

of reference to compare the DTI, mono-, bi-, and triexpo-

nential fits with. Therefore, it is impossible to draw any

definitive conclusions about which of the mono-, bi-, or

triexponential fits best fits the diffusion signal of the kidney,

and which model most accurately reflects kidney physiology.

It could well be that the different regions of the kidney are

best described by different models. The automated method

we used for ROI selecting had several advantages, most

importantly in eliminating user selection bias and including

the whole kidney in ROI analysis. A downside of this method

is that the ROImedulla not only included medullar tissue, but

renal columnar tissue as well, resulting in an FA that is lower

than expected. Our study suggests that anisotropy in both the

diffusion and the pseudodiffusion signal components contrib-

ute to diffusion anisotropy in the kidneys. To prove this

would require fitting a dual or triple tensor model for the bi-

and triexponential fit. However, this means fitting for 14 (in

a two-tensor model) or 21 (in a three-tensor model) degrees

of freedom, for which much more b-values and gradient

directions with very high data quality are necessary.

In conclusion, triexponential fitting of the signal decay

is feasible for the diffusion signal in the kidney, and pro-

vides additional information on structures associated with

intermediate water flow processes to the IVIM model.
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