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1  | INTRODUC TION

Hyperspectral imaging (HSI) is an emerging technology that has a 
great potential in rapid detection and identification of foodborne 
pathogens. The HSI was originally designed for remote sensing and 
now has found its application in various fields such as astronomy, ag-
riculture, pharmaceutical, and medicine (Gowen, O’Donnell, Cullen, 
Downey, & Frias, 2007; Smith, 2012). The increased food safety and 
defense concerns due to foodborne pathogens have reinforced the 
need for rapid pathogen detection and identification methods in 

food. Although traditional methods are still used for the detection 
and identification of pathogens in food, these methods are cumber-
some, labor‐intensive, expensive, and can take from 4 to 7 days to 
give confirmatory results. Therefore, rapid detection methods for 
foodborne pathogens, at least at the presumptive level, are required 
for the functioning of a safe and fast food supply chain.

The HSI is a nondestructive method of analyzing and detecting a 
specimen and combines imaging with spectroscopy to acquire both 
spatial and spectral information of a specimen (such as bacterial cells 
or colonies) by using visible near‐infrared spectra (400 to 1,000 nm; 
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Abstract
Hyperspectral imaging (HSI) provides both spatial and spectral information of a sam-
ple by combining imaging with spectroscopy. The objective of this study was to gen-
erate hyperspectral graphs of common foodborne pathogens and to develop and 
validate prediction models for the classification of these pathogens. Four strains of 
Cronobacter sakazakii, five strains of Salmonella spp., eight strains of Escherichia coli, 
and one strain each of Listeria monocytogenes and Staphylococcus aureus were used in 
the study. Principal component analysis and kNN (k‐nearest neighbor) classifier model 
were used for the classification of hyperspectra of various bacterial cells, which were 
then validated using the cross‐validation technique. Classification accuracy of vari-
ous strains within genera including C. sakazakii, Salmonella spp., and E. coli, respec-
tively, was 100%; except within C. sakazakii, strain BAA‐894, and E. coli, strains O26, 
O45, and O121 had 66.67% accuracy. When all strains were studied together (irre-
spective of their genus) for the classification, only C. sakazakii P1, E. coli O104, O111, 
and O145, S. Montevideo, and L. monocytogenes had 100% classification accuracy, 
whereas E. coli O45 and S. Tennessee were not classified (classification accuracy of 
0%). Lauric arginate treatment of C. sakazakii BAA‐894, E. coli O157, S. Senftenberg, 
L. monocytogenes, and S. aureus significantly affected their hyperspectral signatures, 
and treated cells could be differentiated from the healthy, nontreated cells.
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Dale et al., 2013; Gowen et al., 2007). The HSI utilizes optical charac-
teristics of specimens for the identification; therefore, HSI works on 
the interactions between light (visible and/or near‐infrared light) and 
the molecular structure of the specimen. During HSI, hyperspectral 
images of a sample are captured at various predefined wavelengths; 
and reflectance, transmittance, absorbance, or fluorescence (de-
pending on the molecular and chemical structure of a sample) are 
measured over this wavelength range to generate hyperspectral 
graphs. These hyperspectral graphs, used to develop a library for 
different organisms, can then be used for the rapid identification of 
an unknown sample.

Rapid and early detection of pathogens in food is vital at every 
stage of processing, especially for “zero tolerance” pathogens such 
as Escherichia coli O157:H7 and Big Six Shiga toxin‐producing E. coli 
(STEC; O26, O45, O103, O111, O121, and O145) in ground beef, and 
Listeria monocytogenes in ready‐to‐eat foods (Buchholz & Mascola, 
2001; FSIS, 2012a; 2012b). Another sensitive area where early and 
faster detection of pathogens is vital is the detection of Salmonella 
spp. and Cronobacter sakazakii in powdered infant formula manufac-
tured for newborns and infants.

The previous research done utilizing HSI for the rapid identifi-
cation and differentiation of various pathogens has been conducted 
on a macro‐scale using bacterial colonies grown on a media agar, but 
best to our knowledge, studies at microscale (at the single bacterial 
cell level) are scarce in the literature (Eady & Park, 2016). Using HSI, 
Yoon et al., (2013a), Yoon et al. (2013b) were able to identify Big 
Six STEC grown on Rainbow agar as pure and mix cultures at accu-
racy levels from 80% to 100%. Fiore, Casale, and Aureli. (2008) were 
able to discriminate maize kernels infected with Aspergillus niger and 
A. flavus from uninfected kernels using HSI. The U.S. Department of 
Agriculture's Agriculture Research Service (ARS) developed and suc-
cessfully tried (under commercial conditions) a HSI system to detect 
and separate fecal contaminated poultry carcasses from the good 
carcasses (FSIS, 2013). Factors like morphology of colonies grown 
on media agar and presence of food components on food surfaces, 
along with individual or clusters of bacterial cells, can interfere with 
HSI and affect the hyperspectra. Therefore, HSI of bacteria at the 
cellular level should be studied to exclude interfering factors in gen-
erating hyperspectra of targeted bacteria.

It is also very relevant and important to study whether inactive 
or injured bacterial cells can be differentiated from active and live 
bacterial cells using HSI (Anderson, Reynolds, Ringelberg, Edwards, 
& Floey, 2008). Lauric arginate (LAE) is a generally recognized as 
safe (GRAS) food‐grade antimicrobial exhibiting activity against a 
wide range of pathogens (Saini, Miguel, Marsden, Getty, & Fung, 
2013). The LAE has been studied for its use in food as an antimicro-
bial treatment and as a sanitizer for food contact surfaces (Becerril, 
Manso, Nerin, & Gómez‐Lus, 2013; Saini, 2012). The LAE disrupts 
the plasma membrane of bacterial cells, which alters the metabolic 
processes and inhibits normal cellular cycles (Bakal & Diaz, 2005). 
Therefore, it is essential to study the effect of antimicrobials, such 
as LAE, on bacterial cells and subsequently on the HSI of these cells 
treated with antimicrobials.

Therefore, the main objective of this research was to study 
whether hyperspectral graphs/signatures obtained from HSI of indi-
vidual bacterial cells could be used for the rapid presumptive identi-
fication and differentiation of various strains of pathogenic bacteria. 
This included the development and validation of classification mod-
els for common foodborne pathogens. The effect of antimicrobial 
(LAE) treatment of various strains on hyperspectral signatures of 
these bacteria was also studied.

2  | MATERIAL S AND METHODS

2.1 | Experimental design

To study whether HSI can be used for the rapid identification and 
differentiation of various foodborne pathogens, four strains of 
C. sakazakii, five strains of Salmonella spp., eight strains of E. coli, 
and one strain each of L. monocytogenes and S. aureus were used 
in the study. All strains were individually grown on tryptic soy 
agar (TSA; Difco, Becton Dickinson Company) for isolation, and 
hyperspectral images of these cells from the isolated colonies 
were captured. These images were then used to generate hyper-
spectral graphs of respective bacterial cells that were stored in a 
reference library. Principal component analysis (PCA) and kNN (k 
Near Neighbor) classifier model were used for the classification of 
hyperspectra of various pathogens, followed by the “cross‐valida-
tion” technique. For LAE treatment, one strain from each genus 
was grown in TSB for 24 hr and then treated with 2,000 ppm LAE 
followed by HSI. Three replications were conducted for each strain 
for generating hyperspectral graphs; within each replication, HSI 
of various strains was conducted randomly.

2.2 | Culture propagation

The seventeen Gram‐negative (four C.  sakazakii, five Salmonella 
spp., and eight Shiga toxin‐producing E. coli) and two Gram‐posi-
tive (L.  monocytogenes and S.  aureus) foodborne pathogenic bac-
teria used in this study are presented in Table 1. All strains were 
selected on the basis of risk and involvement in foodborne disease 
outbreaks, or isolated from the environment and food processing 
facilities. All cultures were stored on TSA at 4°C and confirmed 
using API® 20E (for C. sakazakii, Salmonella spp., and E. coli strains; 
Biomérieux), API® Lister (for L.  monocytogenes), and API® Staph 
(for S. aureus).

2.3 | Bacterial cell samples preparation and 
immobilization

A loop (1  μl) from stock cultures stored on TSA was individually 
transferred into 10  ml TSB and incubated for 24  hr at 35°C for 
L.  monocytogenes and E.  coli, and 37°C for C.  sakazakii, Salmonella 
spp., and S. aureus. Incubated strains were then individually streaked 
on TSA for isolation and incubated for 24 hr at respective tempera-
tures. For each strain, one loop from an isolated colony was mixed in 
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1 ml filtered (0.2 μm) sterilized HPLC grade water (Fisher Scientific) 
in a microcentrifuge tube by vortexing for ~1 min. Ten μl of vortexed 
samples was individually transferred on clean and sanitized 1‐mm 
glass slides (Fisherfinest®, Fisher Scientific), and immobilized by air 
drying in a biosafety cabinet (SterilGARD® II, The Baker Company) 
for ~5  min. These immobilized bacterial cells on glass slides were 
then used for the HSI analysis.

2.4 | Lauric arginate treatment

For LAE (as Ethyl Lauroyl Arginate HCL; Vedeqsa Inc.) treatment, one 
strain from each genus was selected: C.  sakazakii BAA‐894, E.  coli 
O157:H7, L. monocytogenes, S. aureus, and Salmonella Senftenberg. 
According to the Food Safety and Inspection Service (FSIS) of the 

U.S. Department of Agriculture, LAE can be used in various meat 
and poultry products up to 200 ppm by weight of the finished prod-
uct (FSIS, 2013). Based on the previous research conducted on LAE 
treatment of veal carcasses in our laboratory, in which ~2,000 ppm 
LAE solution was used to achieve a final 200 ppm LAE by weight of 
beef cut being treated, 2,000 ppm LAE concentration was selected 
for this study. A loop from the stock culture of all bacteria on TSA was 
individually transferred into 10 ml of TSB and incubated for 24 hr at 
respective temperatures. For all strains, a loop from the inoculated 
TSB was then transferred to 10 ml TSB tubes and again incubated for 
24 hr at respective temperatures. For each strain, after inoculation, 
3 ml of inoculated TSB was mixed with 6 ml of noninoculated TSB 
and 1 ml of LAE (to achieve the final concentration of 2,000 ppm of 
LAE) and stored for 5 min at 4°C. After LAE treatment, 5 ml of D/E 
Neutralizing Broth was immediately added to the tubes (to neutral-
ize the solution and arrest the antimicrobial effect of LAE). Tubes 
were then centrifuged at 4,960 × g at −4°C for 15 min, supernatant 
was discarded, and pellets were washed with 10 ml 0.1% peptone 
solution and centrifuged again. After centrifugation, supernatant 
was discarded, and one loop from the pellet in centrifuge tube was 
used for HSI analysis of each strain.

2.5 | Hyperspectral graphs generation

A CytoViva® microscope system (CytoViva, Inc.) used for cap-
turing hyperspectral images in the study is presented in Figure 1. 
Environment for Visualizing Images (ENVI, Exelis Visual Information 
Solutions) software version 4.4 was used for analyzing acquired 
hyperspectral images and generating hyperspectral graphs. 
Hyperspectral images of individual bacterial cells on air‐dried glass 
slides were acquired by focusing the microscope at 4,000 × magni-
fication and ENVI settings at: 0.5  s exposure time, low grain, and 
low spatial and spectral resolutions (as recommended by CytoViva® 
personal communication). Hyperspectral images were acquired 
using “push broom” (also known as “line scan”) technique in which 
the glass slide supporting the dried culture on the motorized stage 
of microscope was moved across the field of view of the microscope 
during image acquisition. Using ENVI, three bacterial cells were se-
lected from the acquired images as regions of interest (ROI). Average 
scattering values at respective wavelengths of these three ROI were 
used to generate hyperspectral graphs at wavelengths ranging from 
400 to 1,000 nm (at wavelength interval of ~1.29 nm resulting in 465 
wavelength bands). These graphs were then stored in a reference 
library for future use and comparison/classification.

2.6 | Principle component analysis, and 
classification and validation of hyperspectral graphs

Preprocessing is the first important step in statistical analyses and 
classification of a spectral data set; however, no general guidelines 
or rules exist for selecting a particular preprocessing technique for 
a specific type of a data set (Scott, James, & Ali, 2007). The type of 
preprocessing technique used for a particular data set should aim 

TA B L E  1   Gram‐positive and Gram‐negative bacteria used in the 
study

Bacteria Strain/Serotype Source

Cronobacter sakazakii BAA−894 ATCCa

Environmental 
isolate (E1)

University of 
Nebraska, Lincoln

Processing plant 
isolate 1 (P1)

University of 
Nebraska, Lincoln

Processing plant 
isolate 2 (P2)

University of 
Nebraska, Lincoln

Salmonella spp. Agona BAA−707 ATCC

Tennessee 10,722 ATCC

Typhimurium 13,311 ATCC

Montevideo Kansas State 
University

Senftenberg Kansas State 
University

Escherichia coli O26 University of 
Nebraska, Lincoln

O45 University of 
Nebraska, Lincoln

O103 University of 
Nebraska, Lincoln

O104 University of 
Nebraska, Lincoln

O111 University of 
Nebraska, Lincoln

O121 University of 
Nebraska, Lincoln

O145 University of 
Nebraska, Lincoln

O157 Kansas State 
University

Listeria 
monocytogenes

SLR 2249 ATCC

Staphylococcus 
aureus

25923 ATCC

aAmerican type culture collection 
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to provide the best possible classification accuracy. For this study, 
spectral data/graphs were first preprocessed by reducing the num-
ber of wavelength bands from 465 (ranging from 400 to 1,000 nm) to 
255 (ranging from 425.57 to 753.84 nm). Hyperspectral graphs were 
then preprocessed by normalizing the y‐axis (scattering value) from 
values 0 to 1 (Scott et al., 2007), with “1” being the brightest point on 
the ROI and “0” being the darkest point. The following equation was 
used to calculate normalized scattering values (Scott et al., 2007):

where, Xij is normalized scattering value at a particular wave-
length; Xij is actual scattering value at a particular wavelength; min 
(Xj) is minimum scattering value; max (Xj) is maximum scattering 
value.

Unsupervised PCA of normalized hyperspectral graphs was con-
ducted to reduce the dimensionality and redundancy in the data set 
(scattering values at the respective wavelengths) for the classifica-
tion (Jun, Kim, Lee, Millner, & Chao, 2009). The new coordinates of 
the spectral data with reduced dimensions are called principal com-
ponents (PC), which explain the variability within the data (Del Fiore 
et al., 2010). The PCs explaining 99% of the variability in the data set 
were used for the further analysis and classification of hyperspectral 
graphs. Principal component analysis plots for various sets of hyper-
spectral graphs were plotted using the first two PCs for approximate 
visualization of differences and similarities among the strains. The 
mathematical model was constructed using the following equation 
(Romía & Bernàrdez, 2009):

where, X (K × N) data set matrix is reduced to a much smaller 
number of A variables called principal components (PC), T (N × A) 
is a matrix containing A scores for PCs, P (K × A) that containing 
the A loadings for the PCs, and E (K × A) the residual matrix of 
the model.

The kNN classifier modeling technique was used for the classifi-
cation of different sets of strains, where k value was kept at 3. The 
kNN is a supervised classification technique used most commonly 
for data sets with little prior knowledge of data distribution. For the 
kNN classification, the training model requires sorting the training 
data, and the distances of samples from the training set with respect 
to the unclassified sample are calculated, and the unclassified sam-
ple is assigned to the group of the nearest k neighbors (Scott et al., 
2007). In the kNN classification model, “k” is referred to as the num-
ber of close neighbors or samples to be considered for the grouping 
of the unclassified sample. The value of “k” can be any positive nu-
meric value; however, values from 1 to 3 are commonly used (Scott 
et al., 2007; Yoon et al., 2013a; 2013b). These classification models 
were then validated using the cross‐validation technique.

3  | RESULTS AND DISCUSSION

An example of the image of bacterial cells as visible under the field 
of view of the microscope and acquired by the CytoViva® micro-
scope system is presented in Figure 2a. Using ENVI software, this 
view was further zoomed at two levels as presented in Figure 2b,c. 
The appearance of bacterial cells at different zoom levels after the 
ROI was selected for acquiring hyperspectral graphs is presented in 
Figure 2d–f. The average time required to acquire images was ~5 min. 
The captured images were clarified using various image‐clarifying 
tools available in ENVI for the better visualization of bacterial cells; 
however, clarification of images did not affect the hyperspectral sig-
natures of bacterial cells or other pixels in the images. Based on the 
preliminary work and personal communication with CytoViva® per-
sonnel, wavelength range from 425.57 to 753.84 nm was selected 
for PCA and kNN classifier modeling because wavelengths below 
425.57 nm and above 753.84 nm were overlapping for all bacterial 
strains and no useful information could be utilized for the differen-
tiation and classification purposes.

To study the variation of hyperspectral graphs/signatures within 
a genus, HSI of different strains of C. sakazakii, E. coli, and Salmonella 

Xij=
[

Xij−min
(

Xj
)]

∕
[

max
(

Xj
)

−min
(

Xj
)]

X=TP
T
+E

F I G U R E  1   CytoViva® Hyperspectral 
Imaging Microscope System. 1: 
Halogen light source; 2: optical 
microscope; 3: optical camera; 4: VNIR 
spectrophotometer; 5: motorized stage; 6: 
controller for stage; and 7: computer
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spp. was conducted. Classification models of these strains developed 
using PCA and kNN classifier were cross‐validated. Hyperspectral 
graphs of various strains of C. sakazakii are presented in Figure 3a. 
The graph indicates that C.  sakazakii P1 had a different scattering 
pattern (shape of the curve) at wavelengths <615 nm compared with 
the other strains; however, at wavelengths >615  nm, the scatter-
ing patron of C. sakazakii P1 was similar to that of C. sakazakii E1. 
Although C.  sakazakii BAA‐894 and P2 had different intensities, 
the scattering pattern of both strains was similar throughout the 

wavelength range (Figure 3a). The PCA plot of C.  sakazakii strains 
shows that C. sakazakii P1 was grouped on the negative (left) side 
of the PC1, while C.  sakazakii E1 was grouped around the center, 
and C.  sakazakii 894 and P2 were grouped on the positive (right) 
side of PC2 (Figure 4). Classification accuracy of C. sakazakii E1, P1, 
and P2 was 100%; however, C. sakazakii BAA‐894 had classification 
accuracy of 66.67% (where C. sakazakii BAA‐894 was misclassified 
as C. sakazakii P2 at 33.33%; Table 2). These results suggested that 
hyperspectral signatures of C. sakazakii strains were different from 
each other, and HSI could be used for the rapid presumptive identi-
fication and differentiation of various C. sakazakii strains studied in 
this research, except that C. sakazakii BAA‐894 had 33.33% chance 
of being misclassified as C. sakazakii P2.

Within Salmonella spp., at wavelengths <600 nm, S. Montevideo 
had a different scattering pattern compared with the other strains; 
however, at wavelengths >600 nm, all strains had similar scattering 
patterns but different scattering intensities (Figure 3b). Cross‐vali-
dation of PCA (Figure 5) and kNN classification shows 100% classi-
fication accuracy for all Salmonella strains (Table 2), indicating that 
each strain had distinguishable hyperspectral signatures and can be 
differentiated using the developed protocol with 100% accuracy.

Among E. coli serotypes, although all serotypes had a different 
intensity of scattering, they followed a similar pattern throughout 
the wavelength range (Figure 6). Approximate grouping of various 
serotypes of E. coli can be visualized from the PCA plot presented 
in Figure 7. Except E. coli O26, O45, and O121, which had classifi-
cation accuracy of 66.67%, classification accuracy of all other E. coli 
serotypes was 100% (Table 2). Escherichia coli O26, O45, and O121 
were misclassified as E. coli O103, O121, and O45, respectively, at 
33.33%.

To study whether HSI could be used to differentiate various 
bacteria at the genus level, PCA (Figure 8) and kNN classification 
followed by cross‐validation was conducted using hyperspectra of 
various strains of C.  sakazakii, E.  coli, and Salmonella spp. Overall, 
low values of classification accuracy were obtained for C. sakazakii 

F I G U R E  2   Hyperspectral Images of Listeria monocytogenes at 4,000 × magnification. a and d: Images of nonselected and selected regions 
of interest (ROI) as appears under the field of view of microscope, respectively; b and e: images of nonselected and selected ROI at first 
zoom, respectively; and c and f: images of nonselected and selected ROI at second zoom, respectively

F I G U R E  3   Hyperspectral graphs of: a) Cronobacter sakazakii 
(CS) BAA‐894, environment isolate (E1), and two food processing 
plant isolates (P1 and P2); b) Salmonella Agona BAA‐707 (SA), 
Montevideo (SM), Senftenberg (SS), Tennessee 10722 (ST), and 
Typhimurium 13311 (STy)
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F I G U R E  4   Principal component analysis (PCA) plot showing first two principal components (Prin1 and Prin2) of hyperspectral graphs of 
Cronobacter sakazakii BAA‐894 (1), environment isolate (2), and two food processing plant isolates (3 and 4)

Bacteria Strain/Serotype
% Classification 
Accuracy Misclassified As (%)

Cronobacter sakazakii BAA−894 66.67 CS‐P2 (33.33)

E1 100 –

P1 100 –

P2 100 –

Salmonella spp. SA 100 –

SM 100 –

SS 100 –

ST 100 –

STy 100 –

Escherichia coli O26 66.67 EC‐O103 (33.33)

O45 66.67 EC‐O121 (33.33)

O103 100 –

O104 100 –

O111 100 –

O121 66.67 EC‐O45 (33.33)

O145 100 –

O157 100 –

TA B L E  2   Classification accuracy of 
various strains of Cronobacter sakazakii, 
Salmonella spp., and Escherichia coli within 
the respective genus obtained from cross‐
validation of principal component analysis 
and kNN (k‐nearest neighbor, k = 3) 
classification*

F I G U R E  5   Principal component analysis (PCA) plot showing first two principal components (Prin1 and Prin2) of hyperspectral graphs of 
Salmonella Agona BAA‐707 (1), Montevideo (2), Senftenberg (3), Tennessee 10722 (4), and Typhimurium 13311 (5)
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(58.33%) and Salmonella spp. (20%); however, E. coli had 79.17% clas-
sification accuracy. This poor classification accuracy could be ex-
plained from the results presented in Table 2. As each strain within a 
genus had distinguished hyperspectral signatures and was different 
from other strains in the same genus, it is difficult to group together 
various strains within a genus on the basis of k‐NN modeling tech-
nique used in this study.

To study the efficacy of HSI to differentiate bacteria when dif-
ferent strains from different genera are analyzed together, PCA 
(Figure 9) and kNN classification of hyperspectral graphs of various 
strains of C. sakazakii, E. coli and Salmonella spp., and L. monocytogenes 

and S. aureus was conducted. Cross‐validation accuracy of the clas-
sification of different strains is presented in Table 3. Overall, clas-
sification accuracy of these strains was not good. Only C. sakazakii 
P1, S. Montevideo, E. coli O104 and O111, and L. monocytogenes had 
100% classification accuracy, whereas all other strains were classi-
fied at accuracy of ≤66.67%. Salmonella Tennessee and E. coli O45 
were the most poorly classified strains with an accuracy of 0%. No 
specific differentiation among the Gram‐positive and Gram‐negative 
strains used in this study can be made from the PCA data presented 
in Figure 9. However, by including more strains of L. monocytogenes, 
S.  aureus, and other Gram‐positive bacteria in future studies, the 
accuracy of HSI to differentiate Gram‐positive bacteria from Gram‐
negative can be studied.

Becerril et al. (2013) reported that bacterial cell membranes 
were the main targets of LAE treatment, which resulted in the 
inactivation of cells by the disruption of cell membranes. Using a 
scanning electron microscope, they also demonstrated that cell 
membrane disruption resulted in structural changes in bacterial 
cells. No differences were observed between the hyperspectral 
images of LAE‐treated and nontreated bacterial cells of various 
strains at 4,000 × magnification. However, LAE treatment of vari-
ous strains significantly affected their hyperspectral signatures. As 
seen in Figure 10, LAE‐treated strains had different intensities over 
the entire range of wavelengths compared with their correspond-
ing nontreated strains. Classification accuracy of LAE‐treated and 

F I G U R E  6   Hyperspectral graphs of Escherichia coli (EC) O26, 
O45, O103, O104, O111, O121, O145, and O157
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F I G U R E  7   Principal component 
analysis (PCA) plot showing first two 
principal components (Prin1 and Prin2) of 
hyperspectral graphs of Escherichia coli 
O26 (1), O45 (2), O103 (3), O104 (4), O111 
(5), O121 (6), O145 (7), and O157 (8)

F I G U R E  8   Principal component 
analysis (PCA) plot showing first two 
principal components (Prin1 and Prin2) 
of hyperspectral graphs of four strains 
of Cronobacter sakazakii (1); eight strains 
of Escherichia coli (2); and five strains of 
Salmonella spp. (3)
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nontreated within each bacterium was 100%, therefore, suggesting 
that LAE‐treated bacterial cells can be differentiated from healthy 
and nontreated cells. No specific trend in the change of hyperspec-
tra of various strains due to LAE treatment along the wavelengths 
was observed; however, overall differences in scattering intensi-
ties between LAE‐treated and nontreated strains were greater at 
>600nm.

Yoon et al. (2013b) used HSI over the wavelength of 400 to 
1,000  nm (with 1.29  nm wavelength separation) for the identifi-
cation and differentiation of pure culture STEC colonies grown on 
Rainbow agar at 37°C for 24 hr. They used PCA‐MD (Mahalanobis 
distance) and PCA‐kNN (k = 3) models for the classification predic-
tion of STEC colonies and applied hold one out and k‐fold CV (cross‐
validation) techniques for the validation of classification models. 

F I G U R E  9   Principal component analysis (PCA) plot showing first two principal components (Prin1 and Prin2) of hyperspectral graphs of 
Cronobacter sakazakii BAA‐894 (1), E1 (2), P1 (3), and P2 (4); Escherichia coli O26 (5), O45 (6), O103 (7), O104 (8), O111 (9), O121 (10), O145 
(11), and O157 (12); Salmonella Agona BAA‐707 (13), Montevideo (14), Senftenberg (15), Tennessee (16), and Typhimurium (17); Listeria 
monocytogenes (18); and Staphylococcus aureus (19)

Bacteria
Strain/
Serotype

% Classification 
Accuracy Misclassified As (%)

Cronobacter 
sakazakii

BAA–894 33.33 CS‐P2 (33.33), EC‐O104 (33.33)

E1 33.33 Others (66.67)

P1 100 –

P2 33.33 CS‐BAA−894 (33.33), Others (33.33)

Salmonella spp. SA 33.33 EC‐O45 (33.33), EC‐O103 (33.33)

SM 100 –

SS 66.67 Others (33.33)

ST 0 EC‐O26 (33.33), EC‐O121 (33.33), 
Others (33.33)

STy 33.33 CS‐BAA–894 (66.67)

Escherichia coli O26 66.667 ST (33.33)

O45 0 EC‐O121 (33.33), Others (66.67)

O103 66.67 ST (33.33)

O104 100 –

O111 100 –

O121 66.67 EC‐O45 (33.33)

O145 100 –

O157 66.67 EC‐O121 (33.33)

Listeria 
monocytogenes

SLR 2249 100 ATCC

Staphylococcus 
aureus

25923 66.67 LM (33.33)

TA B L E  3   Classification accuracy of 
various strains of Cronobacter sakazakii, 
Salmonella spp. and Escherichia coli, and 
Listeria monocytogenes and Staphylococcus 
aureus when analyzed together obtained 
from cross‐validation of principal 
component analysis and kNN (k‐nearest 
neighbor, k = 3) classification*
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Yoon et al. (2013b) reported that E. coli O111 and O121 showed the 
highest classification accuracy of >99%, irrespective of classifica-
tion modeling technique used, whereas E. coli O26, O45, O103, and 
O145 showed the accuracy between 84% and 100% depending on 
the preprocessing technique used.

In another study, Yoon et al. (2013a) used HSI (at 400 to 1,000 nm 
wavelength range) and various prediction models for classification 
of STEC colonies plated on Rainbow agar as mixed cultures. They 
concluded that the best prediction model was kNN classification 
when standard normal variate and detrending, and first derivative 
and spectral smoothing were used as preprocessing techniques. 
Using this kNN model, Yoon et al. (2013a) reported that classifica-
tion accuracy of E. coli O26, O45, O103, O111, O121, and O145 was 
95.80, 100, 88.54, 100, 100, and 91.93%, respectively. Yoon et al. 
(2013a) also concluded that hyperspectral graphs from wavelengths 
750 to 1,000 nm did not provide important information for the clas-
sification and differentiation purposes of bacterial strains. These 
conclusions are in agreement with the current study's findings be-
cause hyperspectral graphs generated in this study at wavelengths 
ranging from ~750 to 1,000 nm for different bacterial strains were 
overlapping and indistinguishable, and could not be utilized for the 
classification purposes. Yoon et al. (2013a) also expressed a concern 
regarding morphology of bacterial colonies that could interfere with 
HSI and hence affecting hyperspectral signatures.

CytoViva® conducted a study to identify and differentiate 
spores of Bacillus globigii and B. anthracis on the basis of their hyper-
spectral signatures. They reported that normalized hyperspectra of 
spores of two Bacillus strains had significantly different shapes and 
peaks (CytoVivo®, n.a.). However, in the current study, we observed 
very similar shaped hyperspectra and peaks of strains (but with 
different scattering intensities) within a same genus. These differ-
ences between CytoViva® and our results could be attributed to the 
differences in the biochemical structure of spores and vegetative 
bacterial cells. Bacterial cells consist of basic cellular components 
common to most of the prokaryotes (such as cell membrane, cy-
toplasm, and DNA), whereas bacterial spores have entirely differ-
ent structure consisting of different proteins (compared with cells) 

and seven different layers over the core of spores (Montville & 
Mathews, 2005).

Currently, preassembled and preprogrammed HSI systems, 
such as CytoViva®, are quite expensive and can easily cost over 
$125,000. This high initial investment cost is one of the major fac-
tors that restricts the research and application of HSI in the field 
of food microbiology. However, this initial cost can be reduced by 
mounting commercially available hyperspectral cameras on reg-
ular laboratory compound microscopes and using predeveloped 
imaging software (such as ENVI). At the current technology, this 
self‐assembly process can reduce the initial investment cost to 
less than one‐fifth of a preassembled HSI system. Once the HSI 
is installed, the cost of running HSI analysis is considerably low, 
which includes the cost of isolation media and regular microbiol-
ogy laboratory tools (such as loops, glass slides, cover slips, and 
biosafety cabinet). In terms of analyzing time, once the bacterial 
colonies are isolated on an appropriate agar, the hyperspectral im-
aging acquiring and analyzing time is less than 15 min, which can 
be reduced further with more research and developing standard 
methods.

4  | CONCLUSIONS

In conclusion, overall classification accuracy of bacterial strains 
used in this study was acceptable when kNN classification model 
and cross‐validation were applied within a specific genus. However, 
poor classification of various strains when compared together 
strongly suggests a need of further investigation, and use of dif-
ferent classification models and validation techniques, to eliminate 
the experimental and statistical factors responsible for poor clas-
sification. The HSI protocols should also be tested and validated for 
isolation and immobilization of bacterial cells from various food ma-
trices. Although at the present state of the technology, HSI cannot 
replace the traditional microbiological identification methods, but it 
can be used effectively at presumptive levels for the identification 
of pathogens.
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F I G U R E  1 0   Hyperspectral graphs of lauric arginate (LAE)‐
treated and nontreated Cronobacter sakazakii BAA‐984 (CS‐894), 
Escherichia coli O157 (EC‐157), Listeria monocytogenes SLR 2249 
(LM), Staphylococcus aureus 25923 (SA), and Salmonella Senftenberg 
(SS‐S)
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