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Breast cancer has been the leading cause of female cancer deaths for decades.

Intratumoral hypoxia, mainly caused by structural and functional abnormalities in

microvasculature, is often associated with a more aggressive phenotype, increased risk

of metastasis and resistance to anti-malignancy treatments. The response of cancer cells

to hypoxia is ascribed to hypoxia-inducible factors (HIFs) that activate the transcription

of a large battery of genes encoding proteins promoting primary tumor vascularization

and growth, stromal cell recruitment, extracellular matrix remodeling, cell motility, local

tissue invasion, metastasis, and maintenance of the cancer stem cell properties. In

this review, we summarized the role of hypoxia specifically in breast cancer, discuss

the prognostic and predictive value of hypoxia factors, potential links of hypoxia and

endocrine resistance, cancer hypoxia measurements, further involved mechanisms,

clinical application of hypoxia-related treatments and open questions.

Keywords: hypoxia, breast cancer, hypoxia-induced factors, biomarkers, oxidative stress, hypoxia-related

treatment, precision medicine

INTRODUCTION

Breast cancer has been themost commonly diagnosed cancer and the leading cause of cancer deaths
among women, accounting for∼630,000 deaths in 2018 (1). It is a highly heterogeneous disease and
clinic-pathological factors as well as multi-genomic assays allow for a sub-classification into several
types and diverse subtypes, with different biological features and prognoses as well as different
response to treatments (2, 3). Breast cancer mortality has decreased since the early 1990s (absolute
reduction of 39% from 1989 to 2015) due to a combination of improved prevention, screening and
earlier detection/diagnosis, lifestyle changes and awareness, as well as significant improvements in
anti-cancer therapies. Despite these advances, worldwide every minute a woman dies from breast
cancer. While mortality has been decreasing the incidence of breast cancer has been increasing.
In the US, every 2min and in the EU, 8 women are newly diagnosed every hour (4). China is
another giant, modern society, where the burden of cancer is reaching epidemic proportions. In
2015, China National Cancer Center reported 12,000 per day (4.3 million) newly diagnosed cancer
cases, accounting for a quarter of the global prevalence, out of which 15% are attributed to breast
cancer (in women) (5).
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Hypoxia is a characteristic feature of cancer. Tissue
microenvironment influences tumorigenesis and tumor
progression. Most solid tumor types have been shown to exhibit
regions of hypoxia. The presence of a hypoxic microenvironment
is a recognized event in mutagenesis and cancer development.
At the same time, cancer per se also induces hypoxia secondary
to inflammation (6, 7). It is crucial to discern the term hypoxia,
which is mostly understood as a general system state which can
accompany any advanced malignancy via completely different
mechanisms (e.g., pathways reactive to necrosis, apoptosis,
chronic permanent inflammation). The local hypoxia, however,
is intentionally produced by tumor cells in order to induce
angiogenesis and growth factors directed to tumor growth
and metastatic features, with the healthy tissue surrounding
the tumor experiencing an accompanying great structural and
functional damage.

At the present time, various studies demonstrated a
correlation between hypoxia and carcinogenesis, metastasis,
treatment failure, and patient mortality (8–10). About 25–40%
of invasive breast cancers exhibit hypoxic regions (11). Local
hypoxia within the tumor and surrounding microenvironment
is mainly a result of an abnormal anatomy of blood vessels,
excessive angiogenesis leading to local obstructions or
compressions and disturbed microcirculation (12). Generation
of a hypoxic environment and the activation of its main effector,
the hypoxia-inducible factor (HIF)-1, are even more common
features of advanced malignancy (13, 14).

Hypoxia may retain cancer stem cells in their undifferentiated
state, permitting solely cancer cells to differentiate and
uninterruptedly accumulate genetic and epigenetic changes
over a period of time (15, 16). Intra-tumoral hypoxia increases
the number of breast cancer stem cells (BCSCs), which are
essential for disease progression and recurrence (8, 17). Hypoxic
breast cancer (and other) tumors are associated with a more
aggressive phenotype, increased risk of metastasis and resistance
to anti-cancer treatments (18, 19).

In this review, we address the role of the local hypoxia
in breast cancer. We discuss unanswered questions and
potential hypoxia-related treatments, in the context of relevant
published literature.

HYPOXIA-INDUCIBLE FACTORS (HIFs)
AND BREAST CANCER

The response of cancer cells to hypoxia is principally ascribed
to HIFs, which are composed of a HIF-α (HIF-1α, HIF-2α,
or HIF-3α) and a HIF-1ß subunit (8, 20, 21). These HIFs are
responsible for the majority of the hypoxia-induced changes in
gene expression (22, 23). HIF-1α-mediated mechanisms favor
tumor growth and malignant progression, up- and down-
regulation of genes, as well as pathologic modifications of the
genome (24), whereas HIF-2α stimulates some, but not all genes
activated by HIF-1α (25). HIF-1α responds in transient manner
to severe hypoxia with rapid stabilization and activation of target
genes, whereas HIF-2α responds to moderate levels of hypoxia
and accumulates over time (26).

Under normoxic conditions, HIF1α is degraded by the
proteasome, while under hypoxia, it translocates to the nucleus
and forms a heterodimer with HIF-1β, which triggers the hypoxic
response- a coordinated gene expression program (27). The
hypoxic response triggers a decrease in cellular metabolism,
thus inactivating the mammalian target of rapamycin (mTOR)
pathway (28).

In addition, HIFs activate the transcription of a large
battery of genes encoding proteins that promote primary
tumor vascularization and growth, stromal cell recruitment,
extracellular matrix remodeling, cell motility, local tissue
invasion, metastasis, HIF-1α promotes primary breast cancer
growth, vascularization (8, 29). Overexpression of HIF in breast
cancer was often proposed as an unfavorable feature (30).

Hypoxia and the expression of hypoxia-mediated proteins,
such as HIF-lα and VEGF, have been suggested to be negative
prognostic and predictive factors, owing to its multiple
contributions to chemo- and radioresistance, angiogenesis,
invasiveness, metastasis, resistance to cell death, altered
metabolism, and genomic instability (10). As reported in
a variety of studies, HIF-1α overexpression is significantly
correlated to adverse outcomes and a poorer survival in breast
cancer patients (31–34). Increased concentrations of HIF-1α
have also been independently associated with a worse outcome,
as demonstrated by immunohistochemistry in subsets of biopsies
analyzed from both lymph node-negative (32) and lymph
node-positive breast cancer patients (33, 35). Moreover, higher
levels of both HIF-1α or HIF-2α in breast cancer biopsies are
associated with metastasis to regional lymph nodes and distant
organs, primary mammary tumor growth, as well as with an
increased patient mortality (36, 37). The proposed mechanisms
involve tumor-infiltrating cells (TICs). HIF-1α expression rises
alongside tumor grading, being higher in less differentiated than
in well-differentiated lesions (38). Finally, HIF-1α was proposed
as a prognostic marker for an unfavorable outcome in those with
T1/T2 tumors and positive axillary lymph nodes (29).

HIF-1β has also been reported to correlate with more
aggressive cancer characteristics and poor survival, but the
difference was not statistically significant in multivariate
analysis (39).

HYPOXIA IN BREAST CANCER
DEVELOPMENT AND PROGRESSION

Hypoxia plays an important role in tumor progression and
development (13). Related processes include the meditation of
angiogenesis, apoptosis, the glycolytic shift and the recruitment
of tumor-associated macrophages (40).

Angiogenic growth factors and their receptors are significantly
up regulated in response to hypoxia, which causes vascular
effects including endothelial cell migration with increased
vascular permeability and promotes tumor angiogenesis (41).
During these phases of transformations and growth, as the
vessels are loosening their hierarchy and become arbitrarily
arranged, cancer and stromal cells have a restricted access to
nutrients and oxygen. Oxygen partial pressure in the tumor
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is significantly lower than in the healthy tissue at the tumor
margins. The tumor cells in the vicinity of perfused vessels
obviously still benefit from their oxygen supply, while cells at a
greater distance are particularly hypoxic. This exacerbates even
more in anemic cancer patients. Moreover, when a region of
hypoxia is encountered, tumor-associated macrophages (TAMs)
are induced to accumulate and exhibit a tumorigenic phenotype.
TAMs can also secrete angiogenic growth factors and are
associated with angiogenesis and poor prognosis in invasive
breast cancer (42).

Coordinated regulation of a number of pro- and
anti-apoptotic pathways by both HIF-dependent and
HIF-independent mechanisms governs susceptibility to
hypoxia-induced apoptosis in a cell-type-specific manner (43).

Hypoxia inhibited the pro-apoptosis effects of serum
deprivation, reduced the bax/bcl-2 ratio, decreased cytochrome c
release and caspase 3 activity via induction of vascular endothelial
growth factor (VEGF) (44). Also, hypoxia selects for p53mut cells
with elevated levels of apoptosis inhibitor bcl-2. The reduced
ratio of p53/bcl-2 acts increases mutation rates within a clone
population, promoting the oncogenesis of breast cancer (45, 46).
Normally, such hypoxic state, if persistent, causes apoptosis of
healthy cells, while some tumor cells stop dividing, but continue
to exist and others (with a certain genetic predisposition)
succeed in surviving and continue to be destructive. Out of
many tumor cell populations, mechanism of selection will lead
to a preference of those capable to assimilate and thrive under
hypoxic conditions. These are particularly aggressive as they
usually become apoptosis-resistant and thus the responsiveness
to radiation or chemotherapy is reduced.

In addition, hypoxia maximizes the efficiency of the glycolytic
shift via changes in the expression of glycolytic enzymes (47)
and glucose transporter genes (48). Both the maximal glucose
uptake and high efficiency of glucose utilization lay the basis
for glycolytic respiration, which enables tumor cells to grow and
proliferate under such conditions.

Extracellular matrix (ECM) is a network of proteins and
proteoglycans, which supports diverse cellular functions (49).
Apart from the direct increase on endothelial cells (ECs) via the
expression ofmatrixmetalloproteinase (MMPs) (50), ECM is also
involved during hypoxia-driven angiogenesis (51). Numerous
studies highlighted that hypoxia regulates the expression and
stability of ECM proteins (collagen I and IV and laminin)
in cancer cells (52). ECM deposited from co-cultures of
Neonatal Fibroblasts (NuFF) with breast cancer cells supported
3-dimensional vascular morphogenesis (53, 54). Hypoxic fibers
occupied a greater percent area and possessed larger diameter
fibers than those deposited by co-cultures in normoxic conditions
(51). It has been reported that HIF-1α is related to the changes
in fiber organization, given that fiber alignment was abrogated
in hypoxia-treated fibroblasts when HIF-1αwas knocked down
(55). Overall, a disturbed and overloading structure results.
This activates angiogenic responses by promoting up-regulated
expression of vascular pro-angiogenic factors VEGFAand Ang1,
proteolytic enzymes MT1-MMP, and MMP1, while leading to a
down-regulation of the vascular destabilizing factor, thus altering
EC responses (51). In sum, not only the architecture, content

and order of the EC are modified, but the functional aspects
as well.

Hypoxia and vascularity of the tumor are interrelated on
various levels, including a variety of environmental and signaling
components described above (56). Under hypoxia, a number
of cells under lactic acid fermentation metabolism (anoxic),
numerous messenger substances, including VEGF, stimulate
afferent blood vessels to grow from neighboring tissues to tumor
cells. Since a tumor cannot grow larger than 1mm without
neovascularization, a large number of disturbed vessels are being
mobilized, to assure that the supply of nutrients to cancer cells
is not relying exclusively via diffusion and the supply of oxygen
the center of the grown cell cluster is adequate. Overall, different
areas of a tumor are supplied with different levels of oxygen:
Cancer cell clusters in place and detached CTCs with a lack
of oxygen have comparatively few blood vessels. At the same
time, as compared to clusters with normal oxygen content, the
hypoxic clusters are significantly more aggressive, metastasizing
more quickly. Thus, it becomes obvious that in order to improve
the oxygen supply, the formation of blood vessels is stimulated
around the primary tumor, while local hypoxia is tumor-induced
in order to promote CTC detachments and thus metastasis.

HYPOXIA PROGNOSTIC FACTORS IN
BREAST CANCER

Several recent studies have shown independent prognostic
significance of a number of hypoxia related factors, such as PGC1,
transcription intermediary factor 1γ (Tif1γ) or transforming
growth factor -β (TGF-β), similarly to HIF1α, where this has been
confirmed before (39).

TGFβ has been shown to have both tumor suppressive (early
stages) and oncogenic (later stages, pro-metastatic and pro-EMT)
effects. Especially the isoform TGFβ1 is an inhibitor of mammary
gland epithelial cell proliferation and plays an important role in
breast carcinogenesis.

TIF1γ contributes to breast cancer by controlling TGF-
β/Smad signaling, leading to a TGF-β-induced EMT. A link was
reported between TIF1γ and HIF1α in TNBC. In a study in press,
we were able to show that the levels of Tif1γ were significantly
lower in patients with breast cancer than in healthy controls. The
average concentration of Tif1γ-discriminated between Tif1γ-
positive and Tif1γ-negative patients. The latter group had a
significantly worse OS (P = 0.0174); this was confirmed in the
multivariate analysis. Tif1γ plasma level seems to be thus an
independent prognostic factor for patients with breast cancer.
This supports the potential of using measurements of Tif1γ
plasma level to guide breast cancer therapy and monitoring.

Other proteins involved in cell homeostasis might become
additional biomarkers in the early detection/diagnosis and
monitoring of breast cancer if their apoptotic features react
to the influence of aerobic vs. anaerobic microenvironment.
Further studies are required to identify and validate new easily
detectable, non-invasive biomarkers with prognostic power—
studies of some such biomarkers are already ongoing, e.g.,
PGC1α, Tif1γ, etc.).
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Increased levels of PGC1α were, similarly to HIF-1α,
associated with more aggressive tumors -e.g., histologically
higher grade and higher stage–and were therefore proposed as
a prognostic marker for unfavorable outcomes, especially in
positive axillary lymph nodes tumors (39). Recently, PGC1α was
confirmed to be an independent prognostic marker, where over-
expression correlates with poorer outcome in an unselected (all
stages) breast cancer population (39).

All these markers (PGC1α, HIF-1α, and Tif1γ) can be
measured easily from patients’ plasma, which allows a simple,
cost- and time-effective method for an improved clinical
decision-making regarding treatment or even an early diagnosis
for patients.

HYPOXIA AND BREAST CANCER
METASTASES

Despite the rapid progress in breast cancer treatment, the
development of metastases remains the primary reason for breast
cancer mortality (57). It is a complex process, which until now
is known as a series of steps: epithelial-mesenchymal transition
(EMT), local tissue invasion and intravasation, extravasation
and metastatic niche formation (58). As mentioned above,
hypoxia contributes to cell transformations, so that they undergo
fundamental functional and structural changes. In this manner,
a number of those cells, who were previously sedentary cancer
cells, acquire properties that are essential for mobilization,
conspicuously due to genetic modifications in p53 (tumor
suppressor) and modifications on chromosome level (e.g., in
Chromosome 1).

EMT is characterized by cellular and molecular changes that
include loss of cell-to-cell adhesions (58). Thus, phenotypically,
the migratory cells possess little or no adhesion molecules,
while they develop a battery of lytic enzymes to invade
lymphatic and blood vessels. HIF-1 activates EMT through
regulating associated signaling pathways, modulating EMT-
associated inflammatory cytokines, as well as interfering in
other pathways, such as epigenetics (here, concrete data are still
missing) (59). Transcription factors like E-cadherin, SNAIL (zinc
finger protein snail), ZEB1 (zinc finger E-box-binding homeobox
1), and TWIST are also involved in the HIF-1 induced EMT (60)
(Table 1).

MMPs degrade many of the components of the ECM, which
enables cancer cells to invade the surrounding tissues and
intravasation. Hypoxia and HIF-1 up-regulate the expression
levels and/or MMP-2 and MMP-9 (63, 64), which are
positively correlated with a higher incidence of metastases and
with a poor prognosis (64). HIF-1αplays a critical role in
collagenogenesis by up-regulating the expression levels of pro-
collagen prolyl (P4HA1 and P4HA2) and lysyl hydroxylases
(PLOD2), which are reported to be crucial for breast cancer
metastasis (55).

Hypoxic breast cancer cells produce multiple members of the
lysyl oxidase (LOX) family, including LOX, LOXL2, and LOXL4,
in a HIF-1-dependent manner (65). LOX remodel ECM both
in the primary and the distant site, which provokes metastatic

niche formation (66). Furthermore, HIF-1 induces miR-210-
expression, a non-coding RNA, which contributes to tumor
proliferation and forming of metastasis, alongside of other non-
coding RNAs (miRNAs and lncRNAs) (67).

HYPOXIA AND BREAST CANCER STEM
CELLS

Breast Cancer Stem Cells (BCSCs) are characterized by an
unlimited self-renewal differentiation potential, performance
of symmetrical and asymmetric cell divisions, as well as
regeneration (68). In mesenchymal stem cells (MSC), it was
shown that most of them are exposed to a lower oxygen
concentration in vivo, e.g., by about 7% in the medulla or
adipose tissue. Ex vivo, culturing of MSC under hypoxic
oxygen concentrations resulted in a higher growth rate, glucose
consumption and longer life at a constant level of the stem cell
functionality (69–71).

The metastasis-promoting effects of HIF-1 help to maintain
an expanding renewing population of BCSCs ready to be
distributed much like seeds or pollen blowing in the wind (72).
Increased expression of HIF-1α and HIF-2α in BCSCs lead to
increased expression of pluripotency factors such as NANOG,
OCT4, SOX2, and KLF4 in response to intratumoral hypoxia
(73). HIFs also mediate complex and bidirectional paracrine
signaling between breast cancer cells (BCC) and MSC that
stimulate breast metastasis. Interactions between BCC and MSC
are supposedly mediated by CXCL10→CXCR3, CCL5→CCR5,
and PGF→VEGFR1 signaling in a HIF-dependent manner (66).
Further research is needed to explore these interdependencies
more fully.

A LINK BETWEEN OBESITY AND BREAST
CANCER VIA HYPOXIA?

Despite numerous epidemiological studies illustrating the link of
obesity and breast cancer, the underlying mechanisms are not
elaborated. In addition, no general statements about the cancer-
and-obesity relation can be made, as seen in the complexity
of the breast cancer: e.g., postmenopausal obesity is correlated
with an increased risk of breast cancer. Such a clear association
has not been proven for obese in premenopausal females (74).
Longitudinal data regarding the relapse rate link to obesity
are still suboptimal, but from epidemiological observations,
conclusions were already drawn and sufficient evidence is now
available that a healthy body weight has a positive effect on the
survival of breast cancer patients (75).

A potential causal relation is given based on the local hypoxia
in breast cancer via the adenosine receptor 2B (A2BR), a
modulator of glucose homeostasis and obesity (76). Elevated
A2BR expression have been found in adipose tissue of obese
individuals. Under hypoxic conditions in the breast cancer tissue
(A2BR) is overexpressed. A2BR is linked both to adipositas and
to BCSC. It primarily regulates pre-adipocyte differentiation and
macrophage inflammation in adipose tissue. When activated
(among others through HIF1 factors), A2BR leads to the
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TABLE 1 | Role of various factors in breast cancer and hypoxia.

Factor Role in breast cancer Role in hypoxia

HIF-1α/ HIF-2α (Hypoxia-inducible factors)

P4HA1, P4HA2

1. HIF-1α favor tumor growth and malignant

progression, up- and down-regulation of genes, as

well as pathologic modifications of the genome (24),

whereas HIF-2α stimulates some, but not all genes

activated by HIF-1α (25).

2. HIFs activate the transcription of a large battery of

genes encoding proteins that promote primary tumor

vascularization and growth, stromal cell recruitment,

extracellular matrix remodeling, cell motility, local

tissue invasion, metastasis, and maintenance of the

cancer stem cell properties (29, 61)

3. Up-regulating the expression levels of pro-collagen

prolyl (P4HA1 and P4HA2) and lysyl hydroxylases

(PLOD2)

4. HIF-1α promotes primary breast cancer growth,

vascularization and metastases to axillary lymph

nodes and distant organs (61)

1. HIFs are responsible for the majority of the hypoxia-

induced changes in gene expression (23, 62)

2. HIF-1α responds in transient manner to severe

hypoxia with rapid stabilization and activation of

target genes, whereas HIF-2α responds to moderate

levels of hypoxia and accumulates over time (26)

MMPs (matrix metalloproteinase) MMPs degrade many of the components of the ECM,

which enables cancer cells to invade the surrounding

tissues and intravasation

Hypoxia and HIF-1 up-regulate the expression levels

and/or MMP-2 and MMP-9 (63, 64)

LOX, LOXL2, LOXL4 (lysyl oxidase) ECM remodeling in the primary and the distant sites ->

metastatic niche formation (65)

Produced by hypoxic breast cancer cells

Protein kinase C-δ, transcription factor

STAT3, interleukin IL6, and NANOG

Essential for BCSC As a linkage between obesity and breast cancer via

hypoxia

PGC1 (peroxisome proliferator-activated

receptorγcoactivator-1)

Prognostic and predictive marker, associated with more

aggressive tumor characteristics and poorer outcomes

(39)

An hypoxia factor with independent prognostic

significance

Tif1γ (transcription intermediary factor 1γ) TIF1γ contributes to breast cancer by controlling

TGF-β/Smad signaling, leading to a TGF-β-induced EMT

An hypoxia factor with independent prognostic

significance

TGF-β (transforming growth factor -β) Tumor suppressive (early stages) and oncogenic (later

stages, pro-metastatic and pro-EMT) effects

An hypoxia factor with independent prognostic

significance

E-cadherin, SNAIL (zinc finger protein

snail), ZEB1 (zinc finger E-box-binding

homeobox 1), and TWIST

These factors are involved in the HIF-1 induced EMT (60) Having some relationship with hypoxia induced EMT

activation of protein kinase C-δ, transcription factor STAT3,
interleukines IL6, and NANOG. The 2 latter mediators are
essential for production of BCSC, thus tumorigenesis and
growth, as well as recurrence. Experiments in vitro showed that
both a drug-related or genetic inhibition of A2BR expression or
functionality lead to a decrease in BCSC enrichment, significantly
reducing the tumor initiation and metastasis (68). These findings
are fundamental to understand the known link between obesity
and more aggressive breast cancer characteristics, as well as the
higher risk of developing postmenopausal breast cancer.

HYPOXIA AND TREATMENT RESISTANCE

Hypoxia is known to directly or indirectly confer resistance
to irradiation, some chemotherapeutic drugs, and endocrine
therapy (24). Hypoxic tumors are less responsive to radiation
therapy, mainly because the lack of oxygen causes DNA
damage (77). Moreover, the responsiveness of malignancy
to chemotherapeutic agents is modulated by reducing the
susceptibility to DNA damage, inducing cell cycle arrest and
limiting drug delivery under poor perfusion (10). The activation

of ROS-shielding pathways (78) and overexpression of anti-
apoptosis genes (79) mediated by hypoxia contribute to taxane
resistance. As for ER-positive breast cancer patients, hypoxia has
been shown to down-regulate ERα in several breast cancer cell
lines and to influence the responsiveness to tamoxifen (38, 80).
SNAT2, an amino acid transporter, was regulated by both ERα

and HIF-1α (predominantly), leading to endocrine resistance
under hypoxia (81).

While suppressing VEGF pathway initially decreases tumor
progression rate and vasculature density, the activation of
interrelated pathways and signaling molecules following VEGF
blockade compensates the insufficiency of VEGF and the initially
blocked angiogenesis, explaining part of the failure observed with
bevacizumab monotherapy (82).

FUTURE MEASURING HYPOXIA IN THE
BREAST

An innovative method was tested in Austria: the possibility of
hypoxia measurement in the breast using magnetic resonance
imaging (MRI). This opens up new avenues of research
into hypoxia although at this stage MRI has clearly not
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been established in the clinical approach. Besides measuring
oxygen content, the MRI can also assess neovascularization in
breast tumors. A significant benefit of this approach would
be lower costs and greater availability compared to PET
or near-infrared spectroscopy. Advanced quantitative blood
oxygenation level dependent (qBOLD) imaging can directly
quantify the tissue oxygen tension, while vascular architectural
mapping (VAM) measures the microvascular vessel diameter
and architecture (83). This approach looks potentially promising
but further research is clearly required to validate any
clinical utility.

GENE EXPRESSION AND HYPOXIA IN
BREAST CANCER

The adaption to hypoxia is governed by multiple transcriptional
and post-transcriptional changes in gene expression. Up to
1.5% of the human genome is estimated to be transcriptionally
responsive to hypoxia (84). Recent years brought insights into
various additional genes and pathways that have been identified
as being responsive to hypoxia and which might serve as
prognostic or predictive markers, and even as novel therapeutic
targets. Clustering genes are chosen for their expression pattern
(85–87). Since increased activity of the HIF-1a pathway is related
to a more profound intratumoral hypoxia in basal-like breast
tumors compared with other subtypes, gene signatures might
guide treatment decisions for potential application of anti-
hypoxic drugs in the future (88).

Gene signatures reflect hypoxic response at a transcriptional
level, whereas microRNAs regulate it at a post-transcriptional
level. Comparative analysis of hypoxia-regulated miRNAs by
gene expression profiles might add additional information to
target-prediction algorithms (89). Despite rapid development,
this area still needs further clinical validations.

ANTI-HYPOXIC TREATMENT

HIF-1α promotes primary breast cancer growth, vascularization
and metastases to axillary lymph nodes and distant organs
(8). Increased HIF-1 expression shows strong correlations with
poor prognostic outcomes and low survival rates of breast
cancer patients (90). Therefore, targeting the HIF pathway might
provide an attractive strategy to treat hypoxic tumors. Agents
that inhibit HIF-1α protein accumulation and demonstrate anti-
tumor effects include the topoisomerase I inhibitor, topotecan, as
well as the cardiac glycoside digoxin (65, 91–93).

Since HIF-1α can be induced by hypoxia-independent
signaling pathways, such as motor, ERBB2 (HER2) and MAP
kinase, the therapeutic benefits of targeting these pathways
may also be partially explained by a decrease in HIF-1α levels
(71). Especially triple-negative breast cancers (TNBCs) have
a high HIF transcriptional activity and respond poorly to
currently available therapies (94). Therefore, HIF inhibitors may
be particularly useful in the treatment of TNBCs. Pre-clinical
studies suggest that the combination of cytotoxic chemotherapy

with drugs that inhibit hypoxia-inducible factors are very
promising in this group of patients (8). HIF-1 inhibitors, such as
digoxin and acriflavine, showed convincing potential therapeutic
effects by decreasing primary tumor growth, vascularization,
invasion and metastasis in breast cancer animal models (65,
92, 95). Adding digoxin to paclitaxel or gemcitabine leads
to tumor regression in TNBC by blocking HIF-dependent
transcriptional responses that promote the resistance of CSCs to
chemotherapy (96).

Another aspect might be hypoxia-based treatments, where
a synergetic effect with drugs that cause treatment-induced
hypoxia, e.g., bevacizumab, is applied (8). Despite compelling
evidence-linking hypoxia with treatment resistance and adverse
prognosis, the activity of hypoxia-activated drugs also depends
on the coincidence of tumor hypoxia, expression of specific
prodrug-activating reductases and intrinsic sensitivity of
malignant clones to the cytotoxic effector (97). Hypoxia-based
drugs have been tested in clinical trials to further validate their
efficacy in cancer treatment. However, the failure of 2 major
clinical trial efforts (tirapazamine and evofosfamide) calls for
further research (97). Hypoxia itself is highly variable between
and within individual tumors and is not consistent among all
breast cancer subtypes.

In the era of personalized precisionmedicine, clinical trials are
warranted to determine whether anti-hypoxia drugsmay increase
the survival of breast cancer patients alone or in combination
with current therapeutic regimens. It is pivotal to explore the
decisive influence of hypoxia on the course of breast cancer
in order to gain a deeper understanding of individual disease
trajectories and to better forecast them. This knowledge can then
be used in the future to develop and implement adequate therapy
for each individual patient.
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