
SENSORY PHYSIOLOGY

Membrane cholesterol modulates cochlear electromechanics

William E. Brownell & Stefan Jacob &

Pierre Hakizimana & Mats Ulfendahl &
Anders Fridberger

Received: 3 December 2010 /Revised: 10 February 2011 /Accepted: 15 February 2011 /Published online: 4 March 2011
# The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Changing the concentration of cholesterol in the
plasma membrane of isolated outer hair cells modulates
electromotility and prestin-associated charge movement,
suggesting that a similar manipulation would alter cochlear
mechanics. We examined cochlear function before and after
depletion of membrane cholesterol with methyl-β-
cyclodextrin (MβCD) in an excised guinea pig temporal
bone preparation. The mechanical response of the cochlear
partition to acoustic and/or electrical stimulation was
monitored using laser interferometry and time-resolved
confocal microscopy. The electromechanical response in
untreated preparations was asymmetric with greater dis-
placements in response to positive currents. Exposure to
MβCD increased the magnitude and asymmetry of the
response, without changing the frequency tuning of
sound-evoked mechanical responses or cochlear micro-
phonic potentials. Sodium salicylate reversibly blocked
the enhanced electromechanical response in cholesterol
depleted preparations. The increase of sound-evoked
vibrations during positive current injection was enhanced
following MβCD in some preparations. Imaging was
used to assess cellular integrity which remained unchanged
after several hours of exposure to MβCD in several

preparations. The enhanced electromechanical response
reflects an increase in outer hair cell electromotility and may
reveal features of cholesterol distribution and trafficking in
outer hair cells.
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Introduction

Outer hair cell (OHC) electromotility contributes to the
movements of the cochlear partition [20, 36] consistent
with a presumed role of OHCs in counteracting the effects
of viscous damping [4, 6]. A membrane-based motor in the
OHC lateral wall is responsible for electromotility [6, 8, 9,
13, 25, 29]. This motor converts the energy in the
transmembrane electric field directly into mechanical
energy and can generate forces at frequencies approaching
80 kHz [19]. Prestin (SLC26A5) is an integral membrane
protein found in OHC membranes [2, 5, 33, 56, 57] and is
an important component of the membrane motor [31].
Prestin introduces a reactive component to the total
membrane charge movement that is phase-shifted relative to
the ohmic charge through ion channels [50]. This reactive or
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displacement current is often used as an experimental measure
of prestin function.

We have previously shown that membrane cholesterol
content affects prestin-associated charge movement in both
OHCs [42] and human embryonic kidney (HEK) 293 cells
expressing prestin [42, 46, 49]. A hyperpolarizing shift and
decrease in the total amount of the prestin-associated charge
moved is linearly related to increases in membrane
cholesterol [46].Cholesterol comprises a substantial portion
of eukaryotic cell membranes, accounting for 35% to 45%
of membrane lipids [3, 12]. Cholesterol distribution in the
plasma membrane varies and in many cells its concentration
is elevated in membrane rafts. The OHC is unusual in that its
lateral wall plasma membrane contains less cholesterol than
its basal or apical membranes and conventional rafts are not
observed [7, 18, 37, 38, 42, 44].

Cholesterol dependent changes in OHC function would
be expected to modulate cochlear function, specifically
cochlear electromechanics. Increases and decreases of
membrane cholesterol affect the production of distortion
product otoacoustic emissions [42] consistent with mem-
brane cholesterol playing a role in cochlear mechanics.
Further support for a role in cochlear function comes from
the fact that OHC membrane cholesterol concentration
decreases during OHC development [42] over the same
time frame as the onset and maturation of OHC electro-
motility [5, 23]. In this study, we examine the effect of
depleting membrane cholesterol on electrically and/or
acoustically evoked movements of the cochlear partition
in a well-characterized excised temporal bone preparation.

Materials and methods

Animal preparation

All animal procedures used in this study were approved by
the local ethics committee (permit N460/09). Albino guinea
pigs of both sexes, weighing 250–400 g, were anesthetized,
decapitated, and the temporal bone quickly removed and
fixed in a custom-made holder. The bulla was gently
opened, followed by submersion of the preparation in
oxygenated tissue culture medium (Minimum Essential
Medium (MEM) with Earle’s balance salts—Sigma; sup-
plemented with 25 mM HEPES, 5 mM NaHCO3, 25 mM
NaCl; pH=7.3; 0.33 osM/kg). The holder prevented
leakage of MEM into the external ear canal when the
preparation was submerged and allowed the acoustic
stimulation of the preparation with sound. The fluid-filled
middle ear attenuates the effective sound pressure by
approximately 30 dB [10]. Polyethylene tubing inserted
into an opening in the basal turn of the cochlea (Fig. 1a)
connected scala tympani with an elevated reservoir of

oxygenated MEM. The perfusion system kept the prepara-
tion vital for up to 4 h and was also used to deliver
pharmaceuticals. Measurements of vibrations and electrical
potentials were made through a second opening in the otic
capsule over scala vestibuli in turn 4 near the cochlear apex
(Fig. 1b). The apical opening served as an exit for the
perfusate and was also used to advance microelectrodes
into scala media (Fig. 1b). All experiments were carried out
at room temperature (~21°C).

Recordings typically began approximately 25 min after
decapitation when the preparation still had a positive
endocochlear potential (EP) of 10–30 mV. The EP
decreased with time and was approximately 0 mV 1 h after
decapitation. In order to monitor the condition of the
preparations, we repeatedly measured the amplitude of the
cochlear microphonic potential at different frequencies.

Interferometry

A custom-made interferometer [27] equipped with a 25×
water immersion lens [35] was used to measure the
acoustically and electrically evoked movements of the
organ of Corti. Application of artificial reflectors was not
required and the noise floor of the system was well below
the measured vibration amplitudes. For acoustic stimula-
tion, we used a windowed 200 ms five tone complex,
avoiding the frequencies of potential distortion products. A
stepping protocol was used for the electrical stimulation.
Each recording began with a 50-ms interval at 0 μA; the
current was then stepped to the desired value (1–30 μA)
and held constant for 100 ms, followed by a step back to
the 0 μA level (Fig. 1c). Charge buildup in scala media was
avoided by placing a second 100-ms-long current pulse of
opposite polarity outside of the measurement window.

Time-resolved confocal microscopy

Hair cells were stained with RH795 (Invitrogen, The
Netherlands; [17] delivered through the perfusion system
at the beginning of the experiment. An upright laser
scanning microscope (LSM 510, Zeiss, Germany),
equipped with a 40× water immersion lens (0.8 NA, Zeiss,
Germany), was used to acquire a continuous series of 37
images. Each series required approximately 40 s at the
frame size and scanning speed used. A pure tone was used
for acoustic stimulation and a square wave of approximate-
ly 5 Hz and 50% duty cycle was used for electrical
stimulation. Hence, the electrical stimulus alternated be-
tween positive and negative current during the image
acquisition, which was locked to the acoustic and electric
stimuli, as described previously [26]. For every pixel in the
image series the phase of the acoustic stimulus and of the
electrical stimulus were known. Using Fourier rows, images
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for positive and negative current stimulation were recon-
structed at 12 equally spaced acoustic phases between 0 and
2π. Motion was estimated based on the computation of the
optical flow between images of consecutive phases [21].

Electrodes

Borosilicate electrodes were freshly pulled, filled with an
endolymph-like solution (1.3 mM NaCl, 31 mM KHCO3,
23 μM CaCl2, 128.3 mM KCl; pH=7.4;0.30 osM/kg) and
beveled to an impedance of approximately 2 MΩ. Micro-
phonic potentials were measured with an IX1 amplifier
(Cornerstone, Dagan Corp., USA, equipped with 10× head
stage) and digitized with a 16-bit A/D board (National
Instruments, USA) or a signal analyzer (35665A, Hewlett-
Packard, USA). The current stimulator (A395, World
Precision Instruments, USA) was controlled by custom
software (LabVIEW, National Instruments, USA).

Cholesterol depletion and salicylate administration

Baseline cochlear microphonics, acoustic, and electrically
evoked movements were measured in the untreated temporal
bone preparation until stable repeatable values were obtained.

Membrane cholesterol was depleted by adding 1 mMmethyl-
β-cyclodextrin (MβCD, Sigma) to the oxygenated MEM
perfusing the temporal bone, and the measures were repeated.
In three preparations, the MβCD perfusate was rinsed from
the reservoir and MEM containing 10 mM of NaSal was
added. Perfusion was continued until a change in the
electromechanical response was observed at which time the
NaSal perfusate was rinsed and replaced with normal MEM.

Results

Exposure to MβCD enhances the electrical–mechanical
response

Glass electrodes positioned in scala media were used to
inject electrical currents (Fig. 1). In response to positive
current, which depolarizes outer hair cells, Hensen’s cells
moved toward scala vestibuli, the +10 μA current step in
Fig. 2a evoking a 30-nm position shift. This position shift
closely followed the input waveform, although the onset
and offset of the mechanical responses were slower than the
command voltage applied to the constant current stimulator.
Having reached the plateau, the amplitude remained stable

Fig. 1 Experimental methods. a Photomicrograph of excised tempo-
ral bone preparation. Tympanic membrane (TM) and malleus are
visible on the left. A perfusion tube is inserted through an opening into
the scala tympani in the basal turn of the cochlea and oxygenated
artificial perilymph is introduced under ~10-cm pressure. The end-
piece of the tubing has a smaller diameter and the hole in the cochlea
is smaller than the visible tubing. Perfusion solutions exit through an
opening in the apical turn of the cochlea (visible near the cochlear
apex). Optical recordings of cochlear movements are made and a
current stimulus/CM recording micropipette is inserted into the scala

media through the apical opening. A tube from the earphone is
connected to a rubber O-ring cemented to the remains of the external
auditory meatus (not shown). The entire preparation is submerged in
artificial perilymph. b Schematic of a radial section of the apical
cochlea showing the relative position of the micropipette and the
organ of Corti. Laser (arrowhead) for interferometry is focused on a
highly reflective Hensen’s cell lipid droplet. High-speed confocal
imaging and time-resolved measurements are also made through a
similar opening. c A single trace of electromechanically evoked
displacement riding on top of smaller acoustically evoked vibrations
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for the duration of the current step. After applying 1 mM of
MβCD, which depletes membrane cholesterol, the magni-
tude of the position shift increased to 125 nm (Fig. 2b). In
addition, a slow displacement increase was observed with
the Hensen’s cells continuing to move toward the scala
vestibuli until the end of the current step. On average, the
magnitude of the position shift increased from 56±9 nm to
163±23 nm during MβCD perfusion (mean ± S.E.M., n=9;
p=0.0003 by the Wilcoxon rank sum test).

Figure 2c shows that the step amplitude was stable
before MβCD application. The increase of the response
was evident minutes after its application, and the maximal
increase generally occurred after 20–30 min. In several
preparations, the electrically evoked responses started
declining thereafter, a change reflected as an increased
standard error for the late time points in Fig. 2c. Control
amplitudes in the absence of MβCD were stable, although a
tendency to a decrease toward the end of the recording
period was evident (Fig. 2c, lower thick line). The stability
of current-evoked responses in the absence of MβCD is
evident from the small standard errors of the normalized
control amplitudes throughout the experiment.

Responses to negative currents were also altered byMβCD
perfusion. In the absence of the drug, a 10-μA current

produced an ~20-nm position shift directed at scala tympani
(Fig. 2d), which increased to 60 nm after 20 min of MβCD
perfusion (Fig. 2e). A slow drift in position was evident also
in this recording, but this effect persisted beyond the
duration of the current step. Note that Hensen’s cells did
not return to their baseline position at the end of the current
step but rather overshot it by some 10 nm, a pattern seen in
several preparations. The time course of changes in response
magnitude was similar for positive and negative currents
(compare Fig. 2c and f). On average, negative current
responses increased from 39±9 to 89±10 nm due to removal
of membrane cholesterol (p=0.006).

To ascertain whether the kinetics of electrically evoked
mechanical responses was affected by cholesterol depletion,
the data were fit with a low-pass filtered version of the
command voltage driving the constant current generator. In
the case shown in Fig. 2a, the time constant was 5.4 ms with
an amplitude of 33 nm. The time constant became slightly
slower (7.3 ms, Fig. 2b) during MβCD perfusion and as
noted above, the amplitude increased by a factor close to 4.
Due to the slowly changing position during the plateau, we
could not fit this part of the response using this simple
function alone. Overall, the response kinetics showed no
significant change due to MβCD perfusion (before MβCD,
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Fig. 2 Electromechanical response of the apical cochlear partition.
a–c Response to positive and d–f negative 10-μA current injections.
Control responses (a, d) and the response from the same preparation
after perfusion with 1 mM MβCD (b, e) from a representative
preparation. The responses are fit to single exponential functions (thin
solid lines). c, f Summary data for nine preparations showing the
evolution of the normalized response to ±10-μA current injections.
Summary responses are normalized to the control response 20 min

prior to perfusion. The dashed lines show standard error of the mean
at each time interval. Values at zero time have been blanked out because
the mean and S.E.M. were fit with a 5-point sliding interpolation function
which introduced artifactual values at zero time. The top summary plot
panel also shows the evolution of the normalized response to positive
currents in six control preparations. The values were collected for
20 min before and after 1.5 h of cochlear perfusion (MβCD was
typically perfused between 1 and 1.5 h of initiating cochlear perfusion)
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11.5±1.6 ms, mean ± S.E.M.; 9.1±1 ms during MβCD; p=
0.26 by the Wilcoxon rank sum test, n=9).

As evident from the data presented above, positive
currents resulted in larger responses than negative ones.
The ratio was about 1.5, increasing to ~1.8 during MβCD
perfusion (Fig. 3a). The time course of this change was
similar to that seen in Fig. 2c, f. MβCD not only changed
the magnitude of the electrically evoked response, but also
the relation between applied current and the step size. In the
absence of the drug, the current step amplitude relation was
nearly linear, with a slight tendency to a shallower slope in
the negative current region. This tendency to response
saturation was more pronounced after MβCD, but positive
currents resulted in responses that grew linearly with a
larger slope than the controls (Fig. 3b).

Figure 3c shows the response to a +10-μA current
injection before and after exposure to MβCD and NaSal. At
25 min after initiating perfusion with MβCD, the perfusion
reservoir was rinsed three times and perfusion with a 10-mM
NaSal solution was begun. The electromechanical response
was rapidly reduced to less than the pre-MβCD value
consistent with the effect of sodium salicylate on the cochlear
amplifier [15, 28, 48]. Salicylate did not completely block the
step response as a small, ~10 nm, displacement remained.
Rapidly rinsing and replacing the sodium salicylate solution
in the perfusion reservoir with normal MEM solution when
the response block was first observed resulted in the
electromechanical response returning to near the peak values
of the post-MβCD response (data not shown).

Mechanical and electrical response is similar
before and after MβCD exposure

A possible explanation for the increased electrically evoked
responses shown in Figs. 2 and 3 is a reduction in the
stiffness of the organ of Corti. Because the force-generating
outer hair cells are embedded in a matrix of supporting

cells, a change in the stiffness of those surrounding structures
will result in an altered electromechanical response. In the
absence of an endocochlear potential, sound-evoked mechan-
ical responses are largely determined by the stiffness, mass,
and friction of the cochlear structures [32]. An indirect but
useful measure of these parameters can be obtained by
measuring sound-evoked mechanical responses in the
absence of current. Figure 4a shows the mechanical response
to a sound stimulus containing five frequencies centered on
the best frequency of the recording location. The waveform
acquired during MβCD perfusion is similar to the control,
except for a minor increase in the noise level. Spectral
analysis (Fig. 4b) using the Fourier transform corroborates
this impression: Although small changes occur at some
frequencies, these are within the noise floor. Aside from a
slight shift towards higher frequencies, the cochlear micro-
phonic potential also shows little change (Fig. 4c). Minor
increases in cochlear microphonic potentials were seen in
some preparations during MβCD perfusion, and small
decreases were noted in others. Overall, MβCD did not
affect the amplitude or tuning of these potentials. The data
shown in Fig. 4a–c indicate that the passive mechanics of the
organ of Corti are unaffected by MβCD, and the lack of
change in cochlear microphonics is evidence that forward
transduction is impervious to the reduction in cholesterol in
the cell bodies of outer hair cells.

Figure 4 demonstrates how exposure to MβCD can result
in an increase of the acoustically evoked response in the
presence of a positive current. Positive current, which
restores the endocochlear potential in the excised prepara-
tion, often results in larger acoustically evoked responses
than either no current or negative current and MβCD could
greatly enhance the increase. There was considerable
variation in the increase observed following MβCD. In
some cases, there would be no increase even with a major
enhancement of the electromotile response. In other prepa-
rations, there was a modest increase when MβCD was

Fig. 3 The magnitude of the response to positive current is greater
than the response to negative current and salicylate blocks the
electromechanical response. a Summary plot of the ratio of the
magnitude of the response to positive current to the magnitude of the
negative current for nine preparations. b Response of a representative

preparation to current steps of different magnitude before and after
perfusion with MβCD. c Electromechanical responses over time from
a representative preparation to +10-μA current injections showing
typical increase in response to MβCD perfusion followed by a rapid
decline in response to perfusion with 10 mM NaSal
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present (Fig. 4d). Figure 4e, f show a preparation in which
MβCD resulted in a 6-dB boost at best frequency. The
increase of sound-evoked motion amplitudes during MβCD
may be seen in Fig. 4e and is analyzed in more detail in
Fig. 4f. Responses near the best frequency (200 Hz) are
more than doubled, but smaller changes are seen at 300 Hz,
and no change at all at 600 Hz. Thus, although positive
current increases sound-evoked responses and sharpness of
tuning during MβCD perfusion, there is no shift in the best
frequency. In summary, while electromotility is clearly an
important component of the cochlear amplifier [14], an
increase in electromotility does not automatically produce
increased amplification of sound-evoked motion.

Figure 5 shows another example of increased cochlear
amplification following MβCD perfusion. Time-resolved
confocal imaging and optical flow computation [22, 26]
was used to measure sound-evoked responses. Acoustical-
ly evoked motions were nearly perpendicular to the
reticular lamina during negative current injections, with a
peak amplitude of approximately 300 nm (black trajectory
in Fig. 5a). Positive current increased perpendicular
vibrations to ~360 nm (gray trajectory in Fig. 5a). The
parallel motion component, directed along the horizontal
axis of the image, appears more responsive to positive
current and consequently shows a larger increase than the
vertical component.

After 10 min of MβCD perfusion at 1 mM, negative
current vibrations were unchanged, as seen by comparing
the black trajectories in Fig. 5a, b. The peak amplitude
remained close to 300 nm, and the major axis of the
trajectory remains in the same orientation. Thus, during
negative currents, sound-evoked vibrations are quite stable
and not significantly affected by MβCD. However, sound-
evoked responses during positive current were increased.
Note that the amplitude increases more for movements
parallel to the reticular lamina giving the trajectory a more
elliptic shape (gray trajectory in Fig. 5b). This is an
important change, as it would be expected to be more
effective in deflecting hair cell stereocilia.

The cellular components of the cochlear partition remain
intact following MβCD exposure

Short-term perfusions with MβCD (<1 h) did not produce
obvious morphological changes in the organ of Corti, as
evidenced by confocal imaging of the measurement site after
loading cells with the fluorescent membrane dye RH795. In
Fig. 6a, note that Reissner’s membrane retains its normal
honeycomb configuration and that supporting cells near the
measurement site all appear intact. The cell membranes of
supporting cells were clearly labeled, and the lipid droplets
inside Hensen’s cells are also visible. Fragmentation of lipid
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Fig. 4 Cochlear partition tuning and cochlear microphonics are
similar before and after exposure to MβCD. a Time domain and b
spectral analysis of sound-evoked mechanical response. c Cochlear
microphonics from the same preparation as a and b are similar before
and after MβCD. d Spectra from another preparation showing a

modest increase in sound-evoked response during a +10-μA current
injection following exposure to MβCD. e Time domain and f spectral
analysis of sound-evoked response during a +10-μA current injection
from a preparation showing greater response following MβCD
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droplets, a common sign of acute cellular stress in the
cochlear apex, was not observed. On focusing deeper into
the organ of Corti (Fig. 6b), it is seen that outer and IHC
appear normal with clearly delineated cell membranes
showing no signs of swelling or other structural abnormal-
ities. The section through the organ of Corti is oblique and
the full length of the OHC bodies cannot be inspected in this
image. However, preparations with long-term exposure
(>1 h) to MβCD frequently, but not always, showed
pathology, most commonly OHC shrinkage.

The antifungal macrolide filipin is highly fluorescent and
binds specifically to membranes containing cholesterol and
can therefore be used for visualizing such membranes. It was
used to image the organ of Corti in control samples (Fig. 6c)
as well as samples treated with MβCD (Fig. 6d). While there
was a decrease in staining intensity in MβCD-treated
samples, labeling was still observed in all cell types in the
organ of Corti, confirming that removal of cholesterol with
MβCD is incomplete. Preparations that were not exposed to
filipin had autofluorescence that was at least one order of
magnitude smaller than the fluorescence intensity observed
in filipin treated samples (Fig. 6c, d). The MβCD-induced
decrease in intensity should be interpreted with caution given
the difficulty in quantifying fluorescent labels such as filipin.

Discussion

The site of action is the outer hair cell

The increase in the electromechanical response observed on
exposure to MβCD most likely results from the depletion of
cholesterol from the plasma membrane of OHCs. We have

previously reported on how membrane cholesterol alters
prestin-associated charge movement in prestin-transfected
HEK cells. Decreasing membrane cholesterol shifts prestin-
associated charge movement towards more depolarized
membrane potentials and increased the charge density [46].

RM

HeC

O

I

HeC O I HeC O I

a b

c d
Fig. 6 Cochlear histology following MβCD exposure. a, b Confocal
images of the cochlea after 10 min of perfusion with RH795. a Optical
section through Reissner’s membrane (RM) and Hensen’s cells (HeC)
near the site of vibration measurements. b Optical section through the
organ of Corti at a deeper focal plane than a. (I, inner hair cells; O, outer
hair cells). c UV fluorescence microscopy of filipin-labeled organ of
Corti in a control preparation not exposed to MβCD. d Filipin labeling
in a preparation perfused with 1 mM MβCD. All scale bars=25 μm

Fig. 5 Confocal imaging of sound-evoked vibrations confirms a
larger effect of positive current injection following MβCD. Confocal
image on the left of outer hair cell recorded in situ during
simultaneous sound and electrical stimulation. Vibrations at the base
of the stereocilia bundle were measured at a point on the reticular

lamina marked by the dot. a, b Acoustically evoked vibration
trajectories during negative (dark arrows) and positive (gray arrows)
stimulation before (a) and after (b) exposure to MβCD. Movements
parallel to the reticular lamina are plotted along the abscissa while
perpendicular movements are plotted along the ordinate
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During cochlear development, the concentration of choles-
terol in the OHC lateral wall decreases [37, 42] while the
subsurface cisternae appear and mature [55]. At the same
time, there is an increase in OHC electromotility [5, 23]
accompanied by a depolarizing shift in prestin-associated
charge movement and an increase in its charge density [1, 40].
The increase in the cochlear electromechanical response we
observe resembles the developmental increase in OHC
electromotility that is concurrent with a decrease in plasma
membrane cholesterol. Sodium salicylate has long been
known to block OHC electromotility [15, 28, 48]. The
reversible reduction of the MβCD-enhanced response with
sodium salicylate further supports the site of action of
MβCD as the OHC lateral wall plasma membrane.

The absence of an MβCD-dependent change in cochlear
microphonics implies that membrane cholesterol depletion
was confined to cells exposed to scala tympani perfusion
including the portion of Reissner’s membrane from the
helicotrema to the recording site. Filipin labeled the exposed
cells, and cochlear microphonics remained unchanged indi-
cating Reissner’s membrane was functionally intact. The
continuation of an electromechanical response is further
testimony to the continued integrity of Reissner’s membrane
because its damage results in an altered impedance that would
alter the electromechanical response.

Implications of the MβCD response increase on cholesterol
trafficking in the OHC

Measuring OHC reactive charge movement simultaneously
with electromotile length changes reveals that the voltage
dependence for normalized length changes is quantitatively
identical to the voltage dependence of the normalized
reactive charge movement [24, 53]. This supports the use of
the reactive, prestin-associated current as equivalent to
electromotility. Exposure to MβCD increases the electro-
mechanical response to positive current by approximately
four times (Fig. 2c) which is more than twice what would
be expected from the effect of cholesterol depletion on
prestin-associated charge density [46].

Immunohistochemical labeling suggests that prestin is
uniformly distributed along the OHC lateral plasma
membrane [56]. Prestin function, however, is not uniform;
it is non-functional at the synaptic pole [25] and has a non-
uniform distribution along the lateral wall [52]. Mechani-
cally evoked prestin-associated charge movement is max-
imal midway between the cuticular plate and the nucleus. A
plausible explanation for the non-uniform distribution
would be a cholesterol concentration gradient that reaches
a minimal value in the middle of the cell. This cholesterol
concentration gradient is apparent in photomicrographs of
filipin-stained OHCs [37] and is consistent with the lower
fluorescence we observe in the OHC region of Fig. 6c. The

“specific” prestin-associated charge movement would be
maximal in the region with the least cholesterol and
decrease with increasing cholesterol concentration [46]
towards either end. In addition, the voltage at maximum
gain for the charge movement will hyperpolarize as
cholesterol increases further reducing prestin function at
normal holding potentials. The net result is that the prestin
residing towards the ends of the OHC would appear to be
non-functional. The non-uniform distribution of cholesterol
in normal OHCs would lower the whole-cell electrome-
chanical response to less than what it would be if the
cholesterol concentration were uniformly low. MβCD
exposure would reduce the cholesterol concentration
towards the level at the middle of the cell and the total
“whole-cell” charge density would increase by more than a
factor of two, consistent with the observed increase in
cochlear electromechanics (Fig. 2c).

The mechanism by which cholesterol is maintained at a
low concentration in the lateral wall membrane is not known
but is likely to involve lipid trafficking with the subsurface
cisternae. Membrane turnover occurs at the apex and the base
of the OHC [30, 38], and the newly added membrane would
be expected to have a normal eukaryotic plasma membrane
cholesterol concentration. Cholesterol will diffuse from
membrane recently enriched by exocytosis at the base and
apex of the OHC and, in the absence of any other
contribution to cholesterol trafficking, the concentration will
equilibrate throughout the basolateral plasma membrane. If
the subsurface cisternae actively sequester cholesterol from
the plasma membrane, the cholesterol concentration will
decrease until it reaches a minimum value near the middle of
the lateral wall. Both immunohistochemical [56] and
immunogold [34] labeling of prestin in OHCs indicate that
prestin density is less in the basal pole than in the lateral
wall. The reduced prestin may be the result of prestin
recycling which has been shown to increase with deglyco-
sylation and increased cholesterol [43]. Prestin recycling
cannot occur in the lateral wall because the cortical lattice
and subsurface cisternae prevent vesicular trafficking. The
reduced prestin may contribute to the absence of prestin
function observed in the synaptic pole of the OHC.

Implications for hearing health

Serum dyslipidemia The impact of serum dyslipidemia on
cardiovascular health is well-known, and heart disease is a
major public health concern. There is little information as to
how serum dyslipidemia might lead to alterations in the lipid
composition of cell membranes. The mechanisms underlying
cellular membrane cholesterol homeostasis have been studied
for many years and involve a variety of regulatory feedback
pathways within cells. The relation between serum dyslipide-
mia and hearing is further confounded by the limited
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vascularization of the organ of Corti (presumably to minimize
cardiovascular pressure changes so that we do not hear our
pulse). There are reports of a correlation between serum
dyslipidemia and hearing loss [16, 41, 47] that are balanced
by other reports finding no correlation. Two animal studies
have suggested that hearing problems associated with age or
resulting from a lipid challenge are ameleriorated with statins
[11, 51]. Systemic administration of a β-cyclodextrin has
been used to treat animal models of Niemann–Pick type C
disease. The treatments generally resolve the major problems
of the disease, but a non-reversible hearing loss was
observed in cats [54]. The hearing loss is consistent with
the loss of distortion product otoacoustic emissions we
observed with MβCD [42]. Hair cell membranes are
buffered by a variety of processes involved in cholesterol
trafficking when dyslipidemia is treated with statins. These
are bypassed with the β-cyclodextrin approach, suggesting
that care must be taken to not be too aggressive in attempting
to modulate membrane cholesterol in the ear.

Aging Aging is associated with a drop in endocochlear
potential [39, 45] which may be linked to conventional
atherosclerotic cholesterol involvement reducing perfusion
of the stria vascularis. The low endocochlear potential is
mimicked in our study by the no current condition. The
cochlear electromechanical response is increased either by
restoring the endocochlear potential with a positive current
or by reducing membrane cholesterol levels. Our findings
suggest that restoring the endocochlear potential and
decreasing membrane cholesterol may improve some forms
of geriatric hearing loss.
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