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Abstract: Nowadays, biopolymers as intelligent and active biopolymer systems in the food and
pharmaceutical industry are of considerable interest in their use. With this association in view,
biopolymers such as chitosan, alginate, pectin, cellulose, agarose, guar gum, agar, carrageenan,
gelatin, dextran, xanthan, and other polymers have received significant attention in recent years due
to their abundance and natural availability. Furthermore, their versatile properties such as non-toxicity,
biocompatibility, biodegradability, and flexibility offer significant functionalities with multifunctional
applications. The purpose of this review is to summarize the most compatible biopolymers such as
chitosan, alginate, and pectin, which are used for application in food, biotechnological processes,
and biomedical applications. Therefore, chitosan, alginate, and pectin are biopolymers (used in the
food industry as a stabilizing, thickening, capsular agent, and packaging) with great potential for
future developments. Moreover, this review highlights their characteristics, with a particular focus
on their potential for biocompatibility, biodegradability, bioadhesiveness, and their limitations on
certain factors in the human gastrointestinal tract.

Keywords: biopolymer; food industry; alginate; chitosan; pectin; biodegradability; biocompatibility;
bioadhesiveness; limitation

1. Introduction

Biopolymers are polymers obtained from natural sources, either entirely biosynthesized by
living organisms or chemically synthesized from biological material [1–3]. These polymers are found
in a multitude of food products and health maintenance products, which use biopolymers in the
formulation as a functional excipient or as an active ingredient (active substance) [4–6]. At the same
time, their diverse composition, physical behavior, and the wide variety of which to choose from,
have fueled the interest in biopolymers. Moreover, their relatively low cost and renewable nature
make this class of materials especially attractive to high-value sectors such as the food, biomedical,
and pharmaceutical industries [7–10].

As such, the use of biopolymers from diversified sources has been studied for many years
for food, biomedical, and pharmaceutical applications [11,12]. The global biopolymer market is
expected to reach around 10 billion USD by 2021, increasing by almost 17% over the forecast period
2017–2021. Western Europe comprises the largest market segment, accounting for 41.5% of the global
market [13]. This development is due to the increasing use of biopolymers. For example, biopolymers
such as chitosan, alginate, and pectin can be used in the food industry in applications for food
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packaging [14–16], coating of fresh and cut fruits or vegetables [17–19], and for the pharmaceutical
industry as microencapsulating agents or drug coatings [20–24]. These encapsulating agents have
important roles in encapsulation efficiency and microparticle stability. Microencapsulation using
biopolymers is considered to be a convenient protective method. Numerous food components
have been successfully encapsulated, such as antioxidants [25], enzymes [26], vitamins [27,28],
and minerals [29–31].

Renewable biomaterials are green options to reduce environmental pollution and waste
formation [10,32]. In recent years, remarkable and creative ways of utilizing biopolymer-based materials
have delivered a continuous development for sustainable bioeconomy and biotechnology [33–35].
A large number of recent articles have led to the expansion of evidence suggesting that
enzyme-mediated catalytic bioprocesses have many advantages over conventional synthetic pathways
and, therefore, they are increasingly important for multiple biotechnological applications, including
biocatalysis, food products, environmental protection, biomedicine, bioenergy, biosensor development,
and agro-chemistry based on renewable biomaterials [36–42].

There is a lot of confusion and too many definitions related to the terms “biopolymer”,
“biodegradable”, “renewable resources”, etc. As such, biopolymers are polymers formed from
natural sources or entirely biosynthesized by living organisms, and thus are biodegradable. IUPAC
(International Union of Pure and Applied Chemists) defines biopolymers as a substances composed of
a single type of biomacromolecule [43]. Obviously, the degradation of the polymers is represented
by macromolecules that can undergo chain scissions, resulting in a decrease of molar mass [43].
Additionally, degradability in biopolymer materials is most often not determined by the origin
of the raw materials used or by the process used for manufacturing these polymers, but may be
influenced by the chemical and physical microstructure of the polymers [44]. Polymers from the natural
category tend to be readily biodegradable, although the rate of degradation is generally inversely
proportional to the extent of chemical modification [45]. However, not all natural polymers are
strongly biodegradable (e.g., cellulose) and not all synthetic ones are environmentally stable [43,46,47].
For these reasons, Mensitieri et al. (2011) suggest that polymers removed or extracted from natural
resources can be decomposed under different environmental conditions and under the action of
different microorganisms [48].

In his 2018 book, Tomy J. Gutierrez includes a classification of edible polymers from the nutritional
point of view, namely carbohydrates, proteins, and lipids, i.e., they are considered as macronutrients
(Figure 1) [49]. Also, some authors have classified polymers according to their production method or
source as: Polymers extracted directly or removed from plant or animal biomass; polymers produced
by classical chemical synthesis starting from bio-renewable monomers, such as polylactic acid (PLA);
and polymers produced by microorganisms such as polyhydroxyalkanoates, cellulose, xanthan, and
pullulan [48,50,51].
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Chitosan (C56H103N9O39, M.W. 1526.5 g/mol), a polycationic polymer, is a non-toxic, biocompatible,
and biodegradable biopolymer [52]. It has antimicrobial activity, observed in numerous studies, some of
which have led to the creation of biodegradable labels. One such example is the label obtained with
green tea extract and chitosan that has a decontamination effect on the surface of the studied fruits
and vegetables. Other studies have shown its ability to extend the shelf-life of fruit products [53–56].
Chitosan also has a good mucoadhesive characteristic so that it is adsorbed to the mucous membrane
along the gastrointestinal tract [57], and thus, a compatible carrier for colon-targeted probiotic
microorganisms or drugs [58]. Nevertheless, chitosan may have a major disadvantage as it can be
dissolved in an acid solution, which causes chitosan to lose its mucoadhesivity by deprotonation [59].

Alginate (C12H20O12P2, M.W. 418.23 g/mol), a natural polyanionic polymer, is a non-immunogenic,
non-toxic, biodegradable polymer [60]. Alginates are widely used in a variety of applications, including
applying coatings on fresh and cut fruits and vegetables [61,62], food protection[63], as thickening,
gelling, emulsifying, and stabilizing agents in food products such as ice cream, sauces, and fruit
pies [64], and drug delivery systems for anti-reflux preparations [65]. Alginate has antioxidative and
anti-inflammatory properties and it is stable in the stomach acidic gastric solution and can gradually
dissolve under alkaline conditions in the small intestine [66–68]. In the rational drug design for
chemotherapy, alginate shows an application in tumor therapy [69].

Pectin (C6H10O7, M.W. 194.14 g/mol), an anionic biopolymer, is another important polymer used
in the food industry. It is soluble in water and it is one of the major structural polysaccharides of higher
plant cells. Pectin has many applications in the food and beverage industry as a thickening and gelling
agent, colloidal stabilizer, texturizer, and emulsifier [70,71], and for applying coatings on fresh and cut
fruits or vegetables [72,73]. Pectin is generally formed of water-soluble pectinic acids with varying
methyl ester contents, which are capable of forming gels alongside sugar and acid when exposed to the
correct conditions [74]. Pectin for food technology or pharmaceuticals, especially for colon treatments,
has been comprehensively reviewed over time [75–78]. Pectin is a high molecular weight branched
macromolecule, which can be transformed into a hydrogel, intended as a flexible network of polymeric
chains that can swell but not dissolve in water [79].

This review discusses the crucial parameters for the most relevant biopolymers: A polycationic
polymer—chitosan; a polyanionic polymer—alginate; and an anionic biopolymer—pectin.
The objectives considered in the review are the use of biopolymers in the food industry, biotechnological
processes, and biomedical applications, with a main focus on the use as stabilizing, thickening,
or capsular agents, as well as for packaging. These biopolymers are considered to be polymers with
great potential for future developments. This review particularly highlights their characteristics,
with emphasis on their potential for biocompatibility, biodegradability, and bioadhesiveness, alongside
their limitations under certain conditions, such as those from the human gastrointestinal tract,
following consumption.

2. Chitosan

2.1. History, Structure, and Sources

European authorities approved chitosan as safe for consumption, and a monograph on chitosan
hydrochloride was included in the fourth edition of the European Pharmacopoeia (2002). In addition,
it is an approved food additive in Japan and has been widely used in the food industry.

Chitosan is a partly deacetylated polymer of N–acetyl glucosamine. It is a natural, water-soluble
derivative of chitin with distinctive properties. Chitosan is generally prepared from chitin (Figure 2)
(2 acetamido–2–deoxy–1,4–D–glucan) and chitin may be found in a lot of natural sources [80,81].
Chitin is the second most abundant biopolymer in nature after cellulose [8,82]. Chitosan (1→4)–linked
2–amino–2–deoxy–b–D–glucan, can be obtained from chitin through alkaline hydrolysis of the N–acetyl
groups. Upon further hydrolysis, for example, with the help of chitosanases, indicated by black arrows,
low molecular weight (MW) oligosaccharides are produced.
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Chitin is the primary structural component of the outer skeletons of crustaceans and is also
found in many other species such as mollusks, insects, and fungi [83]. The most frequently obtained
form of chitosan is the α–chitosan from crustaceans, namely chitin from shrimp shell and crab shell
wastes [83]. Chitin accounts for around 70% of the organic compounds in such shells. In the process of
obtaining chitosan, ground shells are demineralized and deproteinized by sequential treatment with
acid and alkali, after which the extracted chitin is deacetylated to chitosan by alkaline hydrolysis at
high temperature. Production of chitosan from these sources is cheap and straightforward. It has
also been suggested that other sources of chitin, e.g., β–chitin from squid pens, may be valuable in
relation to the preparation of chitosan [84,85]. Chitosan in nature as such is rare, except in certain fungi.
In recent years, the production of chitosan from fungi, using fermentation methods, has also gained
much interest [86]. The physicochemical characteristics of chitosan are closely related to the taxonomy
of the source [84].

2.2. Properties and Applications of Chitosan

Chitosan is widely used in a range of diverse fields, including food, agriculture, waste management,
and medicine. Obviously, chitosan as a composite material has been extensively studied. Its various
properties (antimicrobial properties; permeability and solubility; it decreases swelling and improves
mechanical properties), make it very suitable for possible future applications in food and drug
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packaging, antimicrobial films, and coatings, such as applying coatings on fresh and cut fruits or
vegetables (Table 1).

2.2.1. Biocompatibility and Biodegradability

Chitosan can play an important role in regulating growth and eliciting defense in many plant
species. However, the exact metabolic response of plants to chitosan is still not clear [87]. The effect
of the degree of deacetylation of chitosan on properties such as solubility and antimicrobial activity
has been studied in a multitude of articles [88,89]. Additionally, chitosan is a potentially useful
pharmaceutical material owing to its low toxicity and good biocompatibility [90,91].

It has also been marketed throughout the world as a component in non-medical products, as
a fat binder in cholesterol-lowering and slimming formulations [92]. Thus, it has been observed
that chitosan entraps in lipids in the intestine, because of its cationic nature [85,93]. Analyses
performed in the biomedical field have revealed it to be highly biocompatible [90,94]. At the same
time, chitosan is metabolized by certain human enzymes, especially lysozyme, and is considered
biodegradable [91]. Chitosan has unique biological properties such as biocompatibility, biodegradability,
and mucoadhesion. It is also anticholesterolemic, antimicrobial, and exhibits permeation enhancement
effects. These properties have led to its increased utilization in distinct applications such as
antibacterial/anti-biofouling coatings, controlled release coatings and microcapsules, nanofiltration,
drug delivery hydrogels, gene delivery, and tissue engineering scaffolds. For biomedical applications,
aiming to reach in vivo testing, chitosan derived from non-animal origins is preferred [95–98].

2.2.2. Bioadhesiveness

One area of growing interest is the use of chitosan as a bioadhesive material. Many commercially
available chitosans exhibit fairly good mucoadhesive properties in vitro [99]. The mucoadhesive
properties of chitosan have been illustrated by its ability to adhere to porcine gastric mucosa in vitro [100],
and may therefore be useful for the administration of site-specific drugs. It has been suggested
that residence time of formulations at sites of drug action or absorption could be prolonged with
chitosan. It has also been recommended that chitosan might be valuable for delivery of vitamins,
minerals, or other drugs to specific regions of the gastrointestinal tract like the stomach [100,101],
small intestine [99,102,103], and buccal mucosa [104,105]. The adhesive properties of chitosan in
a swollen state have been shown to persist well during repeated contacts of chitosan and the
substrate [99], which implies that, in addition to the adhesion by hydration, many other mechanisms,
such as hydrogen bonding and ionic interactions, might also have been involved. A very important
mechanism of action was recommended to be the ionic interaction between the negatively charged
mucus gel layer and the positively charged amino groups in chitosan. In the interactions between
chitosan and mucus [102,106], the primary mechanism of action at the molecular level was found to
be electrostatic [107]. The interactions are strong at acidic and slightly acidic pH levels, where the
charge density of chitosan is high [102]. Growth in molecular weight of chitosan results in stronger
adhesion [99].

It was shown that the amounts of chitosan microspheres adhering to the intestine were greatest
when the density of cross-linking of chitosan was lower (i.e., when the number of free amino groups
in chitosan was higher) [102]. This also suggests that the adhesive properties of chitosan should
increase as the degree of deacetylation increases, while cross-linking reduces the mucoadhesive effects
of chitosan [108,109].
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Table 1. Chitosan properties used for different applications.

Composite Material Effect Possible Application Reference

Chitin nanocrystals - Improve mechanical properties and transparency. Packaging and food packaging. [110]

Chitosan/MgO

- Improves mechanical properties;
- Increases opacity;
- Decreases swelling, permeability, and solubility;
- Antimicrobial properties.

Food active packaging. [16]

Chitosan with additional compounds of Propionic acid - Propionic acid incorporation into chitosan films inhibits Candida spp and Penicillium spp growth;
- Extended food shelf life by maintaining microbial growth in the latency period. Antimicrobial films and coatings. [111]

Chitosan with additional compounds of Microemulsions formed from
C–BF–G as emulsifier additive with AIT and LAE as antimicrobials

- Micro emulsions create micro pores and micro channels that hold antimicrobials effectively;
- Facilitates antimicrobial release from the center to the surface of films or coatings, thus enhancing their
antimicrobial efficacy;
- Films with 1% AIT reduced Listeria innocua populations in ready-to-eat meat and strawberries;
- Films with 1% LAE reduced Escherichia coli and Salmonella spp. populations in strawberries.

Antimicrobial films and coatings. [55]

Chitosan with additional compounds of PA - Chitosan/PA composite films present more TPC and AA than chitosan films. Antimicrobial films and coatings. [112]

Chitosan with additional compounds of Hydroxybenzoic acids:
GLA, GTA, PA, SA, and VA

- AA assays show that chitosan films with hydroxybenzoic acid have higher DPPH scavenging activity than films
consisting of chitosan only;
- GLA provides higher antioxidant activity.

Antimicrobial films and coatings. [113]

Chitosan with additional compounds of Cymbopogon citratus
(lemongrass) essential oil

- Coating decreases the severity of Rhizopus soft rot;
- More significantly delays the infection when the fruit were artificially contaminated after coating application;
- The application of the coating preserves the general quality of tomato fruit.

Applying coatings on fresh and cut
fruits and vegetables. [56]

Chitosan with additional compounds of Natamycin, nisin,
pomegranate, and grape seed extract

- Coating reduces the O2 consumption of the fruit;
- Shows better effects on delaying changes of pH, water activity, and TMC;
- The incorporation of different antimicrobial agents into chitosan matrix does not reveal any significant effect.

Applying coatings on fresh and cut
fruits and vegetables. [114]

Chitosan with additional compounds of Salvia fruticosa Mill. extract
- The efficacy of the coating against grey mold is statistically equal to the synthetic fungicide thiabendazole;
- Coating decreases the rate of fruit WL during cold storage, while preserved;
- Coatings do not affect quality attributes and the bioactive compounds in table grapes.

Applying coatings on fresh and cut
fruits and vegetables. [19]

Chitosan with additional compounds of thyme essential oil
nanoparticles

- The coating reduces the incidence of C. gloeosporioides on avocado;
- Coating does not affect the quality of avocado;
- Fruit is better maintained than untreated fruit.

Applying coatings on fresh and cut
fruits and vegetables. [115]

Chitosan with GP - Casting method and film physical form. Antimicrobial films and coatings. [116]

Chitosan with FAA - Coating physical form. Oil barrier packaging. [117]

Chitosan with additional compounds of Lemongrass oil
- Coating with nanodroplet of oil shows higher initial inhibition of Salmonella typhimurium;
- Greater growth inhibition of microorganisms and higher retention of color;
- AA and better SE during storage.

Applying coatings on fresh and cut
fruits and vegetables. [118]

Chitosan with GP and GTE - Casting method and film physical form. Active food packaging. [119]

Edible polymers pectin–fish gelatin with glycerol plasticizer and
Glutaraldehyde additives - Casting method and film physical form. Packaging or coating of food or drugs. [23]

C–BF–G—corn–bio–fiber gum; AIT—allyl isothiocyanate; LAE—lauric arginate ester; PA—protocatechuic acid; TPC—total phenolic content; AA—antioxidant activity; GLA—gallic acid;
GTA—gentisic acid; SA—syringic acid; VA—vanillic acid; DPPH—2,2-diphenyl–1–picrylhydrazyl; TMC—total microbial count; WL—weight loss; GP—glycerol plasticizer; FAA—fatty
acid additives; GTE—green tea extract; SE—sensory evaluation.
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2.2.3. Chitosan Absorption

In recent years, chitosan has attracted much attention as a potential absorption enhancer across
mucosal epithelia, especially for peptide drugs [120–122]. It has been revealed that chitosan acts as
a permeation enhancer by opening epithelial tight junctions [123]. In 1994, Illum et al. showed the
permeation enhancing capabilities of chitosan for the first time [120]. Chitosan has the ability to enhance
the paracellular route of absorption, which is very important for the transport of hydrophilic compounds
such as therapeutic peptides and antisense oligonucleotides across the membrane. The mechanism
underlying this permeability enhancement effect appears to be based on the positive charges of the
polymer, which interacts with the cell membrane resulting in a structural reorganization of the proteins
associated with tight junctions [124]. As such, chitosan has some advantages over small molecular
weight-enhancing agents. The mucoadhesive properties allow it to remain concentrated in the
absorption zone of the drug [125]. Additionally, the ability of chitosan to act as an absorption enhancer
has been demonstrated in Caco–2 cells, which serve as a model of intestinal epithelium [126–129],
as well as in vitro experiments on nasal, buccal, vaginal, and urinary bladder mucosa of different
animals [130–134]. Chitosan also increased the bioavailability of a peptide drug, which was applied
during intraduodenal in vivo experiments in rats [106]. Moreover, it has been suggested that chitosan
may reduce the apparent digestible fats by the following procedure: The consumed chitosan is
dissolved in the stomach gastric acid and the dissolved chitosan is mixed with dietary fat to form
complex chitosan fat. This process subsequently forms complex gels in the small intestine; and dietary
fat alongside the gel is excreted in the feces [93].

2.2.4. pH Sensitiveness

Chitosan exhibits a pH-sensitive behavior as a weak base due to the large amounts of amino
groups in its chain. Chitosan is insoluble at higher pH ranges while it dissolves easily at low pH.
Under low pH conditions, the sensitive mechanism swelling involves the protonation of amine groups
of chitosan [135]. This property has helped chitosan to be used in the delivery of chemical drugs to
the stomach and has been widely investigated as a delivery matrix. Nevertheless, for the delivery of
protein drugs to the intestine, this property has a limitation; as the matrix is dissolved in the stomach,
the released protein drugs or other compounds of interest will get denatured. Moreover, the pH
sensitivity of the native chitosan is not suitable for protein delivery. To overcome this, many changes
can be made to improve the stability of chitosan in the stomach and the subsequent controlled delivery
of protein drugs in the intestine [94].

2.3. Limitations

The main limitation of chitosan for the administration of different compounds or different drugs
is the easy dissolution of chitosan in the low pH of the stomach. Nonetheless, the favorable properties
of chitosan, such as improved absorption and mucoadhesiveness, have been shown to occur in low
pH conditions. This is because, as a weak base, chitosan requires a certain amount of acid to convert
the glucosamine units into the positively charged water-soluble form [136]. The poor solubility of
chitosan represents a barrier for it to perform its mucoadhesive and absorption enhancing properties
in the small intestine, which is the main absorptive region of the gastrointestinal (GI) tract. Therefore,
to make it a suitable matrix for the administration of some proteins, several chemical modifications
are necessary. The different chitosan derivatives with favorable properties have been developed and
found to serve this purpose, with improved functionality also at higher pH levels [94].

3. Alginate

3.1. History, Structure, and Sources

Alginate was first isolated by Stanford in 1881 [137] and has since become a multifunctional
ingredient in many applications. Alginates are included in a group of compounds that are generally
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considered safe by the FDA. Generally, alginates are assigned their special role in wound healing.
The regular use of alginates as dressings for wounds dates back to the early 1980s when several
lined products became commercially available. Alginate (Figure 3) is a water-soluble polysaccharide
composed of alternative blocks of 1–4 linked α–L–guluronic acid (GulA; G) and β–D–mannuronic
acid (ManA; M) residues [94]. Alginates may contain G-blocks, M-blocks, and/or MG/GM-blocks
of varying lengths (Figure 3). Alginate is obtained from several different species of brown seaweed
(Phaeophyceae) and is present as sodium, magnesium, and calcium salts of alginic acid. The species
that are generally used for the production of commercial alginates are Macrocystis pyrifera, Laminaria
hyperborea, Saccharina japonica, and Ascophyllum nodosum [138] wherein the alginate may comprise up
to 40% of the dry weight [139,140]. In addition to seaweed, alginate can be synthesized by several
species of bacteria; bacterial alginates were isolated from Azotobacter vinelandii and several Pseudomonas
species [141]. However, alginate from a bacterial source is not yet commercially available [142]. The
process of extraction of alginate has been well-analyzed in literature (e.g., Nussinovitch, 1997 [143])
and is relatively simple. The first step in obtaining alginate is for the raw material from the algae to be
ground and washed with acid before extraction with hot alkali. The second step is for the extract to be
filtered, precipitated with calcium, and acidified to produce alginic acid. The insoluble alginic acid
can then be treated with metallic carbonate, hydroxide, or oxide to produce the desired salt form of
alginate [144].
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3.2. Properties and Applications of Alginate

Alginate is widely used in a range of diverse fields, including food, agriculture, and medicine.
Obviously, alginate as a composite material has been widely studied. It has various properties
(antimicrobial and antiviral properties; permeability and solubility; decreases water solubility; and it
improves mechanical properties), making it very suitable for possible future applications in food and
drug packaging, antimicrobial films, and coatings, for example applying coatings on fresh and cut
fruits or vegetables (Table 2).

3.2.1. Biocompatibility and Biodegradability

Alginate is used broadly in the food industry as a thickener, emulsifier, and stabilizer. The oral
administration of alginate has not been shown to provoke many immune responses unlike the
intravenously administered forms and it is reported that alginate is non-toxic and biodegradable when
given orally [145]. Although alginate biocompatibility has been extensively investigated, there is a
disagreement in literature. In the case of intravenous administration, the induction of foreign body
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reaction and fibrosis have been reported for most commercial alginates [146,147], while other reports
show little or no immune response around alginate implants [148]. Usually, alginates are available
when tested after purification by free-flow electrophoresis and do not provoke foreign body reactions,
at least three weeks after implantation in the peritoneal cavity of rodents [149]. Immunogenic response
to intravenous injections may be due to toxic contaminants from commercial alginates [94].

3.2.2. Bioadhesiveness

Mucoadhesive microorganisms or drug delivery systems work by increasing the residence time at
the site of activity or resorption. The mucoadhesive feature of alginate may help in its usefulness as
a potential prebiotic, probiotic bacteria, or drug delivery vehicle in mucosal tissues, such as the GI
tract [150]. Studies have shown that polymers with charge density can serve as good mucoadhesive
agents [151–153]. It has also been reported that polyanionic polymers are more effective as bioadhesives
than polycation polymers or nonionic polymers [151]. Alginate, being an anionic polymer with
carboxylic groups, is therefore a good mucoadhesive agent. Studies have shown that alginate has
the highest mucoadhesive strength compared to polymers such as chitosan, carboxymethyl cellulose,
or polylactic acid [152]. Due to the adhesion of alginate particles to the mucosal tissues, the transit
time of the protein is delayed, and probiotic microorganisms or a certain drug may be located on the
absorbent surfaces. This can improve the bioavailability and effectiveness of probiotics or drugs [94].

3.2.3. Alginate Absorption

Previous in vitro results indicated that alginate beads might be a useful vehicle for iron fortifying
foods. A human study was undertaken to test the hypothesis that alginate enhances iron absorption.
A single blind, randomized crossover study was conducted to measure serum iron absorption after a
test meal. The conclusion of this study shows that alginate beads are not a useful system for releasing
soluble iron salts for food fortification [154].

Natural alginate fiber may be used as templates for the manufacture of hierarchically porous
carbon fiber decorated in CoFe alloy [155]. In addition, in 19 human subjects, the effect of sodium
alginate on GI uptake of strontium and calcium was investigated. Fifteen volunteers were given 1.5 g
of alginate, two were given 3.0 g, and two 0.3 g. The group with 1.5 g of alginate reduced strontium
absorption by a factor of two, without significant results on calcium absorption. The lower dose of
alginate with 0.3 g appeared to have no effect on strontium or calcium absorption, and the higher
dose with 3.0 g did not have an effect greater than the 1.5 g dose [156]. Different studies evaluated the
effects of alginate oligosaccharide supplementation (AOS) [157–159]. Besides these studies, another
study transmitted two trials to assess the effects of AOS supplementation on the growth performance,
antioxidant capacity, serum hormone levels, and intestinal digestion-absorption function in weaned
pigs [160]. Presently, many oligosaccharides have shown beneficial effects in mitigating physiological
disorders after weaning [160–162].

3.2.4. pH Sensitivity

The release of macromolecules from alginate in low pH solutions is significantly reduced, which
could be advantageous in developing a system for oral administration of certain compounds. [163,164].
Apparently, alginate shrinks at low pH (gastric environment) and the encapsulated prebiotic, probiotic
microorganisms, or different drugs are not released [165]. In the gastric tract, the hydrated sodium
alginate is transformed into a porous, insoluble layer of alginic acid. Once passed into the higher
pH of the intestinal tract, the alginic acid layer is converted into a soluble viscous layer. This pH
condition of alginate can be exploited to customize release profiles. Nonetheless, the rapid dissolution
of alginate matrices in higher pH ranges can lead to release by an explosion, which is not desirable for
protein drugs because this causes protein drugs to be denatured by proteolytic enzymes. However,
many changes in physicochemical properties are required for prolonged controlled release of protein
drugs [94].
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Table 2. Alginate properties used for different applications.

Composite Material Effect Possible Application Reference

Alginate with additional compounds of Ag nanoparticles - Provide antimicrobial and antiviral properties. Fresh food packaging,
packaging for agricultural products. [166–171]

Alginate/nano-clays Mnt and CNC from MCC

- Decrease water solubility;
- Increase surface hydrophobicity with CNC and decrease of this parameter with
nanoclay addition;
- Reduction in WVP;
- Tensile properties improved.

Food packaging. [15]

Alginate with additional compounds of LEO or OEO
- The lower capacity for scavenging ABTS free radicals or quenching singlet oxygen;
- The coatings with the essential orange oil are very efficient for controlling yeast and
mold growth.

Applying coatings on fresh and cut
fruits and vegetables. [61]

Alginate with additional compounds of OO
- Coatings decrease DR, WL, and total sugars and increase the level of antioxidants;
- The delayed activity of PG, PL, and PME was noticed in coated fruit representing the
reduced softening and ripening process.

Applying coatings on fresh and cut
fruits and vegetables. [62]

Alginate with additional compounds of tea polyphenols
- Coatings decrease red indices, TCC, RR, electrolyte leakage, and malonaldehyde content
and maintain the AAC, TPC, and the activities of antioxidant enzymes while have no
significant effect on firmness.

Applying coatings on fresh and cut
fruits and vegetables. [18]

Alginate with additional compounds of Ficus hirta fruit extract
- The DR, WL, RR, and MDA content is much lower in the coated samples;
- The coating treatment enhances the activities of antioxidant and defense-related enzymes
such as SOD, CAT, CHI, GLU, and PAL and the accumulation of phenolic compounds.

Applying coatings on fresh and cut
fruits and vegetables. [172]

Alginate with additional compounds of GSE or GEO - Coatings reduce WL, maintain firmness during storage, preserve the antioxidant activity of
treated grapes, and decrease DR in inoculated fruit.

Applying coatings on fresh and cut
fruits and vegetables. [173]

Sodium Alginate with GP and garlic oil additives - Casting method and film physical form. Antibacterial food applications. [24]

Sodium alginate with calcium chloride additives - Sprayer methods and coating physical form. Food protection. [63]

CNC—cellulose nanocrystals; MCC—microcrystalline cellulose; WVT—water vapor transmission; LEO—lemon essential oil; OEO—orange essential oil; ATBS—acetyltributyl citrate;
OO—olive oil; DR—decay rate; WL—weight loss; PG—polygalacturonase; PL—pectate lyase; PME—pectin methyl esterase; TCC—total chlorophylls content; RR—respiration rate;
AAC—ascorbic acid content; TPC—total phenolic content; DR—decay rate; MDA—maleicdialdehyde; SOD—superoxide dismutase; CAT—catalase; CHI—chitinase; GLU—β–1,3–glucanase;
PAL—phenylalanine ammonia lyase; GSE—grapefruit seed extract; GEO—grapefruit essential oil; GP—glycerol plasticizer.
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3.3. Limitations

A significant problem arises in the preparation of calcium alginate. Despite the fact that calcium
alginate (Figure 4) can be prepared by simple and easy procedures, this method has a major limitation,
namely the loss of the compound during preparation by bonding the created pores [174,175]. In this
case, many alginate modifications have been tested for the administration of compounds such as drugs,
some with success and others with failure. The crosslinking of alginates with aldehydes has been
done successfully. Sodium alginate alone [176–178] or together with gelatin or ovalbumin [179] were
cross-linked with aldehydes, and their microparticles and beads were prepared for various applications.
The cross-linked alginate has more capacity to retain trapped compounds and has a more controlled
release profile of the compound or drug entrapped. In 2002, Chan et al. [176] proposed that pentane
diol with two aldehyde groups can produce cross-linkage between two alginate molecules through
formation between two hydroxyl groups via pentanedial. Many other methods have been adopted
by some researchers to overcome the limitations presented by the relatively large pore size and the
physical instability of alginate in higher pH environments. In addition, the changes made alginate
hydrogels exhibit some additional improved features to help perform their task of protein delivery
more efficiently [94].
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4. Pectins

4.1. History, Structure, and Sources

Henri Braconnot first isolated pectin in 1825, although the action of pectin to make jams was well
known [180,181]. In the joint FAO/WHO expert report on food additives and in the European Union,
no acceptable daily intake has been established as pectin is considered safe [182].

The structure of the pectin can greatly affect the properties of the gels: The monosaccharide
content, the branching, and the spatial arrangement of the cross-linking blocks must be carefully
considered when designing the pectin gels for specific biomedical applications. As for many other
naturally occurring polymers, the molecular weight of pectin, the degree of esterification (DE),
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and acetyl esterification are heterogeneous, depending on the source and the conditions of pectin
extraction. Pectin is composed of at least three types of polysaccharides: Rhamnogalacturonan–I (RG–I),
Rhamnogalacturonan–II (RG–II), and Homogalacturonan (HGA) (Figure 5). HGA is the principal
component of pectin, and contains α–(1 →4)–D–linked galacturonic acids (1,4–α–D–GalpA) that are
partially methyl-esterified and occasionally acetyl-esterified [8,78].
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Methyl-esterified residues (6–O–methyl–α–D–GalpA) distribution of the HGA backbone to the
total carboxylic acid units in the salt form represents DE [186]. After DE, pectins are classified
as low methoxyl (LM), (DE < 50%) or high methoxyl (HM), (DE > 50%), each having different
properties. The properties have been found to profoundly affect the properties of the gels formed
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and, therefore, need to be carefully controlled according to the need for application [187]. RG–I is
represented by the disaccharide unit galacturonic acid–rhamnose (1,4–α–D–GalpA–1,2–α–l–Rhap–)n,
approximately 20–80% of the Rhap residues being substituted with neutral oligosaccharides, mainly
arabinofuranose and galactose (α–l–Araf and β–D–Galp) (Figure 4). Moreover, glucopyranose and
4–O–methylglucopyranose (α–L–Fucp, β–D–GlcpA) can be found as terminal residues of the side
chains (Figure 4). RG–II represents a more complex structure: It presents a backbone consisting of
1,4–α–D–GalpA, and side chains of different sugars such as rhamnose, galacturonic acid, galactose,
arabinofuranose, fucose, apiofuranose (α–l–Rhap, α–D–GalpA, α– or β–D–Galp, α–l–Araf, α–l–Fucp,
β–D–Apif ), and more. One hypothesis concerns a model in which the HG, RG–I, and RG–II backbones
are covalently cross-linked to form block co-polymers, but the relative position of the three main
areas is not yet fully known. The alternative regions are, in fact, the traditional model to describe
the disposition of the domains: It is formed from one linear backbone of the unbranched HGA
residues alternately linked to branched RG–I residues [184,188]. Nevertheless, recent studies on pectin
composition reported other possible models for pectin structure: The RG–I backbone model, in which
HGA is positioned as a RG–I side chain [189], in which unsubstituted HGA is connected with RG–I but
with no linear configurations [183].

Pectin is one of the main constituents of citrus fruits, apple, and mango, and has good gelling
properties [9,74]. Pectin can be extracted from many food industry by-products, such as fruit and
vegetable pomaces. A lot of residues result from the extraction of sugar, the most relevant being the sugar
beet pulp, which is a rich source of pectin [70]. Pectins are a complex family of heteropolysaccharides
that make up a large part of the primary cell walls of dicotyledonous plants and play important roles
in their growth and development [185,190].

4.2. Properties and Applications of Pectin

Pectin is widely studied in a range of diverse fields, including food, agriculture, and medicine.
Obviously, pectin as a composite material has been widely studied, exhibiting various properties
(antimicrobial and antiviral properties; it decreases water solubility; and improves mechanical
properties), making it very suitable for possible future applications in food and drug packaging,
antimicrobial films, and coatings, such as applying coatings on fresh and cut fruits or vegetables
(Table 3). Additionally, pectins have been extensively studied in the pharmaceutical industry for drug
administration, wound dressing, and tissue engineering. Pectins have shown many advantages in these
formulations, as they can be easily adapted to hydrogels, films, scaffolds, and nanoparticles [78,191–193].

4.2.1. Biocompatibility and Biodegradability

Oral delivery is still the preferred route of administration of various compounds, especially
medicines, for chronic pathologies in which repeated administration is required. Researchers have
long used pectin as a potential carrier of drugs or other compounds of interest for the colon [194,195].
At the same time, different compounds (drugs) are transported over long distances and exhibit different
environmental conditions, such as low pH and mechanical pressure in the stomach, protease attack in
the small intestine, and digestion of microflora in the colon [196]. For these reasons, oral administration
of compounds is not suitable for the administration of most proteins and polypeptide compounds,
due to their high susceptibility to digestive enzymes in the gastrointestinal tract, poor absorption,
and limited ability to transport across intestinal barriers [77].

Hydrophilic polymeric matrix systems are widely used in the oral administration of controlled
compounds, due to their flexibility to obtain a compound release profile, profitability, and wide
acceptance of the regulations [187,197,198]. The ability of hydrophilic polymer matrices to release
a compound trapped in an aqueous environment and to regulate the release of such a compound
by controlling swelling and cross-linking makes them particularly suitable for controlled release
applications [197]. Lately, many controlled release formulations based on hydrophilic polymeric
matrices have been developed [198–200].
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A recent interest that has developed in the commercial use of pectins is wound healing. This is
partly due to their long-standing reputation for being non-toxic or generally considered safe [77,196,201],
with relatively low production costs [187] and high availability [202]. Moreover, because the gelling
mechanisms are relatively simple, there is an interest in the preparation of hydrogels for biomedical
applications, such as drug administration, gene delivery, and wound healing [78].

4.2.2. Bioadhesiveness

The release pattern of the compounds can be constant, oscillating, continuously decreasing, or even
pulsatile. For most drug delivery systems, natural polymers are used as harmless and biocompatible
carriers [203,204]. Among natural polymers, pectin has interesting properties for administration
applications for different compounds or drugs, such as mucosal adhesion, ease of dissolution in basic
media, and the ability to form gels in acidic media. Its muco-adhesiveness can be exploited to target
and control the administration of some compounds in the nasal or gastric environment, while the ease
of dissolution in the basic media, together with its resistance to proteases and amylases, makes pectin
suitable for drug delivery in the colon.

The ability to form gels under acidic conditions improves the contact time of compounds (drugs)
for gastric or ocular treatments [205,206]. However, pectin has been found to recognize galectin
molecules, which are involved in various stages of cancer pathologies, being particularly attractive to
target tumor cells for chemotherapy treatments [207]. From a biomedical perspective, understanding
the organization of pectin domains can be fundamental for adapting cell adhesion and mucoadhesive
or anti-metastatic properties of pectin gels and for the formation of mechanically stable gels.

4.2.3. Pectin Absorption

To protect various compounds against degradation and to achieve targeted release in certain
organs, the compounds (drugs) are encapsulated in micro- or nano-capsules. Pectins were considered
in the preparation of capsules for the sustainable administration of different compounds and for
masking the taste. The ability of pectins to be resistant to proteases and amylases, which are active in
the gastrointestinal tract, and to be degraded by the intestinal microflora make them suitable for colon
medications, proteins, or polypeptide administration [199]. As a disadvantage, pectin gels are swollen
in aqueous media and a small amount of compound (drug) can be released into the GI tract. To avoid
this problem, divalent ions such as Ca2+, Zn2+ or other polymers such as chitosan, ethylcellulose,
or hydroxypropylmethyl cellulose [77,187,208–211], have been used to form strong pectin gels, for the
administration of various compounds or even medicines in the colon. The ability of pectin gels to swell
under acidic conditions can be considered a real advantage if these systems considered are used for
weight reduction and obesity treatments. In fact, when pectin gels reach the aqueous environment of
gastric fluids, the gels begin to swell, thus filling the stomach and adhering to the stomach walls long
before digestion, leading to a prolonged non-appetite sensation [212].

In a 2007 study, Sungthongjeen et al. [200] researched the effects of compression force, ratio of
drug to pectin, and grade of HM pectin on drug release from matrix tablets. The release of the
compound from the matrix tablets could be altered by the degree of pectin HM and the ratio between
the compound and pectin. The DE, which is an important characteristic of pectin and may influence
the release of a compound from the system, has not yet been thoroughly examined [187].
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Table 3. Pectin properties used for different applications.

Composite Material Effect Possible Application Reference

Pectin PEG Halloysite nanotubes - Decrease wettability;
- Improve mechanical properties. Coatings for food conservation. [14]

Pectin with additional compounds of AAC,
CAC and SC

- Coatings reduce microbial spoilage;
- They do not significantly influence sensory and nutritional
qualities.

Applying coatings on fresh and cut fruits
and vegetables. [73]

Pectin with additional compounds of citral
and eugenol

- Coatings are not cytotoxic and do not considerably change the
general physicochemical and nutritional characteristics of
raspberries;
- The impact is mainly on decreasing food spoilage
microorganisms and accordingly extending shelf-life.

Applying coatings on fresh and cut fruits
and vegetables. [17]

Pectin with additional compounds of OEO

- Coatings with OEO exhibit antifungal influence on inoculated
tomatoes;
- Increase TPC and AA;
- The sensorial acceptability of the coated tomatoes is well
accepted by panelists.

Applying coatings on fresh and cut fruits
and vegetables. [72]

Pectin with additional compounds of OPEO

- Coatings reduce the quality loss and improve the sensory scores
during storage;
- Nano emulsion-based nano coatings containing essential oil
have been effective in bacterial and fungal inactivation.

Applying coatings on fresh and cut fruits
and vegetables. [213]

Pectin–gelatin with GP Crosslinking than air drying method and film physical form. Biomedical product. [22]

PEG—polyethylen glycol; AAC—ascorbic acid; CAC—citric acid; SC—sodium chlorite; OEO—oregano essential oil; TPC—total phenolic content; AA—antioxidant activity; OPEO—orange
peel essential oil; GP—glycerol plasticizer.
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4.2.4. pH Sensitivity

HM pectins (with DE > 50%) require a relatively high concentration of soluble solids and a
low pH for gel formation [214,215]. LM pectins (with DE < 50%) form rigid gels by the action of
calcium or multivalent cations, which cross-link the galacturonic acid chains [214]. Non-toxicity and
low production costs of pectins are of particular interest in formulating controlled release dosage
forms [199,200].

Citrus pectin modified by high pH and temperature treatments [207,216] was used to target
galectin–3 (Gal3). Pectin appears to be able to inhibit cancer metastasis and primary tumor growth
in several cancers in animals [207,217–219]. It has been suggested that the inhibitory effect is due to
the recognition of galactan components of pectin by Gal3. Thus, modified pectins, possibly loaded
with cytotoxic drugs to induce apoptosis of neoplastic cells, have the potential to dramatically increase
the efficiency of conventional chemotherapy [78]. The suggested role of modified citrus pectin as a
galectin–3 inhibitor is described as an established fact, but it is not. The assumption from previous
publications that modified citrus pectin is a good specific inhibitor of galectin–3 contravenes other
articles [220,221]. Instead modified citrus pectin and other plant polysaccharides may have other
effects unrelated to galectin–3, as found e.g., in cells not expressing galectin–3 [222].

Another study optimized the effects of processing variables for obtaining pectin from artichokes
(pH, extraction temperature, extraction time). Thus, it was observed that pH can influence the process of
obtaining pectin and optimum extraction conditions were represented at pH 1.52, 63.62 min, and 100 ◦C
with a maximum pectin yield of 18.76% [223,224].

4.3. Limitations

Pectins work well with foods with low humidity, but contrary to this use, they may present as
poor moisture barriers. Currently, one limitation is the existence of very little information on the
application of edible films of pectin on meat foods [50]. Pectin films have low thermal stability and
poor mechanical properties, which is why they have been mixed with different polymers to improve
thermal and mechanical stability [225].

5. Perspectives and Future Trends

Life as we know it requires three basic types of polymers: Polypeptides, polynucleotides,
and polysaccharides. Over time, biopolymers have become increasingly important and popular for
research in the food and pharmaceutical industry or for various biomedical applications. Although their
production and use are constantly increasing, many problems remain unknown and need to be fully
analyzed and resolved, such as stability, optimal molar mass, and interactions with other compounds.
At the same time, the multifunctional behavior and the stability of the biopolymers at different physical
states facilitate their application in a wide variety of domains, from woven fibers that swell in contact
with water, to hydrogels rich in water, which can encourage and maintain a humid environment. Due to
the wide variety of biopolymers to choose from and the ability to mix biopolymers, there is an endless
series of physical behaviors that can be designed for specific functionalities. Physiological compatibility
and the ability to load and control the release of various compounds or drugs when exposed to different
biological environments means that intelligent biopolymers that are physiologically responsive can be
developed. The demand for products is likely to increase significantly over the next decades with an
aging population. In particular, there is an increased demand for a renewable approach, which includes
both medicines and different cell healing proteins. Moreover, advances in genomics, proteomics,
and stem cell technology have increased the desire for more personalized therapies that are formulated
based on knowledge of the patient’s individual biology. This has the potential to revolutionize wound
healing treatments, and the many advantageous properties of biopolymers are likely to be used in the
development and delivery of these treatments in the future.
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Although the types of biopolymers are traditionally studied and learned in isolation, we believe
polysaccharides are best understood in the context of common attributes and their key differences.
Recognition of the universality of the biopolymer explains their structures and functions and
indicates their origins. Only by examining biopolymers in context, we can hope to gain a reasonable
understanding of the fundamental molecules of life.

Chitosan, alginate, and pectin are natural polysaccharides that are considered safe for human
consumption and have been used for many years with great success both in the food and beverage
industry as thickening agents, gelling agents, and colloidal stabilizers. They are also used in increasingly
wider applications such as in the pharmaceutical industry and in biotechnology. The cross-linking
properties of biopolymers with other material composites allowed them to be used as a matrix or
membrane for antimicrobial film and coatings or the administration of a variety of compounds. In the
future, broad development is expected in the biopolymer industry. Their findings and implications
should solve humanity’s biggest problems in the broadest possible context. Future research directions
will also be based on biopolymers, biotechnologies, and renewable sources.

6. Conclusions

Natural polymers play a very important role in our lives, sometimes visible and sometimes
invisible. Researchers and scientists have achieved great success in developing new systems, from the
development of biodegradable films to nanotechnology and smart packaging with biopolymers. On
the other hand, natural polymers have received much more attention in recent decades due to their
potential applications in the fields related to the food industry, the pharmaceutical industry, and
the biomedical industry, but also for applications in maintaining physical health, so we can say
that biopolymers represent a highly debated topic. Biocompatibility, biodegradability, bioadhesion,
absorption, and limitations were the main important features analyzed in this review of chitosan,
alginate, and pectin. These characteristics have been described to highlight the properties that can
affect the formation of gels and, in particular, their absorption in the human body. The wide variety of
current applications, as well as the increasing number of studies related to future applications, suggest
that their potential for highly versatile biopolymers will be even more significant in the future.
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