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Summary

Obesity is associated with hypothalamic–pituitary–testicular axis dysregulation in

males. Here, we summarize recent evidence derived from clinical trials and studies

in preclinical animal models regarding the role of androgen receptor (AR) signaling in

the pathophysiology of males with obesity. We also discuss therapeutic strategies

targeting the AR for the treatment of obesity and their limitations and provide insight

into the future research necessary to advance this field.
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1 | INTRODUCTION

Obesity represents a major global public health problem with a rapidly

growing incidence rate that confers a great socioeconomic burden on

our society. According to the World Health Organization (WHO), obe-

sity is characterized by abnormal or excessive fat accumulation that

presents a health risk.1 While the WHO defines obesity as a body mass

index (BMI) over 30 kg/m2, this categorical definition does not capture

the fact that the risks imparted by increasing body mass follow a con-

tinuum and vary considerably between individuals and ethnic groups.2

In addition, BMI alone is not linearly predictive of mortality3 and does

not capture important aspects of body composition such as distribution

of body fat (e.g., visceral adiposity), ectopic fat deposition (e.g., hepatic

steatosis), and sarcopenia all of which may modulate cardiometabolic

risks in ways not captured by BMI. Importantly, obesity is best

understood as a chronic disease of energy imbalance driven by multiple

not fully understood pathogenetic mediators (e.g., genetics and

dysregulation of satiety factors) driving excess deposition of adipose

tissue. The pathologic impact of excess adiposity depends not only on

the amount, but also on its distribution and function. Excess adiposity

is in turn is associated with multisystem comorbidities (e.g., diabetes,4

cardiovascular disease,5,6 obstructive sleep apnea,7 osteoarthritis,8

increased risk of certain cancers,9 in some people, depression,10 and

low self esteem11) that confer excess morbidity and mortality, and

socioeconomic ramifications.3 In this context, the American Association

of Clinical Endocrinology and the European Association for the Study

of Obesity have recently proposed “Adiposity-Based Chronic Disease”
as a clinically more appropriate term for obesity.12

The Organization for Economic Co-operation and Development

(OECD) reported in over 37 member countries that one in five adults

have obesity.13 This high prevalence translates to an enormous eco-

nomic burden, with the directs costs in Germany alone estimated to

be 29.39 billion euros and indirect costs to be a further 33.65 billion

euros.14 Hormonal mediators such as ghrelin and leptin have been

well researched in the pathogenesis of obesity,15 but this has not led

to effective therapy. In contrast, the contribution of sex steroids is
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less clear. While it is well established that testosterone negatively reg-

ulates fat mass in males, the mechanisms by which this hormone

exerts its fat-reducing effects are not well understood. In this review

we discuss the evidence from clinical and pre-clinical studies

supporting a role for testosterone action in reducing fat mass, both

directly via the androgen receptor (AR), as well as following conver-

sion to dihydrotestosterone (DHT) by the enzyme 5-alpha reductase,

and through the estrogen receptors α and β (ER) via conversion of tes-

tosterone to estradiol (E2) by the enzyme aromatase.

The biologic actions of sex steroids may have sex-specific

aspects,16 and these differing functions may, at least in part, play a role

in the sexual dimorphism of body fat distribution.17,18 In men, circulat-

ing androgens have been reported to be negatively associated with

body fat mass, and in particular with intra-abdominal fat mass.19,20 In

contrast, in women, although the role of androgens in regulating fat

mass is less clear, the evidence suggests that androgens are positively

associated with fat mass. Studies have reported that bioavailable tes-

tosterone is associated with adiposity in peri-menopausal women.21,22

Moreover, women with polycystic ovary syndrome (PCOS) often

exhibit hyperandrogenism which is correlated with abdominal obe-

sity.23,24 Transgender males undergoing gender affirming hormone

therapy with testosterone, exhibited a loss in fat mass in android,

gynoid, leg, and arm regions.25 A study in postmenopausal women with

obesity administered nandrolone decanoate with concomitant calorie

restriction for 9 months reported a reduction in total fat mass

compared with patients treated with spironolactone or placebo.26

However, it is important to note that the loss of fat mass was only seen

in subcutaneous fat while there was an increase in visceral fat.26 Over-

all, these data are suggestive of a possible dose-dependent effect of

testosterone whereby increasing serum testosterone into the male ref-

erence range (either by treatment of hypogonadal men or transgender

men) is associated with reductions in fat mass in both sexes. In

contrast, intermediate testosterone concentrations, that is, below the

male reference range but above the female reference range

(e.g., untreated hypogonadal men and women with PCOS) are associ-

ated with accumulation of fat in both sexes.27 Within this review, we

will focus on the role of testosterone in regulating fat mass in males.

Furthermore, we discuss the amenability of testosterone signaling via

the AR as a therapeutic target to reduce fat mass and the research ave-

nues required to generate novel treatments to target this pathway.

2 | THE ROLE OF SEX STEROID SIGNALING
IN REGULATING FAT MASS—A DISCUSSION
OF THE CURRENT EVIDENCE

2.1 | Androgen signaling mechanisms

Androgen signaling is complex due to the several endogenous ligands

of the AR and numerous molecular pathways by which androgen

mediated signaling can occur. Within this review, we focus on the

large body of evidence derived from studies investigating the actions

of testosterone and DHT; however, it is important to note that there

are several other androgens that can exert important biological effects

either by direct interaction with the AR or by serving as substrates for

local metabolism into testosterone, including 4-androstendione,28

11-ketotestosterone,29 and DHEAS.30,31 The primary receptor for

testosterone and DHT, the AR, is a nuclear transcription factor

which can activate both the DNA-binding-dependent (genomic) and

non-DNA binding-dependent (non-genomic) signaling pathways.

Both mechanisms are reviewed in depth elsewhere by ourselves32

and others.33–35 In the circulation, testosterone is plasma-protein

bound, tightly to sex hormone binding globulin (SHBG) and loosely

to albumin, with only a small percentage circulating as free testos-

terone. According to the free hormone hypothesis which remains

controversial,36,37 free testosterone is the primary bioactive hor-

mone. However, there is evidence that SHBG bound testosterone

may have biologic activity potentially via a SHBG membrane

receptor. This is discussed in depth in Section 2.6. DNA-binding-

dependent AR signaling occurs when testosterone diffuses through

the cell membrane and binds to the AR, or is converted to the more

potent agonist DHT by 5-alpha reductase, which also binds to the

AR. The androgen/AR complex translocates to the nucleus where it

binds to androgen response elements to initiate or repress the tran-

scription of target genes. Testosterone can also be aromatized to E2

by the enzyme aromatase which exerts its actions via the ERs by a

similar DNA-binding-dependent mechanism. This transcriptional reg-

ulation of the AR may be further modified by coregulators, mole-

cules that can bind to nuclear transcription factors to magnify or

reduce the transcriptional activity.38 Coregulators of the AR are

reviewed extensively elsewhere39–41 and as such are not included in

Figure 1. Testosterone can also elicit cellular changes via rapid sig-

naling of non-DNA dependent-pathways which distinguishes them

from the DNA-binding-dependent pathways. There are numerous

non-DNA binding pathways such as the SHBG receptor47 and mem-

brane localized calcium channels48 that have been studied in differ-

ent tissue types including reproductive, cardiac and skeletal

muscles33,34 with some examples depicted in Figure 1. The role of

these non-DNA binding dependent pathways in regulating fat mass,

however, has not yet been investigated.

2.2 | Obesity and hypogonadism

2.2.1 | Clinical evidence of the relationship
between hypogonadism and obesity

Male hypogonadism (hypoandrogenism) is a clinical syndrome

comprising of clinical symptoms and signs of androgen deficiency in

combination with a low serum testosterone concentration.49

Hypogonadism is classified either as organic (i.e., due to anatomical

disease of the hypothalamic–pituitary–testes [HPT] axis), or as func-

tional (due to suppression of the HPT axis by extragonadal disease).50

Organic hypogonadism is either primary (due to testicular pathology,

e.g., Klinefelter's syndrome) or secondary (due to hypothalamic–

pituitary disease, e.g., pituitary tumor). Primary hypogonadism is
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caused by dysfunction of the testes and is associated with low testos-

terone and high levels of luteinizing hormone (LH) and follicle stimu-

lating hormone (FSH), while secondary hypogonadism is due to

dysfunction of the hypothalamus and/or the pituitary gland and is

associated with low testosterone and low to (inappropriately) normal

levels of LH and FSH.50,51 Organic hypogonadism is due to a specific

pathology causing dysfunction of the HPT axis, is usually irreversible

and requires life-long testosterone replacement (unless fertility is

desired). Organic hypogonadism can be congenital (e.g., Klinefelter's

syndrome or congenital hypogonadotropic hypogonadism [CHH]) or

acquired (e.g., testicular injury or pituitary mass lesion).

There are several congenital disorders that result in hyp-

ogonadism which exemplify organic hypogonadism. Klinefelter's syn-

drome is a genetic condition characterized by an extra X chromosome

which results in an XXY genotype; however, 20% of cases have addi-

tional aneuploidies.52 Patients with Klinefelter's syndrome present

with primary hypogonadism, and it is typically associated with

increased body fat mass, particularly abdominal obesity and

consequently with an increased risk of metabolic syndrome.53 The

extent to which the metabolic phenotype is caused by testosterone

deficiency or by the additional X chromosome is difficult to ascertain.

Of note, in CHH which, depending on the genetic defect can be asso-

ciated with anosmia (i.e., Kallmann's syndrome), an adverse metabolic

phenotype is less dominant.

Functional hypogonadism is usually due to hypothalamic–

pituitary suppression by extragonadal disease, and obesity is a very

common cause. Functional hypogonadism occurs in the absence of

recognizable disease of the HPT and can be reversible by treating the

disease causing hypothalamic–pituitary suppression, such as weight

loss in obesity.50,54 While the definition of hypogonadism comprises

both clinical and biochemical evidence of androgen deficiency, in

some studies, hypogonadism is defined biochemically.50,54 Of note,

clinical features of androgen deficiency are non-specific, and in a

patient with a high burden of comorbidities, it is often difficult to

determine whether androgen deficiency-like clinical features and low

testosterone are causally related or whether they merely reflect

F IGURE 1 Summary of putative
testosterone signaling mechanisms. DNA-
binding dependent signaling (1) occurs via
diffusion of testosterone (T) across the cell
membrane where it binds directly to the
androgen receptor (AR) or is converted by 5α
reductase to dihydrotestosterone (DHT), which
also binds to the AR. The androgen/AR
complex translocates to the nucleus where it

binds to androgen response elements to
activate or repress the transcription of target
genes. T can also be converted to estradiol
(E2) by the enzyme aromatase and mediate its
actions following binding to estrogen receptors
(ER). Examples of non-DNA binding-dependent
AR signaling pathways are depicted:
(2) testosterone activation of ionotropic
receptors such as transient receptor potential
melastatin 8 (TRPM8) to enable influx of
calcium or sodium35,42,43; (3) testosterone can
bind membrane-bound g protein coupled
receptors (GPCR) to activate several canonical
GPCR signaling pathways including
phospholipase C-mediated signaling, which
regulates calcium levels44,48; (4) testosterone
activation of membrane-associated AR which
binds to Src and activates the mitogen
associated protein (MAP) kinase pathway via
transactivation of the epidermal growth factor
receptor (EGFR)45; and (5) via non-EGFR
signaling46
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effects of comorbidities.55 Obesity is often associated with lowered

testosterone and low to normal gonadotrophin concentrations; how-

ever, whether this reflects causality, reverse causality, or merely in-

common risk factors remains unclear.56,57 The relationship is likely

bidirectional because on the one hand weight loss is associated with

an increase in serum testosterone, whereas on the other hand testos-

terone treatment reduces fat mass. However, it is important to note

that, in men with obesity, the effect of substantial weight loss

(i.e., generally only achievable only through bariatric surgery) on serum

testosterone is arguably more marked than the effect of testosterone

treatment on fat mass.58,59 In contrast, the increases in serum testos-

terone achieved by lifestyle changes are modest around 3 mM,60,61

and difficult to sustain.62 While a bidirectional Mendelian randomiza-

tion study suggested that the effect of an elevated BMI on low testos-

terone is more important than the effect of low testosterone on an

increased BMI, such studies require confirmation in independent

samples.63

Effects of obesity on testosterone

Modest obesity is predominantly associated with reduced total testos-

terone due to insulin resistance associated reductions in its carrier

protein sex hormone binding globulin (SHBG).64,65 However, marked

obesity (body mass index (BMI) > 35 kg/m2) may lead to genuine sup-

pression of the HPT axis.56 There are several postulated mechanisms

by which obesity may mediate HPT axis suppression including leptin

resistance and/or dysregulated insulin signaling.66,67 Additional

contributing factors include paternal genetics,68 leptin resistance,69

and obesity-associated elevations in pro-inflammatory cytokines

(reviewed in Grossmann56). Other putative mechanisms such as

increased E2 production have been not been confirmed by recent

studies using LCMS-MS based assay technology to accurately mea-

sure E2 concentrations in men.70,71

Effects of testosterone treatment on fat mass

Evidence for a role of testosterone in regulating fat mass is provided

by numerous studies, of varying quality, that examine the effects of

administration of exogenous testosterone on fat mass.72–74 These

studies are heterogenous due to the numerous variables that differ

between studies including gonadal state, that is, hypogonadal versus

eugonadal, testosterone therapy regimen and selected patient

cohorts, thus making comparisons difficult. A systematic review by

Huo et al. reporting the effects of testosterone treatment in men with

functional hypogonadism75 showed that of the 25 studies that

assessed the effect of testosterone on fat mass, 60% displayed a

reduction in fat mass after testosterone treatment.75 In addition, a

meta-analysis performed by Corona et al. demonstrated a modest

�0.34 standardized mean difference in fat mass following testoster-

one treatment.59 Subsequently, several additional studies investigat-

ing the effects of testosterone on fat mass have been reported and

are summarized in Table 1. Together, the majority of studies examin-

ing the effect of exogenous testosterone therapy report a modest

reduction of fat mass. Isidori et al. reported a �2 kg reduction of fat

mass83 corroborating evidence from systematic reviews84; however,

several questions remain relating to the mechanisms by which testos-

terone reduces fat mass as well as the long-term safety of testoster-

one therapy. Caution, however, must be taken when interpreting

these data as a number of confounding factors exist including differ-

ences in baseline BMI and gonadal status of the patient cohorts as

well as different formulations of testosterone treatment administered.

While no rigorous head-to-head trials exist, it is plausible that the bio-

logic actions imparted by different formulations of testosterone may

differ. For example, it has been suggested that intramuscular testos-

terone injections are more effective than transdermal gels in increas-

ing lean body weight.85 Whether this is because intramuscular

injection, which eliminates compliance and skin absorption issues,

achieve higher testosterone doses than topical (or oral) preparations,

and/or whether other factors (such as metabolism, tissue distribution)

play a role, has not been fully clarified.

Whether the reduction in fat mass following testosterone treat-

ment in men is depot specific remains unclear, with some studies

reporting reductions occurring in subcutaneous76,79 and others, in vis-

ceral fat depots.60,86 The specific fat depot in which reductions are

noted following testosterone treatment is an important consideration

as only increases in intramuscular87 and visceral fat88,89 as well as an

increase in visceral to subcutaneous fat ratio90 have been associated

with increased mortality in men.91 In contrast, subcutaneous fat mass,

especially if located in the gluteofemoral region is associated with

decreased all-cause mortality.90 However, subcutaneous fat, espe-

cially if located in the abdominal region, may not be innocuous. Of

note, testosterone has been shown to downregulate lipoprotein lipase

in abdominal subcutaneous tissue, which stimulates release of free

fatty acids contributing to systemic insulin resistance.92 In a controlled

study, testosterone deprivation increased in insulin resistance despite

the lack of an increase in VAT. In this study the testosterone

deprivation-associated increase in insulin resistance was associated

with the increase in total fat mass (but not with the decrease in lean

mass) collectively suggesting that fat depots other than VAT modulate

insulin resistance and that testosterone exerts insulin reducing effects

that are, at least in part, independent of changes in VAT.

Reductions in fat mass are among the most consistent effects

observed in clinical studies of testosterone treatment in men; how-

ever, the amount of fat mass lost differs between studies. This is due

to study heterogeneity, with studies including patient with different

baseline characteristics (e.g., differing baseline BMI and gonadal

states) and differences with respect to treatment length and testoster-

one formulations used, hence potentially diluting the effect of testos-

terone treatment. In studies using intramuscular testosterone

undecanoate, reductions in fat mass ranged from 3.4 kg81 to 4.2 kg,93

In the largest study to date, T4DM, testosterone undecanoate treat-

ment over 2 years, reduced fat mass by 2.7 kg, over and above the

effects of a lifestyle program.74 Skinner et al. reported that intramus-

cular testosterone injections were more effective than transdermal

gels at increasing lean body weight.85 RCTS to date have been rela-

tively short in duration, with the majority observing testosterone

effects over 12 months or less. Observational studies in contrast,82,94

with longer follow up, suggest that testosterone treatment-associated
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TABLE 1 Summary of studies post-2016 demonstrating the effect of testosterone to reduce fat mass

Brief synopsis

Clinical gonadal state of men in

study and method of T measurement Effect of T treatment on fat mass Reference

DB, PC, RCT. Men with type 2 diabetes

aged 30 to 65 years with HH or

eugonadal states were treated with

250 mg of testosterone cypionate

intramuscularly every 2 weeks for

23 weeks. Of the 94 men recruited, 50

were eugonadal and 44 had HH. Men

with HH were allocated equally to T

treatment and placebo.

Fasting testosterone was measured initially

and 2 weeks after the first visit. HH was

defined as a calculated free T level of

<6.5 ng/dl. T measured by LCMS.

Decrease in trunk subcutaneous fat mass

(�3.3 kg) but not visceral or hepatic fat

mass.

76

DB, PC, RCT. Men aged 50–70 years

with T2D and low T were given

testosterone gel (50 mg T daily)

increasing to 100 mg T if T levels did

not increase, for 24 weeks.

Men had bioavailable T < 7.3 nM. T

measured by LCMS.

Average loss of total fat free mass �1.2 kg

measured by DEXA.

77

DB, PC, RCT. Men aged 18–70 with

BMI ≥ 30 kg/m2, were given a low

caloric diet for 10 weeks followed by

46 weeks of weight maintenance and

were supplemented with either

Testosterone undecanoate (Injections

of 1000 mg at 0, 6, 16, 26, 36, and

46 weeks) or placebo.

Men had a total T level ≤12 nM. T

measured by LCMS.

After initial weight loss, men on T therapy

maintained weight loss and at study end

had lost more fat (�2.9 kg) than their

placebo counterparts. However, in a

follow up study, loss of fat free mass was

not sustained 82 weeks after treatment.

60,62

DB, PC, RCT. Effect of testosterone on

atherosclerosis in 308 community

dwelling men ≥60 years age was

assessed. Patients were randomized

and given placebo or 7.5 g of 1%

testosterone gel treatment daily for

3 years. Testosterone was titrated to

10 g if serum testosterone was

<17.3 nM or 5 g if testosterone was

>31.2 nM.

Total T of 3.47 nM to 13.88 nM. Free T of

<173.5 pM considered to be low or low-

normal T levels. Immunoassay

measurement of T validated against

LCMS.

Fat mass was assessed by DEXA. Both

groups exhibited increased fat mass, but

fat accumulation was significantly less in

the T treated group.

78

DB, PC, RCT. 13 men with Klinefelter's

syndrome (av. aged 22–56 years, BMI

average 26.7 kg/m2) were given

160 mg (2 doses 80 mg) testosterone

undecanoate per day (orally) or

placebo for 6 months and compared

with 13 age and BMI matched

controls.

Gonadal state is unclear as most

Klinefelter's patients are supplemented

with T. T assessed by LCMS.

Visceral fat mass, total abdominal and intra-

abdominal fat increased while T

decreased total body fat and

subcutaneous fat mass.

79

Men with opioid-induced hypogonadism

were randomly assigned to

testosterone undecanoate 1000 mg or

placebo (injection).

Total bioavailable T average = 2.9 nM.

Fasting T levels assessed by LCMS.

T decreased DXA measured total fat mass

by 1.2 kg.

80

12-month double-blinded, placebo-

controlled trial. 101 men <70 years old

with cirrhosis and low testosterone

were given either testosterone

undecanoate (1000 mg

intramuscularly) or placebo at 0, 6, 18,

30, and 42 weeks.

Low T was defined as <12 nM measured by

immunoassay or Vermeulen calculated

free testosterone <230 pM from 2

separate samples.

Patient body composition was assessed by

DXA at baseline 6 months and

12 months, patients treated with T

exhibited �4.34 kg reduced fat mass.

Total lean mass increased by +4.74 kg

81

Registry-based, observational study of

823 men average age 60.6 years with a

baseline serum total testosterone

concentration ≤12.1 nM were treated

with testosterone undecanoate

(n = 474) every 12 weeks (after an

initial 6 weeks booster injection) or

All men exhibited symptoms of

hypogonadism. Of the 823 trial

participants, 474 were obese, 286

overweight, and 63 normal weight.

All patients given testosterone exhibited

significant weight loss (normal weight

�4.8%, overweight �9.6% and obese

�20.6% of body weight), and favorable

changes in lipid profiles

82

(Continues)
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fat lass is progressive over time with greater amount of fat loss

observed in studies with longer duration (Table 1). Moreover, Haider

et al. reported in a prospective registry study over 11 years in

178 men with lowered serum testosterone, that testosterone treat-

ment was associated with type 2 diabetes remission in 34.3% of

patients.95Collectively, these studies suggest that testosterone-

related reductions in fat mass may translate into metabolic benefits.

However, it is likely that effects of testosterone treatment on other

tissues such as muscle or potentially pancreas may contribute to the

metabolic benefits of testosterone.74

In summary, the clinical evidence from RCTs shows that testos-

terone treatment given relatively short term (3 months – 24 months)

leads to modest reductions in fat mass with two studies reporting a

reduction in the risk of type 2 diabetes. In the T4DM trial, testoster-

one treatment in high risk men over 2 years, reduced the risk of diabe-

tes relative to placebo by 40%. Furthermore, Haider et al. reported in

a prospective registry study over 11 years of 178 men with hyp-

ogonadism, that 34.3% of patients administered testosterone resulted

in remission of their type 2 diabetes95 suggesting that at least in part,

the testosterone-related reductions in fat mass may translate into

metabolic benefits, however, the mechanism by which this occurs

remains to be elucidated and is likely not exclusively ascribed to the

loss of fat mass.74 While one of the most consistent effects of testos-

terone treatment in men is reduction in fat mass and an increase in

muscle mass, changes expected to be metabolically favorable, current

testosterone treatment guidelines slightly differ in their recommenda-

tion regarding indications for testosterone treatment. While all guide-

lines agree that men with true hypogonadism should (unless they seek

fertility) be offered testosterone treatment, metabolic benefits are

highlighted in some96 but not in all guidelines.49,97 While long term

benefits and potential risks of testosterone treatment, especially with

respect to cardiovascular outcomes, remain unknown. Of note, an

ongoing large RCT, the TRAVERSE trial, seeks to evaluate the effect

of testosterone therapy on the risk of major adverse cardiovascular

events (ClinicalTrials.gov Identifier: NCT03518034). Until more defini-

tive evidence is available, the only unequivocal clinical indication for

testosterone treatment is testosterone replacement for men with

organic hypogonadism.49,98

2.2.2 | Preclinical orchidectomy models to
investigate testosterone actions on fat mass

To mimic hypogonadism in men, castration or orchidectomy (ORX) in

rodents has been widely utilized. It is well established that ORX in

rodents leads to decreased lean body mass99–103; however, there are

some discrepancies with regard to changes in fat mass. The majority

of studies report an increase in whole body adiposity or in specific

adipose depots post-ORX99,104–108; however, a handful of studies

either report no change101,102 or, in one case, a reduction.103 These

discrepancies may be due to different ages of the animals studied as

well as the differing length of the studies.102 Together, the data sug-

gest that ORX and subsequent dysregulation of fat mass may be

attributed to reductions in testosterone. The mechanism by which this

increase of fat mass occurs due to the reduction of testosterone is

unclear; however, recent studies do give evidence to possible mecha-

nisms. Baik et al. reported that castrated mice fed a normal diet

exhibited increased adiposity and expression of fatty acid synthesis

associated genes. Additionally, concomitant castration and a high fat

diet (HFD) resulted in increased expression of the fatty acid trans-

porter CD36 in subcutaneous fat.104 Similarly, Sebo et al. reported

that castrated mice fed an HFD have large adipocytes that are

reduced in size by testosterone administration.106 These studies sug-

gest that loss of testosterone may regulate fatty acid uptake or stor-

age; however, other potential mechanisms by which testosterone

regulates fat mass are described below.

The relationship between testosterone and fat mass is further

informed by studies that treat orchidectomized animals with testos-

terone. Sebo et al. reported that testosterone treatment in male mice

reduces ORX and HFD associated weight gain with decreases

observed in visceral and subcutaneous fat mass as well as adipocyte

size.106 The abrogation of weight gain in orchidectomized rodents via

TABLE 1 (Continued)

Brief synopsis

Clinical gonadal state of men in

study and method of T measurement Effect of T treatment on fat mass Reference

untreated (n = 395) and were assessed

2 times a year for 11 years.

DB, PC, RCT, multi-center trial. 1007

men aged 50–74 years with an

average BMI of 34.7 were randomly

assignment to placebo or testosterone

undecanoate treatment (1000 mg

intramuscularly) at baseline, 6 weeks

and subsequently every 3 months for

2 years.

Patients were stratified into low (<8.0 nM),

medium (8.0 to <11.0 nM), or high

(≥11.0 nM) T levels. Average T at

baseline was 13.9 nM (placebo) and

13.4 nM (T group). Fasting T levels were

measured by validated LCMS assay.

T treatment resulted in a reduction of total

fat mass (�2.71 kg) and abdominal fat

mass (�2.34%) assessed by DXA.

Abbreviations: DB, double blind; DEXA, dual-energy X-ray absorptiometry; DHT, dihydrotestosterone; HH, hypogonadotropic hypogonadism; LCMS, liquid

chromatography and mass spectrometry; PC, placebo controlled; RCT, randomized clinical trial; T, testosterone.
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testosterone administration has also been reported by others100,109

with these pre-clinical data being consistent with the clinical evidence

that testosterone treatment reduces fat mass in men.

The mechanisms by which testosterone regulates fat mass remain

unclear. Data obtained from in vitro experiments show that testoster-

one and DHT can inhibit the differentiation of human and BM-

mesenchymal pluripotent cells into adipocytes via AR dependent

pathway.110–113 While these data provide evidence for a role of tes-

tosterone in the inhibition of adipogenesis in pre-adipocytes, they do

not explain the action of testosterone to reduce the mass of pre-

existing fat depots in humans and rodents. Other mechanisms by

which testosterone may regulate fat mass include modulation of lipid

metabolism,114,115 alteration of muscle metabolism116 and alteration

of mitochondrial function117; with these actions being extensively

reviewed elsewhere118 but further validation is required. Studies in

utilizing clinical antagonists that target AR signaling pathways and

genetically modified mice have provided further insight into the mech-

anisms of testosterone action to decrease fat mass.

2.3 | The androgen receptor (AR)

2.3.1 | Clinical effects of AR inhibition on fat mass

There are few clinical examples of exclusive AR inhibition to draw

from when examining the evidence for AR-mediated regulation of fat

mass. One such example is the use of non-steroidal anti-androgen

(NSAA) compounds such as bicalutamide or flutamide as a mon-

otherapy in prostate cancer patients. Although these compounds

inhibit prostate cancer growth by inhibiting androgen binding to the

AR, NSAA monotherapy is no longer recommended in favor of andro-

gen deprivation therapy (ADT), which utilize GnRH agonists or antag-

onists, to abrogate production of endogenous androgens.

In a 12 month open label trial, Smith et al. reported that patients

treated with bicalutamide or leuprolide (a GnRH agonist) mono-

therapies exhibited an increase in whole body fat mass of 11.2% for

leuprolide and 6.4% for bicalutamide.119 Similar increases in fat mass

following bicalutamide120 and enzalutamide121,122 monotherapy have

also been reported supporting a role for testosterone acting via the

AR to regulate fat mass. It is important to note however, that treat-

ment with AR antagonists also disrupts the negative feedback of tes-

tosterone on the central HPT axis, resulting in increased circulating

E2,119 which may also effect body fat. Thus, the increase in fat mass

reported in these studies cannot conclusively be ascribed to inhibition

of the AR.

2.3.2 | The pre-clinical genetically modified
androgen receptor models

The AR is widely expressed in most tissues and cell types making

understanding its contribution to physiological processes challenging

to unravel. In this review we have broadly grouped these pre-clinical

models into four subtypes. Global AR knockouts (ARKO), where the

AR is inactivated in all tissues and cell types (reviewed in Rana

et al.123); tissue and/or cell specific ARKOs where the AR is deleted in

a specific cell type or tissue while it is expressed normally in all other

tissues,124 AR over-expression transgenic models where the AR is

overexpressed in a specific cell/tissue type125 and AR gene replace-

ment models in which the AR is expressed in a specific cell-type while

it is inactivated in all other tissues.126

Testicular feminized mouse (Tfm) model

The Tfm mouse was one of the first rodent models of AR insuffi-

ciency. Generated in 1970, 127 these mice possess a single base dele-

tion in the AR resulting in a frameshift mutation and a non-functional

AR protein.128 Tfm mice have reduced endogenous testosterone

levels129 and develop hepatic steatosis as well as aortic fatty streaks

when fed a HFD.130–132 More recently, Sebo et al. utilized Tfm mice

to investigate whether the fat reducing effect of androgens is medi-

ated via an adipocyte-specific AR dependent mechanism. Following

feeding a HFD, Tfm mice displayed an increase in the proliferation of

adipocyte precursors (APs) in the subcutaneous but not visceral fat

depot compared with control mice as determined by

bromodeoxyuridine labelling. This suggests an important role for the

AR in regulating subcutaneous fat deposition. However, transplanta-

tion of mTomato labelled APs from Tfm mice into subcutaneous fat

depots of WT mice fed a HFD did not proliferate at a faster rate com-

pared with WT APs expressing a functional AR,106 inferring that adi-

pocyte proliferation is not mediated via the AR expressed in APs but

may be mediated by another AR dependent mechanism. It is impor-

tant to note, that the Tfm mouse model has a number of limitations,

including potential residual AR activity due to the production of a

truncated AR protein.133–135 The discovery of the Cre/loxP system

has enabled the generation of alternative Global-ARKO mouse models

as well as tissue and/or cell specific knockout models of the AR

thereby overcoming the limitations of the Tfm mice and have proved

advantageous for investigating the mechanism by which testosterone

decreases fat mass.133

Global AR knockout mice

There are several ARKO mouse models generated using the Cre/loxP

system which have been reviewed extensively by ourselves32,123 and

others124,133,136 and are summarized in Table 2. The adipose tissue

phenotype of these ARKO mice differs with regards to both the age

of onset and fat depots affected. An obese phenotype of increased

subcutaneous and visceral fat mass as well as increased numbers of

larger adipocytes have been reported in ARKOs fed a regular chow

diet from 9–12 weeks of age.137,144,147 In contrast, late-onset obesity

characterized by increases in epididymal and perirenal fat pad size as

well as increased adipocyte size has been observed at 40 weeks of

age.138 In contrast to the majority of ARKO models which exhibit

spontaneous obesity,143 there is a report of an ARKO model which

only displays an obese phenotype when challenged with a HFD.100

The differences in the fat phenotype of these ARKO models may be

attributed to the differences in the genetic background of the mice126

VENKATESH ET AL. 7 of 21



as well as the region of the AR targeted for deletion which

results in either retainment145 or inactivation139,140,143 of the non-

DNA-dependent actions of the AR in addition to its DNA-binding-

dependent actions.148

More recently, findings from a tamoxifen-inducible Global-ARKO

model suggests that the obesity phenotype observed in the previously

published Global-ARKO mouse models is attributed to the loss of AR

action pre-pubertally as post-pubertal knockdown of the AR had no

effect on fat mass.146 These data, however, must be interpreted with

some caution as AR gene knockdown is not complete (approximately

20% mRNA expression remained) and the induction of knockdown via

tamoxifen, despite the short induction time (4 days), may pose some

effect of fat mass through ER signaling.149 Together, these data sup-

port an action of testosterone via the AR to regulate fat mass. In order

to further elucidate the target tissues and/or cells responsible for

mediating this effect, tissue-specific AR knockout and overexpression

mouse models have been generated.

2.3.3 | Examples of tissue specific androgen
receptor knockout models

To determine whether the action of testosterone to decrease fat mass

is mediated directly via the AR in adipocytes, several adipocyte-

ARKOs have been generated. Yu et al. and McInnes et al. have both

generated adipocyte-specific ARKOs by crossing floxed AR mice with

mice expressing Cre recombinase under the control of the adipocyte

protein 2 (aP2). Yu et al. reported male aP2-ARKOs exhibited no dif-

ference in adiposity or morphology of epididymal white adipose tissue

at 20 weeks of age when fed a chow diet.141 Similarly, aP2-ARKO

male mice generated by McInnes et al. displayed no difference in adi-

pose weight of the subcutaneous or mesenteric regions and a statisti-

cally significant but biologically small reduction in perigonadal fat

mass at 12 weeks of age compared with chow fed wild-type controls.

No difference in adipocyte area was observed in either the per-

igonadal or subcutaneous fat depots. Despite this lack of difference in

fat pad mass in aP2-ARKOs fed a standard chow diet, following chal-

lenging the mice with a HFD for 24 weeks, mesenteric and omental

fat pad mass were increased in aP2-ARKOs compared with wild-type

controls.150 The lack of spontaneous obesity in ap2-ARKO mice sug-

gests that the action of testosterone to decrease fat mass is mediated

via the AR in another target tissue. It is important to note that the aP2

promoter is also expressed in several cell types in the brain which may

confound these findings as AR action in the brain may indirectly regu-

late fat mass by regulating voluntary activity.151

Evidence from muscle-specific ARKOs suggest that the AR in

myocytes may contribute to the fat reducing effects of testosterone.

Myocyte-specific deletion of the AR using mice expressing Cre rec-

ombinase under the control of the muscle creatine kinase promoter

(MCK-Cre) resulted in decreased intra-abdominal fat and lean body

mass.152 In contrast, deletion of the AR specifically in satellite cells

using the myoblast determination protein 1 (MyoD-iCre) promoter

mice had no effect on fat mass as measured by DXA.153 This discrep-

ancy may be due to the different activities of the Cre promoters as

TABLE 2 Summary of the fat phenotype of male global-ARKO models generated using Cre-loxP technology

Targeted AR region

and Cre mouse line Androgen receptor mutation Fat phenotype Reference

Exon 1 CMV-Cre Recombination results in excision of Exon 1

resulting in a frame shift mutation and no

AR protein.

Late onset obesity (12 weeks) with increases

in total body adiposity in subcutaneous,

infrarenal and intraperitoneal depots but

not gonadal.

137–139

Exon 2 Beta actin (ACTB) -Cre Excision of Exon 2 results in a frameshift

mutation and two premature stop codons

leading to nonsense mediate decay of

mRNA transcript

Late-onset increased fat accumulation in

gonadal and perirenal fat pads, increased

adipocyte size at 35 weeks.

124,140–142

Exon 2 phosphoglycerate kinase 1

(PGK1)-Cre

Deletion of exon 2 results in a similar

frameshift mutation to Yeh et al.140
Increased adiposity following feeding a HFD

characterized by white adipocyte

hypertrophy and increased weight of

perigonadal and subcutaneous fat pads.

100,143

Exon 3 CMV-Cre In-frame deletion of exon 3 which encodes

the second zinc finger of the DNA binding

domain (DBD). DNA-binding-dependent

actions of the AR are abolished, while non-

DNA binding activity remains.

Increased adiposity, specifically increased

visceral and subcutaneous fat pads mass

and adipocyte hypertrophy at 12 weeks

144,145

Exon 2 CAGGCre-ER Excision of exon 2 of the AR results an AR

null allele following treatment with

tamoxifen. Generated by breeding the AR

floxed mouse generated by De Gendt

et al.143 tamoxifen-inducible CAGGCre-ER

mice.

Pre-pubertal inactivation of AR results in

increased total fat mass and

retroperitoneal fat mass.

146

8 of 21 VENKATESH ET AL.



the improved Cre with increased Cre expression was used to generate

the MyoD-Cre mice. Irrespective, the action of AR via muscle in the

regulation of fat mass remains unclear.

2.3.4 | AR expression in bone marrow cells

More recently, bone has been recognized for its importance as an

endocrine organ that may regulate numerous metabolic functions

through the secretion of osteokines. Once such example is osteocalcin

which can regulate several physiological functions including glucose

metabolism,154 energy expenditure,155 and testosterone levels.156

Investigation into the potential role of androgen action via the AR in

bone marrow cells in negatively regulating fat mass is an exciting

research direction, with current papers related to this topic summa-

rized in Table 3.

Utilizing a unique bone marrow transplant model whereby the

bone marrow of ARKO mice was grafted into irradiated C57BL/6 J

WT mice, Rubinow et al. demonstrated that WT mice receiving ARKO

bone marrow exhibited significantly higher visceral and total fat mass

than WT mice receiving WT bone marrow when fed a HFD diet.157 In

a subsequent study, the authors narrowed their focus to the specific

bone marrow monocyte and macrophage cell type due to their endog-

enous expression of AR as well as their documented role in energy

metabolism.160 Deletion of the AR specifically in monocytes/

macrophages expressing the lysozyme 2 gene did not affect adipos-

ity.160 Intriguingly, while the loss of the AR in bone marrow cells con-

fers a propensity to obesity, this is not mediated by lysozyme

2 expressing monocytes/macrophages, suggesting that another cell

type in the bone marrow may be responsible for mediating the fat

reducing effects of testosterone.

Bone marrow precursor cells (BMPCs) are pluripotent cells that

can differentiate into osteoprogenitors, osteoblasts, osteocytes, cho-

ndrocytes and adipocytes.163 Given the significant contribution of

BMPCs to the various cellular components of the bone and the evi-

dence that bone may act as endocrine organ,164,165 it stands to reason

that these BMPCs may play a role in the regulation of fat mass. One

of the first studies investigating the action of the AR via BMPCs uti-

lized the 3.6 kb α1 1 collagen promoter to overexpress the AR in

BMPCs (Col3.6AR-Transgenics [Tg]). Male Col3.6AR-Tg mice dis-

played reduced visceral fat mass in the gonadal and peri-renal fat

depots and smaller adipocyte area in the absence of any changes in

serum adipokines.166 Of significant interest, DHT treatment was able

to reverse the increase in fat accumulation that occurs following

gonadectomy in both adult male and female Col3.6AR-Tgs but not

WT mice.158 In contrast, overexpression of the AR in mature osteo-

blasts of male mice utilizing the 2.3-kb α1(1) collagen promoter

(Col2.3AR-Tg) had no effect on fat mass125 indicating that the

decrease in fat mass is mediated at an earlier stage of osteoblast

development, that is, in BMPCs and osteoprogenitors.

Recently, we provided evidence for an action of androgens via

the AR in bone marrow BMPCs to negatively regulate fat mass and

improve metabolic function.126 Replacement of the AR gene specifi-

cally in BMPCs of our Global-ARKOs to generate PC-AR Gene

Replacement mice, completely attenuates their increased fat mass.126

PC-AR gene replacement mice had an increase in the number of

smaller adipocytes and a healthier metabolic profile, characterized by

normal serum leptin, elevated serum adiponectin and improved

whole-body insulin sensitivity, with higher glucose uptake into subcu-

taneous and visceral fat than Global-ARKOs.126

Collectively, these studies utilizing genetically modified mouse

models provide evidence to support the notion that the action of

TABLE 3 Reports pertaining to the effects of AR signaling in bone marrow cells on adiposity

Model AR expressing cell Fat and metabolic phenotype Reference

BM transplant (ARKO) WT or ARKO bone marrow was

transplanted into WT mice and fed HFD

for 16 weeks.

Visceral fat mass was increased in WT mice

that received ARKO bone marrow

8 weeks post-HCD and BM

transplantation. No effect was observed

at 16 weeks post-HCD and BM

transplantation.

157

3.6-kb α1 1 collagen promoter AR over

expression (Col3.6 AR transgenic)

AR overexpression in bone marrow

progenitor cells, and their descendants

(i.e., osteoblasts and osteocytes)

DHT treatment of Col3.6 AR transgenics

reverses ORX-mediated adiposity.

158,159

2.3-kb type 1α1 collagen promoter AR

over expression (Col2.3 AR transgenic)

AR overexpression in mature and

mineralizing osteoblasts and osteocytes.

No difference in adiposity. 125,141

PC-AR Gene Replacement mice Expression of the AR in BMPCsCol3.6 while

it is deleted in all other tissues.

Generated by breeding Global-ARKO

mice145 with Col3.6 AR transgenics159

Expression of the AR in BMPCs on a global

ARKO background results in complete

attenuation of the increased fat mass of

global ARKOs.

126

Monocyte/macrophage specific ARKO Deletion of the AR in monocytes and

macrophages. Generated by breeding

floxed AR and Lyz2-Cre160 mice.

No effect on adiposity. 160

AR- null BMPCs Bone marrow progenitor cells isolated from

Global-ARKOs161
Loss of the AR in BMPCs promoted

adipogenesis and inhibited osteogenesis.

162
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testosterone to negatively regulate fat mass, is at least in part, medi-

ated directly via the AR. While the current data do not support the

adipocyte or myocyte as the target cells for this AR action, BMPCs

appear to be a strong candidate for further study.

While our discussion on the metabolic syndrome is focused on

AR action, it is important to note that, in men, the presence of the

metabolic syndrome is associated with many factors, including but not

limited to age, marital status, recent paternity, and lifestyle factors

(e.g., sedentary behavior). Of note in men, such factors are also associ-

ated with circulating testosterone concentrations,167 hence inter-

twining the metabolic syndrome and serum testosterone in complex

ways, making the disentanglement of pathogenic links between circu-

lating testosterone and the metabolic syndrome a complex endeavor.

2.4 | 5 α reductase and dihydrotestosterone (DHT)

5 α reductase (5αR) is the enzyme which converts testosterone to

DHT, a more potent, non aromatizable, androgen that regulates the

formation of the external male genitalia and the prostate.168 5αR and

DHT are integral to AR signaling but clinical data suggest that 5αR

and DHT are not strongly associated with the regulation of fat mass.

This is evidenced by the absence of weight gain in patients with

prostate cancer treated with the 5αR inhibitor, finasteride.169 More-

over, in a mechanistic RCT in healthy men, the fat-reducing effects

of testosterone treatment were not altered by co-administration of

the 5αR inhibitor dutasteride, implying that the testosterone-

mediated reduction in fat mass does not require its reduction to

DHT with the caveat that the RCT may not have been sufficiently

powered to make this conclusion.170,171 In a separate study, Juang

et al. abrogated endogenous sex steroid production through the

GnRH agonist acycline, in healthy men and randomized them to

three treatment groups or a fourth placebo group. The three treat-

ment arms were testosterone add-back only, testosterone add-back

combined with dutasteride (to suppress DHT), and testosterone add-

back combined with the aromatase inhibitor (AI) anastrozole

(to suppress E2). As expected, patients treated with testosterone

exhibited significant reductions in fat mass. Inhibition of aromatase

abrogated these effects but consistent with the previous findings of

Bhasin et al.,170 5αR inhibition did not alter the effects of testoster-

one.172 Taken together, this evidence suggests that while DHT does

not play role in the fat reducing effects of testosterone, the fat

reducing effects of testosterone may require its aromatization to E2

(see Section 2.5). Conversely, some evidence points to a role for

DHT in regulating fat mass.173 Idan et al. reported in a randomized,

placebo controlled trial of 114 older men that DHT treatment over

2 years increased lean mass but decreased fat mass, akin to the

effects of testosterone.174 Of note, DHT treatment was associated

with reduced circulating E2, implying that there was no confounding

effect of increased E2 on fat mass, but rather, the effects were

directly related to DHT.

Overall, the evidence suggests that 5αR and by this extension,

DHT, is less significant in regulating fat mass than testosterone, and

that the fat reducing effects of testosterone may not be exclusively

mediated through the AR. One possible alternative mechanism

inferred by the work of Juang and Finkelstein could be, at least in

men, the conversion of testosterone to E2 (see Section 2.5).

2.4.1 | 5 α reductase KO mice and alternative
murine models

There are a handful of studies investigating the role of 5αR and DHT

in the regulation of adipose tissue in murine models with largely

incongruent results. Sato et al. report a reduction of subcutaneous fat

mass in male mice treated with DHT.139 More recently, Sebo et al.

demonstrated a decrease in subcutaneous fat following DHT treat-

ment in orchidectomized mice fed a HFD, although to a lesser extent

than observed with testosterone,106 and Kim et al. reported no effect

of DHT on overall fat mass in HFD fed, chemically castrated mice.175

There have been also several reports of 5αR type 1 KO mice with no

reports of altered fat176 including in gonadal depots.177 The only piece

of data contradictory to this was reported by Movérare-Skrtic et al.,

who reported in male orchidectomized mice treated with DHT for

5 weeks has been shown to increase gonadal and retroperitoneal fat

mass.178 However, interestingly, the authors report no statistically sig-

nificant changes in retroperitoneal or gonadal fat mass in ORX only

mice. Taken together these data suggest that while DHT may be able

to negatively modulate fat mass, its contribution is not as marked as

testosterone and may be restricted to subcutaneous depots.

2.5 | Estradiol, aromatase, and the estrogen
receptor

There is evidence from both human and pre-clinical studies suggesting

that the fat reducing effects of testosterone are, at least in part,

dependent on its aromatization to E2. As the role of E2 as a male

hormone has been reviewed extensively elsewhere,71,179 below we

summarize here the key role of testosterone derived E2 in regulating

fat mass.

2.5.1 | Clinical evidence of the role of estradiol and
aromatase mediated reduction of fat mass

An important role for E2 in limiting fat mass in men is supported by

observations that men with inactivating mutations in the CYP19 gene

which encodes aromatase, and men with inactivating mutations of the

ERα have increased BMI and abdominal adipose tissue.71,180 Mecha-

nistic studies in men where testosterone is administrated concomi-

tantly with an AI,172,180–183 suggest that the fat reducing effects of

testosterone are at least in part dependent on its aromatization to E2.

Upon appraisal of the literature as well as data from other

reviews,71,179 we conclude that aromatization of testosterone to E2 is

required to mediate at least some of the fat reducing effects of
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testosterone. However, studies using AI have inferred the role of E2

by reducing its serum concentrations, and no study in men to date has

assessed the direct effects of E2 in the absence of T.

2.5.2 | Preclinical evidence of estradiol and
aromatase regulation of fat mass

Preclinical models are useful for dissecting the role of E2 in medi-

ating the actions of testosterone on fat mass. Male aromatase KO

mice have increased adiposity compared with controls despite hav-

ing elevated circulating levels of testosterone due to the lack of

negative feedback of E2 on the HPT axis,106,184–187 analogous to

men with aromatase deficiency. In one report, male aromatase KO

mice exhibited increased gonadal adipose tissue which was amelio-

rated by E2 treatment.188 Consistent with these findings, treatment

of intact mice with the aromatase inhibitor, letrozole, was shown

to increase fat mass compared with vehicle-treated mice106 and

the administration of E2 to castrated mice fed a HFD was effec-

tive in decreasing diet-induced weight gain.106 These data support

the notion that in addition to the action of testosterone directly

via the AR to decrease fat mass, testosterone can also exert these

effects following conversion to E2 and action via the ER. Data

generated with cell-specific overexpression or deficiency of aroma-

tase is somewhat contradictory. Bone marrow transplantation from

aromatase deficient mice into irradiated wild type mice results in a

small, but statically significant increase in fat mass at 8 weeks

post-transplantation that was no longer evident by 16 weeks.189

Male mice that overexpress aromatase specifically in white adipose

tissue have decreased subcutaneous and gonadal fat mass, but

somewhat unexpectedly have increased retroperitoneal fat mass.190

It is difficult to consolidate the discrepancy between cell-specific

and whole body aromatase knockout data; however, we may spec-

ulate, due to the wide spread expression of aromatase,191 that the

specific cells salient to modulating the effect of aromatase on fat

mass are yet to be discovered.

2.5.3 | Clinical evidence of estrogen receptor
mediated signaling regulating fat mass

Estrogen receptors (ER) are expressed broadly in both men and

women.71,192 There are two ER subtypes, ER α and ER β, cytosolically

located nuclear transcription factor receptors that signal via DNA-

binding-dependent signaling pathways. A third, more recently charac-

terized G-protein coupled ER, which is localized in the membrane and

signals via canonical G protein coupled receptor signaling pathways,

provides another avenue of ER mediated signaling.193 The role of

estrogens in regulating body fat distribution has been reviewed in

detail elsewhere194,195 but of specific interest to this review is the

direct contribution of ER signaling in testosterone-mediated fat loss.

To date, only two men with mutations in the estrogen receptor

gene (ESR) 1 which encodes ER α have been reported. One patient

had a BMI in the obese range of 30 kg/m2 and clinical evidence of

insulin resistance,196 although fat mass was not reported. This pheno-

type resembles that of men with inactivating mutations in the aroma-

tase gene.180 The second patient had a BMI of 23.7 kg/m2, but also

had low serum testosterone due to cryptorchidism.197 Overall, the

data from these rare case reports are consistent with the notion that

the lifelong absence of E2 signaling in men, via ER alpha may limit fat

mass accumulation and promote insulin resistance. Of note, men with

inactivating mutations in the ESR 2 gene encoding ER β have not

been, to our knowledge, reported.

There are currently no definitive mechanistic studies that

precisely quantify the contribution of ER signaling in testosterone-

mediated fat loss. This may be in part attributed to the lack of appro-

priate pharmacological compounds available that specifically bind one

of the three ER subtypes. In an optimal situation, complete co-

administration of a GnRH agonist (to achieve confounding suppres-

sion of endogenous testicular sex steroid production) and of an ER

receptor specific antagonist would allow the dissection of the role of

specific ER receptors in the regulation of fat mass. However, some

mechanistic studies have been performed that yield some evidence

for a role of estradiol signaling in regulating fat mass by utilizing two

classes of compounds; aromatase inhibitors and Selective Estrogen

Receptor Modulators (SERMS). Aromatase inhibitors such as

anastrozole have been reported to increase fat loss when combined

with weight loss programs in men affected by obesity198 and in a RCT

of older men with hypogonadism.199 Of note, these findings which

imply that inhibition of E2 promotes fat loss are contrary to

Finkelstein's work181 reporting that E2 is required to mediate the fat

reducing action of testosterone. These differences could be partially

explained by the differences in age and baseline body composition of

the participants in the three trials. Compounds such as clomiphene

and tamoxifen are SERMS and act as mixed agonist-antagonists of the

ER depending on the tissue specific expression and subtype specific

expression of the ER.200 It is important to note however, that SERMs

and aromatase inhibitors, via diminishing estradiol mediated negative

feedback on GnRH and gonadotrophin secretion, can increase serum

testosterone concentrations thereby confounding interpretation of

data.201 The few studies investigating the use of clomiphene citrate to

treat adult men with overweight/obesity, have reported no202 to

moderate203 reductions in fat mass. Thus, the clinical evidence to date

does not provide a conclusive picture on the role of E2 in the regula-

tion of fat mass. Evidence attempting to decipher the role of ER sig-

naling in testosterone mediated fat reductions has also arisen from

pre-clinical models.

2.5.4 | Pre-clinical evidence of estrogen receptor
mediated signaling regulating fat mass

There are numerous animal models that modulate the ER signaling

pathway. These are predominantly receptor KO models and have

provided insight into the role of ER signaling in the regulation of

fat mass. Male ERα KO mice have increased fat mass204–207; while
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in contrast, ER β KO mice exhibit no fat phenotype,207–209

suggesting that ERα but not ER β regulates fat mass. However, it

is important to note, that there is one report of adipocyte-specific

knock down of the ERα using siRNA that had no effect on fat

mass in male mice.210 Several additional cell specific ERα KO mice

have been generated including osteocytes211 and hepatocytes212

that show no change in fat phenotype.

Despite the absence of any reported changes in fat deposition

in global ERβ KO mice, agonistic ERβ-selective ligands have been

reported to mitigate diet-induced obesity in male mice.213 Activa-

tion of ERβ using 4-(2-(3-5-dimethylisoxazol-4-yl)-1H-indol-3yl) phe-

nol (DIP) can alter fat deposition in male mice to a female

deposition.214 In addition, strong interactions between E2 and lep-

tin signaling have been reported in male rats179 indicating that ER

signaling has the potential to also modulate fat mass through indi-

rect mechanisms such as decreasing satiety. In summary, these

data suggest that activation of ERα may play a role in the regula-

tion of fat mass in males, but further study is required to ascertain

the contribution of the fat reducing effect ERβ activation and the

mechanisms by which it exerts these effects. Estradiol has been

reported to regulate lipid and glucose metabolism210,215,216 rep-

resenting potential mechanisms.

2.6 | Sex hormone binding globulin (SHBG)

Testosterone is present in plasma in a free form and a bound form.

Bound testosterone is predominantly bound to the sex hormone bind-

ing globulin (SHBG) and albumin. SHBG binds testosterone and DHT

with high affinity and E2 with a comparatively lower affinity.217 Of

note, SHBG is inversely associated in men with obesity,64,218 how-

ever, whether SHBG contributes to the pathogenesis of obesity in

men is not known.

Androgen binding protein (ABP) is synthesized by Sertoli cells of

the testis in rodents and humans and has a similar amino acid struc-

ture to SHBG, but differs in carbohydrate composition.219 While ABP

has been shown to regulate the accumulation and bioavailability of

testosterone within the seminiferous tubular epithelium,220,221 there

is, to our knowledge, no evidence of association of ABP with obesity

or fat mass.

2.6.1 | Clinical evidence of SHBG contribution to
testosterone, and regulated fat reduction

Obesity has been reported to be associated with lower circulating

levels of SHBG.64,222 SHBG is increased by resistance training with

concomitant increases in lean body mass and reductions in total and

trunk fat mass.223 Additionally, bariatric surgery has been reported to

reverse reduced testosterone and SHBG concentrations in men with

obesity.224 In congruence with this, the reduction of visceral and sub-

cutaneous fat mass through the use of lifestyle intervention and

metformin has been reported to increase SHBG levels.225 This infers

there is an association between SHBG and obesity, but whether this

is causal, due to reverse causality or merely reflects in-common risk

factors is not known. Pre-clinical models have provided more evi-

dence in this regard.

2.6.2 | Pre-clinical evidence of a role for SHBGs in
testosterone-mediated fat reduction

As hepatic SHBG is not expressed in rodent models,226 pre-clinical

rodent models have utilized genetic expression of human SHBG227

in order to study its role in mediating the action of testosterone to

regulate fat mass. One such example is a mouse model that over-

expresses human SHBG on the db/db mouse model of obesity

(leptin KO model). db/db mice over-expressing SHBG were less

obese than control db/db mice expressing normal levels of

SHBG228 consistent with observations in humans64 indicating that

SHBG is inversely associated with obesity. This same model has

been used to demonstrate the importance of SHBG in regulating

sex steroid activity226 and interestingly, may protect against HFD

induced obesity through the induction of lipolysis in white adipose

tissue,229 though this finding is contradicted elsewhere.230 Given

these contradictory findings combined with the use of over-

expression models with supraphysiological expression of SHBG, it

is not possible to ascertain whether SHBG has a direct role in the

regulation of fat mass, an indirect role via modulation of circulating

sex steroid concentrations, or whether changes in circulating SHBG

are simply a marker of adiposity.

3 | AR-REGULATED PATHWAYS MAY BE
AMENABLE FOR THERAPEUTIC
TARGETING—LIMITATIONS AND FUTURE
DIRECTIONS

Obesity is a debilitating disease with numerous co-morbidities that

confers a significant socioeconomic burden. Obesity's wide, grow-

ing prevalence and recalcitrance to treatment makes finding more

effective treatments of immediate importance. There are several

novel treatments being developed that are reviewed elsewhere231

and exhibit promise; however, it is of benefit to generate a suite

of anti-obesity compounds that may enable specific obesity thera-

pies. Testosterone has been studied as a potential therapy for

hypogonadism related obesity and has been reported to have mod-

erate efficacy.74

Understanding how molecular signaling pathways lead to physio-

logical or pathophysiological changes has long been a key way of iden-

tifying therapies for diseases including cancer232,233 and diabetes.

Alternative therapies that signal through the AR pathways to reduce

fat mass without masculinizing side effects are a promising therapeu-

tic avenue.234
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3.1 | Current limitations to using the AR as a
therapeutic target for obesity

There are several limitations that prevent targeting the AR for obesity.

These can be broadly grouped into two categories: (1) understanding

of the mechanisms of fat loss and (2) generation of specific targeting

compounds.

3.1.1 | Understanding AR signaling mechanisms to
reduce fat mass

A mechanistic understanding of how androgens regulate body compo-

sition has long been sought after to enable more efficacious thera-

pies.166 Current evidence suggests that the fat sparing effects of

testosterone may be mediated through a variety of cells other than

adipocytes,150 including muscle cells.152,153,235 In addition, more

recent evidence discussed in this review suggests that androgen

action via the AR in BMPCs decreases fat mass,126,166,189 is an excit-

ing avenue of research.

3.1.2 | Undiscovered osteokines, and adipokines
released from the bone

One of the unresolved questions is whether AR signaling modulates

body composition via direct effects, that is, tissue specific (autocrine

or paracrine) AR signaling, and/or via indirect endocrine effects, that

is, via stimulating the secretion of yet to be identified circulating

effectors. It is well understood that the bone,165 muscle236 and adi-

pose tissues237 secrete numerous cytokines, some of which represent

an unexamined source of potential novel therapeutic targets.

Additionally BMPCs have also been reported to secrete factors and

regulate metabolic function both in a paracrine and endocrine capac-

ity.238,239 Testosterone has been reported to regulate the secretion of

metabolic factors such as adiponectin240 and leptin.241 Therefore, it is

conceivable that that the AR may regulate the secretion of novel yet

to be discovered factors, which in turn may decrease fat mass. Thus, it

is possible that some of these novel, or yet to be discovered secreted

factors may form the basis of new treatments.

This notion of novel inter-cellular communication molecules for-

ming the basis of novel therapeutics have been previously

reported.242 Hormones were identified and subsequently leveraged

for use as therapeutics throughout the 20th century but it is only in

more recent times that numerous families of secreted signaling mole-

cules bearing the suffix “-kines” such as myokines,243 osteokines,

adipokines,244 and hepatokines245 have been identified.242 The first

identified adipokine that was thought to have value as a therapeutic

was leptin,246 but leptin therapy alone has failed as a therapy for obe-

sity. Since then, numerous other signaling molecules have been identi-

fied but have yet to yield results,242 suggesting there may be other

opportunities that remain to be discovered.

3.1.3 | Compounds that leverage unique AR
signaling mechanisms

The AR signaling pathway elicits its biological effects through both

DNA-binding-dependent and non-DNA-binding-dependent path-

ways32 which may be activated by either cytosolically located AR or

membrane localized AR46 as well as other membrane localized recep-

tors.35 This offers opportunities to generate specific novel compounds

that activate desired pathways. One such example of this was the

recently developed testosterone loaded monosialoganglioside

micelles, which were able to bypass the effects of membrane-initiated

signaling to target DNA binding-dependent signaling exclusively by

the micelle directly delivering testosterone to the cytoplasm. This rep-

resents an exciting avenue for enabling novel therapeutics247 but also

requires a clearer understanding of the contribution of DNA binding-

and non-DNA binding- dependent AR signaling to the regulation of

fat mass.

A class of compounds termed selective androgen receptor modu-

lators (SARMs)248 present another potential opportunity to specifi-

cally activate the AR pathways responsible for regulating fat mass. A

better understanding of the mechanisms by which SARMs exhibit tis-

sue selectivity would greatly benefit the development of novel com-

pounds. Putative mechanisms of SARM selectivity include tissue

specific enzymes, modulated recruitment of coregulators and activa-

tion of unique subcellular signaling cascades are some of the putative

mechanisms of SARM selectivity,249 but more research is required to

understand these mechanisms and then leverage these unique fea-

tures to generative more efficacious therapeutics. Generating SARMs

that exclusively target the AR mediated mechanisms of fat reduction

may hold an alternative approach to treating obesity. However,

SARMs have a number of potential limitations. Considering the work

of Finkelstein et al.181 demonstrating the importance of the aromati-

zation of testosterone to estradiol and ER signaling in the reduction of

testosterone-mediated fat mass, SARMs may be less potent in fat

mass reduction compared with testosterone due to their non-

aromatizable nature. Furthermore, the utilization of SARMs as thera-

peutics opens several important questions regarding the effect of

SARMs on physiological parameters such as bone health and fertility.

However, as highlighted in this review, there are important knowledge

gaps with regards to the mechanism by which androgens regulate fat

mass and more research is needed in order to inform the utility of

targeting the AR signaling pathway as a treatment for obesity.

4 | CONCLUSION

It is apparent that a two-pronged approach is required to enable the

targeting of unique AR signaling pathways, that is understanding the

signaling mechanisms that traditional AR agonists such as testoster-

one and DHT utilize to reduce fat mass or elicit other positive effects,

as well as developing novel compounds that can target these molecu-

lar processes with minimal negative side effects.
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Obesity is a multifactorial disease250 that requires novel therapies

in conjunction with current lifestyle and pharmacological interven-

tions in order to be effectively treated. In this review we have dis-

cussed the importance of AR signaling in the regulation of fat mass

and highlight the lack of research into this molecular pathway. By

investigating AR signaling pathways that reduce fat mass and identify-

ing novel therapeutic targets to leverage this pathway, we may ulti-

mately be able to offer new treatments for this debilitating disease

and reduce the immense burden placed on society. This review has

focused on males, but such novel therapies may also be of value to

females affected by obesity. However, as highlighted in this review,

there are important knowledge gaps with regards to the mechanism

by which androgens regulate fat mass and more research is needed in

order to inform the utility of targeting the AR signaling pathway as a

treatment for obesity.
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