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1. Summary
The molecular determinants of the immune response to Mycobacterium
tuberculosis HN878 infection in a rabbit model of pulmonary cavitary tubercu-

losis were studied. Aerosol infection of rabbits resulted in a highly differentially

expressed global transcriptome in the lungs at 2 weeks, which dropped at

4 weeks and then gradually increased. While IFNg was progressively

upregulated throughout the infection, several other genes in the IFNg network

were not. T-cell activation network genes were gradually upregulated and

maximally induced at 12 weeks. Similarly, the IL4 and B-cell activation

networks were progressively upregulated, many reaching high levels between

12 and 16 weeks. Delayed peak expression of genes associated with macro-

phage activation and Th1 type immunity was noted. Although spleen CD4þ

and CD8þ T cells showed maximal tuberculosis antigen-specific activation by

8 weeks, macrophage activation in lungs, lymph nodes and spleen did not

peak until 12 weeks. In the lungs, infecting bacilli grew exponentially up to

4 weeks, followed by a steady-state high bacillary load to 12 weeks that mod-

erately increased during cavitation at 16 weeks. Thus, the outcome of HN878

infection of rabbits was determined early during infection by a suboptimal

activation of innate immunity and delayed T-cell activation.
2. Introduction
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is a major global

health threat, with nearly nine million new TB cases and 1.1 million deaths

annually [1]. When host protective immunity fails to control Mtb growth, as

in about 10 per cent of infected immune-competent humans, progression to

active disease occurs. In contrast, when immunity successfully controls the

infection, as in about 90 per cent of infected individuals, no symptoms of dis-

ease are noted, and the bacilli are driven into latency [2], from which

reactivation of active disease may occur later in life upon waning of host immu-

nity [3,4]. The outcome of Mtb infection is determined by a complex

immunological process, involving both the pathogen and the host [5]. Phagocy-

tosis of inhaled Mtb by alveolar phagocytes activates a diversity of
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Figure 1. Global transcriptome of Mtb-infected rabbit lungs. (a) Intensity plot of rabbit genes expressed in the lungs at 2, 4, 8, 12 and 16 weeks of HN878 infection.
(b) The numbers of unique and common genes differentially expressed at 2 – 16 weeks. (c) Intensity plot of the 209 commonly differentially expressed genes at all
tested time points.
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cell-signalling events, leading to the production and secretion

of many cytokines, chemokines and receptor molecules that

mediate the recruitment and activation of additional leuco-

cytes. This cellular recruitment ultimately results in

granuloma formation [6,7]. Well-differentiated granulomas

in human pulmonary TB are characterized by central necrosis

with caseation, followed by liquefaction, leading to cavitation

that facilitates aerosol transmission of Mtb [8,9]. While the

cells and soluble mediators of the host innate and adaptive

immune responses responsible for controlling Mtb infection

have been characterized [10,11], the exact molecular determi-

nants underlying the failure of protective immunity are not

fully understood.

We have established a rabbit model of pulmonary cavi-

tary TB, which reflects many aspects of the human disease,

as shown by similarities in lung histopathology and ability

to develop caseation and lung cavities [12]. In this model,

rabbits are infected with Mtb HN878 (a Beijing lineage

strain) by the aerosol route, giving rise to chronic, progressive

granulomatous pulmonary disease [12,13]. We and others

have shown that chronic disease is driven by the continued

survival of Mtb in infected macrophages, in association

with ongoing recruitment of macrophages and lymphocytes

into the enlarging granulomas [9,14,15]. Our previous reports

have described the histological and microbiological character-

istics of this infection model. However, the molecular

determinants of the immune response that may contribute

to failed protection from progression of infection to active

disease have not been described.

In the present study, we used genome-wide transcrip-

tional analysis to evaluate the immune response in the

lungs of rabbits during the course of Mtb HN878 infection
and the progressive development of pulmonary TB. We

have adapted assays that rely on cross-reactive human

reagents, and devised new methodology for monitoring

rabbit immunity. In addition, the distribution of innate and

adaptive immune cells and the organization of rabbit lung

granulomas were studied. Our results suggest that the pro-

gression of Mtb infection to chronic granulomatous disease,

culminating in cavitary pulmonary TB, is owing to impaired

host-protective immunity, characterized by inefficient early

activation of macrophages, delayed T-cell activation and a

robust Th2 response.
3. Results
3.1. The transcriptomic response to Mycobacterium

tuberculosis HN878 infection in rabbit lungs
We have used whole-genome microarrays to examine gene-

expression profiles in the lungs of HN878-infected rabbits at

2, 4, 8, 12 and 16 weeks post-infection. An intensity plot cor-

responding to the expression profile of all 43 603 probes in the

Agilent rabbit array at each of the time points, relative to con-

trol (T ¼ 0; 3 h post-infection) mRNA, is shown in figure 1a.

Distinct changes in the global transcriptome over time were

noted, with prominent shifts towards more upregulated

genes from 4 to 8 and 8 to 12 weeks, and more downregula-

tion from 12 to 16 weeks post-infection. Genes that were

significantly differentially expressed at each time point were

sorted based on a p-value of �0.05 and twofold change in

expression, relative to control (figure 1b). Using this

approach, genes that were significantly differentially
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expressed were enriched with a high level of confidence ( p ,

0.001; electronic supplementary material, figure S1). Already

at 2 weeks, a large number of genes were significantly differ-

entially expressed in response to HN878 infection; this

number declined by 4 weeks post-infection. Thereafter,

from 4 to 12 weeks post-infection, we observed a gradual

but significant increase in both the total number of differen-

tially expressed genes and the number of significantly

upregulated genes in the lungs (figure 1b). This trend was

altered at 16 weeks post-infection, at which time the gene-

expression profile showed a general downregulation in com-

parison with previous time points, suggesting a shift in the

host response to infection. A similar temporal pattern, with

gradually increased numbers of upregulated genes from 2

to 12 weeks, followed by downregulation at 16 weeks, was

seen in the common subset of 209 genes that were differen-

tially expressed in all time points evaluated (figure 1c).

The microarray data from these studies have been submitted

to Gene Expression Omnibus (GEO; accession numbers

GSE27992 and GSE33094).

To evaluate the functional relevance of rabbit genes

expressed during HN878 infection, significantly differentially

expressed genes were classified according to their biological

roles. Annotation of the rabbit genome is currently incom-

plete, comprising roughly 2567 annotated genes. Moreover,

as commercial microarray data analysis software does not

include a rabbit gene database, we used human, rat and

mouse homologues to assign functions to the annotated

rabbit genes. Of the 2567 annotated input genes, the total

number involved in all pathways examined ranged between

45 and 273. The top biological functional pathways modu-

lated in response to HN878 infection are shown in table 1.

The percentage of upregulated genes in the pathways associ-

ated with leucocyte migration, cell activation and adhesion,

inflammatory response, cell death, leucocyte apoptosis, cell

growth and proliferation, and cell movement gradually

increased, with progression of infection from 2 to 8 and/or

12 weeks, and was reduced at 16 weeks post-infection. Of

the genes significantly upregulated at 2 weeks, many were

involved in the cell growth and proliferation, cell movement,

and leucocyte migration and activation pathways. In contrast,

the genes upregulated between 4 and 12 weeks post-infection

were mainly involved in the inflammatory response and leu-

cocyte apoptosis pathways. In comparison with earlier time

points, a higher percentage of genes were downregulated at

16 weeks post-infection.

3.2. Regulation of interferon-gamma, interleukin-four
and T- and B-cell activation networks in HN878-
infected rabbit lungs

To examine transcriptional changes in networks associated

with host protective immunity during HN878 infection, we

evaluated the differential expression of genes involved in the

IFN-g, IL-4 and T- and B-cell activation networks (figure 2).

The IFN-g network includes cytokines/chemokines—tumour

necrosis factor alpha (TNF-a), IL-18, IFN-g and chemokine

(C-C) ligand 8 (CCL8)—enzymes and mediators of cell signal-

ling. At 2 weeks post-infection, 11 of the 20 genes in this

network were upregulated relative to controls. While IFN-g
expression continued to increase throughout the 16-week infec-

tion, the total number of upregulated genes decreased by 4
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weeks, peaked at 8 weeks and then declined at later time points

(figure 2a). With the exception of IFN-g, which was highly

expressed from 8 to 16 weeks, the majority of IFN-g-associated

genes were comparatively poorly induced. The 20 genes of the

IL-4 network encode anti-inflammatory cytokines, such as IL-

10, CCL2 and IL-15, and several transmembrane proteins and

receptors (figure 2b). While only 4 of these genes were upregu-

lated at 2 weeks, the number of upregulated genes increased to

11 (4 weeks), and 16 (8 and 12 weeks) decreased to 12 (16

weeks), as the infection progressed. Thus, the IL-4 network
gene-expression profile suggested a gradual upregulation,

with maximal expression in 6 of the 20 genes by 16 weeks

post-infection. The T-cell activation network includes 22 genes

encoding cytokines and chemokines, such as IL-15, IFN-g,

CCL4 and transforming growth factor beta (TGF-b), several

receptors and cell-signalling molecules. Only 7 of the genes

were upregulated at 2 weeks, while 15–17 genes were moder-

ately upregulated from 4 to 16 weeks post-infection

(figure 2c). High expression levels of lymphocyte activation

marker (CD38), TLR2, macrophage inflammatory protein
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(CCL4) and osteopontin (SPP1) at 4 weeks that was sustained

until 16 weeks of infection suggested an early and robust inflam-

mation in the lungs in association with progression of the disease.

Only one (TPT1) of the 22 genes in the B-cell activation network

was upregulated at 2 weeks, as expected, as acquired immune

response to Mtb infection is induced only by 3–4 weeks post-

infection. However, 13 genes were upregulated at 4 weeks, and

the total numbers and expression levels of genes in this network

increased at 8 and 12 weeks (18 genes), with some of the genes

showing the highest expression (5 genes) and some declining

(12 genes) at 16 weeks of infection (figure 2d). Importantly,

TNSF13 (or APRIL) and TNSF13B (or BAFF), two key markers

of B-cell homeostasis and proliferation [16], were upregulated

in the lungs at 4 weeks post-infection. Expression of these

genes was sustained to 16 weeks, suggesting a continued acti-

vation of B cells during infection (figure 2d). Similarly, the

lymphocyte-activation marker CD38 was highly expressed

from 4 to 16 weeks. Taken together, the expression pattern of

the IFN-g (Th1), IL-4 (Th2), T- and B-cell activation network

genes suggests that a mixed Th1–Th2 response was induced in

the lungs of HN878-infected rabbits. The interactions among

the different genes, their properties and relative level of

expression in each network, at 4 weeks post-infection, are

shown in electronic supplementary material, figure S2.

3.3. Expression kinetics of selected genes associated
with macrophage activation in HN878-infected
rabbit lungs

To examine the expression patterns of genes associated with

macrophage activation in the lungs over the course of infection,

we used quantitative, real-time polymerase chain reaction

(qPCR). The selected genes included the inflammatory cyto-

kines TNFa and IL6; macrophage cationic protein-2 (MCP2)

and C-X-C type receptor-1 (CXCR1); toll-like receptor-2

(TLR2), caveolin-1 (CAV1) and CD1d; host antibacterial mol-

ecules NADP(H) oxidase (NOX1), nitric oxide synthase

(NOS2) and defensin (NP4); cell-adhesion molecules vasoactive

intestinal peptide receptor-1 (VIPR1), intracellular adhesion

molecule (ICAM1), selectin-L (SELL) and integrin b8 (ITGB8);

and tissue remodelling and fibrosis (MMP1; figure 3). These

genes showed three expression patterns: (i) progressive upregu-

lation from 2 to 12 weeks post-infection with downregulation at

16 weeks; (ii) upregulation at 2 weeks with downregulation at 4

and 8 weeks post-infection; and (iii) gradual downregulation

from 2 to 12 weeks, followed by moderate upregulation at 16

weeks post-infection (figure 3). CD1d expression was upregu-

lated from 2–8 weeks and then downregulated at 12 and 16

weeks post-infection. Taken together, these expression profiles

suggested reduced and/or delayed induction of molecules,

associated with activation and maturation of the phagocytes,

cell recruitment, inflammation and antimicrobial activity

during the first 4 weeks of infection. Thereafter, macrophage

activation, as indicated by gene-expression levels, peaked at

12 weeks and then declined.

3.4. Expression of Th1 and Th2 regulatory genes in the
rabbit lungs during HN878 infection

We next analysed the expression profiles of genes that specifi-

cally regulate the Th1 and Th2 type immune response by qPCR
(figure 4). With the exception of STAT4 (signal-transducer and

activator of transcription protein-4), which was upregulated at

2 weeks, all Th1 genes examined were significantly down-

regulated as early as 2 or 4 weeks of infection, relative to

controls, followed by moderate upregulation at 8 weeks post-

infection (figure 4a,b). Among the Th2-regulatory genes exam-

ined, both STAT6 (signal-transducer and activator of

transcription protein-6) and JAK1 (Janus kinase-1) were

significantly upregulated at 2 weeks, and STAT6 expression

remained high at 4 weeks of infection. Other Th2 genes were

downregulated at 2 weeks, relative to controls, and remained

low at 4 weeks of infection (figure 4c,d). Expression of all

Th2 genes evaluated stabilized at baseline levels at 8 and 12

weeks of infection. Overall, there appeared to be a profound

early inhibition of several regulatory genes of the Th1 pathway

in HN878-infected rabbit lungs, while inhibition of the Th2-

regulatory genes was less profound.

3.5. Cellular composition of rabbit lungs during HN878
infection

To determine the immune cell composition at the site of infec-

tion, we enumerated single cell populations isolated from

HN878-infected rabbit lungs using flow cytometry (table 2).

The percentage of viable mononuclear cells decreased gradu-

ally from 71 per cent at 4 weeks to 24 per cent at 16 weeks

post-infection. At 4 weeks post-infection, about 54 per cent

of the total viable mononuclear cells were non-lymphoid

and about 45 per cent were lymphocytes. This cellular distri-

bution did not change significantly over the course of

infection. About 60 to 82 per cent of the non-lymphoid cells

were CD14þ, identifying them as monocytes/macrophages

(table 2). Of the total lymphocytes isolated from granuloma-

tous portions of the lungs, the percentage of CD4þ T cells

declined from 63 per cent (4 weeks) to 18 per cent (12

weeks), and then increased moderately to about 25 per cent

of total lymphocytes at 16 weeks of infection. A slight

reduction was also noted in the percentage of CD8þ T cells

at 12 weeks, followed by a recovery at 16 weeks post-infec-

tion. A more than twofold increase in the percentage of

CD42/CD82 cells in the total lymphoid population was

noted from 4 to 12 weeks post-infection, and their proportion

gradually increased from 4 (15%) to 16 (42%) weeks of infec-

tion. The majority of these CD42/CD82 cells appeared to be

IgGþ B cells (table 2).

3.6. Activation of tissue monocytes/macrophages in
HN878-infected rabbits

We then assessed the extent of macrophage activation in the

lungs, spleens and lymph nodes of HN878-infected rabbits

by staining for CD14 and intracellular TNF-a and enumerat-

ing cell numbers by flow cytometry (figure 5a,b). We

observed significant accumulation of CD14þ/TNF-aþ cells

in the rabbit lungs, compared with spleen and lymph node,

at 4 and 8 weeks of Mtb infection (figure 5c). While the pro-

portion of CD14 and TNF-a-expressing cells gradually

increased in the spleen and lymph node from 4 to 12

weeks, a reduction in the same population was observed in

the lungs at 12 weeks. However, the CD14þ/TNF-aþ lung

cell population at 16 weeks of infection was moderately

higher than that of 4 and 8 weeks (figure 5c). Taken together,
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these findings are consistent with the kinetics of the gene-

expression profiles seen in the lungs by the microarray analy-

sis and suggest delayed optimal activation of monocyte/

macrophages in the tissues of HN878-infected rabbits.
3.7. Analysis of cells of the adaptive immune response
during HN878 infection of rabbit lungs

Since cell-mediated immunity is crucial for the effective con-

trol of Mtb infection in humans and experimental animals, we

examined the activation of CD4þ and CD8þ T cells. At early

(2 weeks) and later (more than 12 weeks) time points, the

relatively low numbers of T cells in the draining lymph

nodes and lungs were insufficient for our functional assays.

Thus, spleen cells from infected rabbits were stimulated
ex vivo with purified protein derivative (PPD) or sonicated

Mtb and their proliferation was evaluated by measuring car-

boxyfluorescein succinimidyl ester (CFSE) dilution using

flow cytometry (figure 5d ). The percentage of spleen CD4þ

and CD8þ T cells that proliferated in response to PPD or

Mtb stimulation was relatively low at 4 weeks and increased

significantly at 8 weeks of infection ( p ¼ 0.01). While the pro-

portion of CD4þ T cells proliferating ex vivo decreased at later

time points, CD8þ T-cell proliferative capacity remained

at the same level up to 16 weeks of infection (figure 5e,f ).

Unstimulated CD4þ and CD8þ T cells also proliferated,

suggesting that endogenous antigen was driving some of

the in vitro spleen T-cell response. Recent reports suggest a

role for B cells in augmenting T-cell-mediated immunity

against Mtb infection [17,18]. In addition, we observed upre-

gulation of the B-cell activation pathway genes in rabbit lungs
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as early as 4 weeks of HN878 infection. To further explore the

humoral immune response during HN878 infection of rab-

bits, we studied the extent of B cell activation by a novel

serum, IgG ELISA, using PPD as the capture antigen. The

serum concentrations of anti-PPD IgG were elevated at 4

weeks (2.2 log10 ng ml21) and increased significantly up to

16 weeks post-infection (figure 6a), reaching over 5 log10

ng ml21. These results were consistent with the increased

IgGþ B cell counts in the infected lungs identified by flow

cytometry (table 2).
3.8. Bacillary load and histopathology during
progressive pulmonary tuberculosis in rabbit

The lung bacterial burden, as evaluated by colony-forming

unit (CFU) enumeration, demonstrated an early acute phase

of HN878 growth (up to 4 weeks) followed by a chronic

steady-state high bacillary load that continued up to 12

weeks post-infection. At 16 weeks, the time when cavities

became apparent (see below), bacillary growth resumed

(figure 6b). While the number of sub-pleural lesions did not

change significantly from 4 (80+ 20) to 12 weeks (88+17)

of infection, enlargement and differentiation of lesions were

apparent (electronic supplementary material, figure S3). By

16 weeks post-infection, extensive necrosis and cavitation

were seen in some granulomas (figure 6c). Haematoxylin

and eosin (H&E)-stained sections of lung tissue at 4 weeks
post-infection showed well-formed small granulomas com-

posed of intermixed activated macrophages surrounded by

lymphocytes (figure 7a,b). With time, the granulomas

enlarged in size and, by 8 weeks, coalesced and became

more organized, with foamy and epithelioid macrophages

surrounded by a lymphocyte cuff and lymphoid aggregates

(figure 7c,d ). At 12 weeks post-infection, the lesions had

enlarged further, macrophages appeared foamier and

higher numbers of lymphocytes were present, mostly in the

periphery of granulomas. Extensive central necrosis with

extravasation of polymorphonuclear leucocytes and liquefac-

tion were seen (figure 7e,f ). Mineralization (calcification) was

observed in some necrotic centres. By 16 weeks post-

infection, some lesions had developed cavities, while others

remained similar to 12-week lesions and a few showed

signs of resorption (figure 7g,h). Since we observed progress-

ively increased IgG production and accumulation of IgGþ

B cells in the single-cell preparations, as well as upregulation

of B-cell activation pathway in the lungs of infected rabbits,

we examined the recruitment and distribution of B cells by

immunohistology staining. Examination of lung sections at

4–16 weeks post-infection, by surface staining for IgG,

revealed B-cell accumulation in the granulomas, predominan-

tly in the lymphocyte cuffs, peripheral to macrophage-rich,

necrotic centres (figure 7b,d,f,h). Interestingly, cavity for-

mation in the lungs of the infected animals correlated with

the downregulation of gene expression at 16 weeks of infec-

tion. Future experiments will address the link between the
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maturation of individual granulomas and the expression of

marker genes of immune activation.
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4. Discussion
Using a rabbit model of granulomatous cavitary pulmonary

TB, we show that failure to control the progression of infec-

tion to cavitary disease was associated with delayed and

suboptimal macrophage activation, and delayed differen-

tiation and accumulation of antigen-specific T cells.

Suboptimal activation of macrophages and T cells was associ-

ated with gradual upregulation of the IFN-g and T-cell

activation (Th1) gene networks. Thus, the early innate

response was inadequate to control infection in the lungs,

and extensive bacillary growth occurred before establishment

of optimal T-cell activation. Once the infection was estab-

lished, the combined innate, Th1 and Th2 type acquired

responses maintained a high steady state of bacilli, with

increasing lung pathology that progressed to cavitary disease

by 16 weeks. Our histopathology analysis of infected lungs

correlated with the findings from differential cell counts

and gene-expression patterns during the acute (2–4 weeks)

and chronic (8–12 weeks) phases of infection. For example,

progressive accumulation of immune cells and their distri-

bution during granuloma maturation, revealed by histology

and single-cell analysis (4 weeks) of HN878-infected rabbit

lungs, were consistent with a corresponding increase in the

numbers and expression levels of genes involved in cell

movement, growth and proliferation. Similarly, extensive

necrosis and caseation of the lung granulomas at 12 weeks

of infection were associated with reduction in viable mono-

nuclear cell numbers and the expression of genes associated

with cell death and inflammatory response. At 16 weeks

(the time of cavity formation), the granulomas lost their abil-

ity to control bacillary growth (about 8 log10 CFU at 16

weeks), in association with a profound reduction in

immune response gene expression.

A number of investigators have reported that the balance

between Th1 and Th2 immune responses appears to be criti-

cal for the host defense against mycobacterial infection [6,19].

This balance is regulated by the levels of cytokines produced

by the respective activated cells (i.e. IFN-g by Th1 cells and

IL-4 by Th2 cells) [20,21]. Pre-exposure of naive T cells to

these cytokines is known to determine the direction of matu-

ration of the effector cells: IL-4 and IL-13 drive T cells towards

a Th2 phenotype, and IFN-g drives the cells towards a Th1

phenotype [22–25]. Moreover, exposure of macrophages to

Th1 and Th2 cytokines also affects their direction of acti-

vation [26]. Predominant exposure to IFN-g activates the

antibacterial activities of macrophages to effectively control

Mtb [27,28]. In addition, macrophages activated by IFN-g

plus TNF-a produce inflammatory cytokines and chemo-

kines, such as IL-6, IL-1b and chemokine (C-C) ligand 2

(CCL2), and bactericidal molecules, including inducible

nitric oxide synthase (iNOS) and NADP(H) oxidase (NOX),

which participate in the host defense against Mtb infection

[29–33]. In contrast, elevated IL-4 production has been

reported to block classical macrophage activation and

favour the generation of alternatively activated phagocytes

that are less efficient in controlling growth of intracellular

bacilli [26,34]. These macrophages produce less iNOS and

more arginase-1 (ARG1), peroxisome proliferator activated
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receptor gamma (PPAR-g), chitinase 3-like3 (YM-1), macro-

phage receptor with collagenous structure (MARCO) and

found in inflammatory zone (FIZZ), among other immune

mediators [32,35,36]. Furthermore, while IFN-g induces

autophagy, which contributes to killing of intracellular Mtb
in macrophages, exposure to IL-4 in the presence of IFN-g

abolishes autophagosome formation and its associated killing

of Mtb via activation of a STAT6-dependent pathway [37,38].

Consistent with these reports, we observed early downregu-

lation in the lungs of several genes involved in classical

macrophage activation, and in the IFNg- and IL4-activation

networks. Furthermore, expression of several key host

defense genes, including cytokines (TNFa and IL6) and bac-

tericidal molecules, such as defensin-4 (NP4), NOS2, NOX1
and ICAM1, peaked only at 8 and/or 12 weeks post-infection.

It is of interest that the main Th2 transcription factor STAT6
was upregulated during early infection, while a regulator of

Th1 immunity, STAT4, was downregulated in the rabbit

lungs at 4 weeks post-infection [39]. Our observations in
the rabbit model of pulmonary cavitary TB are consistent

with a mechanism in which Th1 activation is initially inhib-

ited or delayed. This may explain the inability of the

macrophages to control bacterial growth early during infec-

tion [40]. Control of Mtb infection has been shown to

depend on the activation of antigen-specific T cells [8,21].

For example, antibody-mediated depletion of CD4þ T cells

led to the reactivation of latent TB in the mouse [41]. Simi-

larly, Mtb-infected CD4 gene knockout mice showed an

increased susceptibility and altered immune pathology,

emphasizing the requirement for CD4 T cells in protective

immunity [42]. In addition, persistence of Mtb during the

chronic phase of murine TB was shown to be owing to a

suboptimal activation and reduced proliferation of antigen-

specific CD4 T cells [43–45]. Similarly, CD8 T cells have

been shown to participate in the protective immune response

to TB, although their exact mode of action is less well under-

stood [46]. For example, Turner et al. [47] reported an increase

in the lung bacillary load in Mtb-infected CD8 knockout mice
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specifically during the chronic phase of disease. It has also

been shown that while terminally activated memory CD8þ

T cells recognize and lyse Mtb-infected macrophages, effector

CD8þ T cells produce IFN-g that would contribute to macro-

phage activation [48,49]. Moreover, reduced protective

immunity against TB was observed in b macroglobulin

knockout mice, which fail to produce functional CD8 cells,

and in CD8-depleted mice and non-human primates, sup-

porting an important role for these cells in host defense

[50–52]. Furthermore, reactivation of TB in humans during

anti-TNF treatment has been associated with reduced num-

bers and less efficient anti-mycobacterial activity of

circulating CD8þ T cells in patients [53]. Taken together,

these results support the prevailing view that CD4 and

CD8 T cells are required for optimal protective immunity

against Mtb infection. In the present study, we found that

progressive T-cell activation peaked at 8 or 12 weeks of

HN878 infection. However, this activation failed to protect
the animals from progressive cavitary disease, perhaps

owing to slow onset of the T-cell-mediated response.

In contrast to the clear contribution of T cells to protective

immunity against Mtb, the role of B cells, mediators of

humoral immunity, remains controversial [54–56]. Some

studies have suggested that anti-TB antibodies produced

during Mtb infection are not protective against active TB dis-

ease [57]. Consequently, it has been assumed that B cells do

not contribute to the host protective immune response to

this pathogen. However, recent reports describe contradic-

tory findings on a potential role for B cells in the

progression and containment of TB in mice [18]. Several

studies demonstrated that the establishment of chronic TB

and/or control of bacillary growth in Mtb-infected mice

was unaffected by the absence of B cells, as shown in B-cell

knockout animals [58,59]. In contrast, other experiments

using B cell or Ig knockout mice showed more extensive

bacillary growth in the lungs following Mtb infection

[17,60]. Moreover, adaptive transfer of B cells to B-cell knock-

out mice, prior to Mtb infection, was reported to reconstitute

the protective immune response to TB, resulting in lower

bacillary numbers. In contrast to these observations, our

results suggested that, in the presence of a T-cell response,

concomitant progressive B-cell activation was associated

with failure to control the acute infection and progressive

granulomatous disease in Mtb-infected rabbits. Thus, our

findings suggest that the outcome of HN878 infection in rab-

bits was determined by the kinetics of the host immune

response and the sum total of immune activation of both

T and B cells.

We and others have previously shown that various

mouse strains infected with HN878 failed to mount a

strong Th1 response compared with other Mtb strains

such as CDC1551 and showed accelerated mortality in

HN878-infected mice in comparison with infection by

other Mtb strains [61–65]. Moreover, exposure of human

monocytes to cell wall components of HN878 resulted in

reduced production of pro-inflammatory cytokines in com-

parison to infection with CDC1551 [62]. Results of these

studies suggested that virulence factors of HN878, includ-

ing cell wall lipids such as phenolic glycolipid (PGL), are

capable of subverting the protective immune response of

the host via effects on macrophage activation, leading to

high bacillary numbers and more severe disease [66]. In

contrast with these studies, HN878 infection of C57BL/6

mice was reported to induce a strong Th1 response,

which peaked early after infection and then declined shar-

ply [67]. In the present study, we show that delayed

macrophage activation at 2 weeks was associated with a

lack of control of bacillary growth, and downregulation

of immune activation at 16 weeks was associated with

renewed growth of the bacilli in the lungs and cavity for-

mation. This finding is similar to that in human TB

cases, where cavitation of the lungs is associated with

increased bacillary load. Our previous study suggested

that, since T cells were absent from the luminal surface

of the cavity, the phagocytes were more permissive for

Mtb growth [9]. Taken together, our studies and those of

others suggest that: (i) early macrophage activation is

essential for the containment of bacillary growth; (ii) T-

cell activation and IFN-g production are required but not

sufficient to control Mtb infection [68]; and (iii) B cells con-

tribute to the lung immune pathology during active TB
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disease. The kinetics of these responses can shift the bal-

ance towards failed immunity versus protection. The

results of these studies must ultimately be confirmed by

comparison with the characteristics of a protective host

immune response in rabbits infected with an Mtb strain

that is successfully controlled. Such studies can facilitate

improved understanding of protective immunity and the

requirements for development of new intervention

strategies to control TB.
5. Material and methods
Detailed procedures for the following can be found in the

electronic supplementary material.
5.1. Rabbit infection
New Zealand White rabbits (Millbrook Farm, Concord, MA)

were used for aerosol infection with Mtb HN878 as described

earlier [13]. All procedures with Mtb-infected animals were

performed in biosafety level 3 facilities, according to the pro-

tocols approved by the UMDNJ Institutional Animal Care

and Use Committee. Bacterial loads in the infected lungs

were evaluated as reported earlier [13]. Unless otherwise

mentioned, all chemicals were purchased from Sigma

(Sigma-Aldrich, Saint Louis, MO).

5.2. Total RNA isolation from rabbit lungs
Total RNA was isolated from rabbit lungs using TRIzol

(Life Technologies, Carlsbad, CA) and processed with
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DNaseI and column-purified before subsequent use as men-

tioned earlier [13].

5.3. Rabbit whole-genome microarray analysis
Rabbit microarray experiments were performed with the

arrays and reagents from Agilent Technologies as per

the suppliers’ instructions (Agilent Technologies, Santa

Clara, CA). The microarray data processing and analysis

were as mentioned earlier [69].

5.4. Quantitative real-time polymerase chain reaction
Total RNA from rabbit lungs was used in qPCR with gene-

specific primers and SYBR green mix (Clontech, Mountain

View, CA) as mentioned earlier [69]. The GAPDH transcript

of rabbit was used for normalization of target genes. Fold

change was calculated using the formula 22DDCt. Each exper-

iment was repeated at least 2 times with cDNA samples from

2–4 animals per group.

5.5. Preparation of single-cell suspension from spleen,
lymph node and lung tissues

Rabbit lung sections were minced and incubated in collagen-

ase and DNaseI. The spleen and lymph node segments

were mechanically homogenized, and the homogenates

were passed through a nylon cell strainer and centrifuged

to collect the cell pellet. The erythrocytes in the cell suspen-

sion were lysed with acetate kinase (ACK) lysis solution

and the isolated cells were counted after staining with

trypan blue dye.

5.6. Flow cytometric analysis
Antibodies against human immune markers were screened

for cross-reactivity against rabbit for these assays. Lung

cells from rabbits were washed in FACS buffer (phos-

phate-buffered saline (PBS), 2% heat-inactivated foetal

bovine serum and 10 mM NaN3), incubated in Fc block

reagent (BD Biosciences, San Jose, CA), stained using

FITC-anti rabbit CD4, PE-anti rabbit CD8 (BD

Biosciences), Alexa 647-conjugated anti-human CD14

(cross-reactive to rabbit macrophages; AbD Serotec Inc,

Raleigh, NC) or FITC-conjugated anti-rabbit IgG (AbD Ser-

otec Inc) and biotinylated anti-rabbit IgM (BD

Pharmingen, San Diego, CA, USA) followed by avidin-

PE (BD Biosciences) for surface staining. For intracellular

TNF-a staining, cells were incubated with Alexa 647

conjugated anti-human CD14 (cross-reactive with rabbit

CD14), fixed with BD Cytofix solution and washed with

Perm solution. Biotinylated anti-human TNF-a (cross-

reactive with rabbit TNF-a; BD Biosciences) was added

followed by avidin-PE. Flow cytometry results using

FACSCalibur cytometer (BD Biosciences) were analysed

using FLOWJO software (Tree Star, Ashland, OR).

5.7. T-lymphocyte proliferation assay
Rabbit spleen cells were stained with CFSE dye, according to

the manufacturer’s instructions (Invitrogen, Carlsbad, CA).

The CFSE-labelled spleen cells were stimulated with
Concanavalin-A, heat-killed Mtb, PPD or left unstimulated.

Cells were then stained for surface markers with anti-rabbit

CD4 or anti-rabbit CD8 (BD Biosciences) followed by APC-

anti-mouse IgG. Flow cytometry data were acquired as

mentioned earlier.
5.8. Detection of serum immunoglobulin G by enzyme-
linked immunosorbent assay

To measure the levels of anti-PPD-specific IgG in the serum

of infected rabbits, we developed a new ELISA: 96-well

plates (Corning, Lowell, MA) were coated overnight with

PPD (Staten Serum Institute, Denmark; 10 mg ml21 in

PBS), washed with 0.025 per cent Tween 20 in PBS and

blocked with 1 per cent bovine serum albumin in PBS at

378C for 30 min. Serial dilutions of rabbit serum and poly-

clonal rabbit anti-PPD antibody (Antibodies-online GmbH,

Atlanta, GA) were incubated in duplicate wells for 2 h at

room temperature, washed and a 1:2000 dilution of alkaline

phosphatase-conjugated goat anti-rabbit IgG (Southern Bio-

tech, Birmingham, AL) in PBS was added for 2 h. Activity

of alkaline phosphatase was detected using SIGMAFAST p-

nitrophenyl phosphate solution according to the manufac-

turer’s guidelines (Sigma-Aldrich).
5.9. Bacterial colony forming unit assay
Bacterial loads in the lungs of the infected rabbits were eval-

uated by plating 10-fold serial dilutions of the lung

homogenates onto Middlebrook 7H11 agar plates (Difco,

BD, Franklin Lakes, NJ). The plates were incubated at 378C
for 4–5 weeks. Colonies were counted, and results were

expressed as number of CFUs in the whole lung.
5.10. Histology and immunohistochemistry of lung
sections

Sections of formalin-fixed, paraffin-embedded lung tissues of

infected rabbits were used for histology and immunohistol-

ogy staining of B cells using an anti-rabbit IgG (Biocare

Medical LLC, Concord, CA). Haematoxylin-Gill’s formula

was used to stain the nuclei (Vector Laboratories Inc, Burlin-

game, CA). Stained sections were photographed using a

Nikon Microphot-FX microscope (Nikon Instruments Inc,

Melville, NY).
5.11. Statistical analysis
The independent Student’s t-test was used for statistical

analysis (GRAPHPAD software, La Jolla, CA). A value of p �
0.05 was considered significant for all the experiments.
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