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Histopathological modeling of
status epilepticus-induced brain
damage based on in vivo
diffusion tensor imaging in rats
Isabel San Martín Molina, Raimo A. Salo, Olli Gröhn,
Jussi Tohka† and Alejandra Sierra*†

A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland

Non-invasive magnetic resonance imaging (MRI) methods have proved useful

in the diagnosis and prognosis of neurodegenerative diseases. However,

the interpretation of imaging outcomes in terms of tissue pathology is

still challenging. This study goes beyond the current interpretation of

in vivo diffusion tensor imaging (DTI) by constructing multivariate models

of quantitative tissue microstructure in status epilepticus (SE)-induced brain

damage. We performed in vivo DTI and histology in rats at 79 days after

SE and control animals. The analyses focused on the corpus callosum,

hippocampal subfield CA3b, and layers V and VI of the parietal cortex.

Comparison between control and SE rats indicated that a combination

of microstructural tissue changes occurring after SE, such as cellularity,

organization of myelinated axons, and/or morphology of astrocytes, affect DTI

parameters. Subsequently, we constructed a multivariate regression model for

explaining and predicting histological parameters based on DTI. The model

revealed that DTI predicted well the organization of myelinated axons (cross-

validated R = 0.876) and astrocyte processes (cross-validated R = 0.909) and

possessed a predictive value for cell density (CD) (cross-validated R = 0.489).

However, the morphology of astrocytes (cross-validated R > 0.05) was not

well predicted. The inclusion of parameters from CA3b was necessary for

modeling histopathology. Moreover, the multivariate DTI model explained

better histological parameters than any univariate model. In conclusion,

we demonstrate that combining several analytical and statistical tools can

help interpret imaging outcomes to microstructural tissue changes, opening

new avenues to improve the non-invasive diagnosis and prognosis of brain

tissue damage.
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Introduction

In recent years, diffusion magnetic resonance imaging
(dMRI) methods, such as diffusion tensor imaging (DTI),
have become widely used tools to study the brain’s response
to pathological insults in both clinical and research settings
(Alexander et al., 2007; Tae et al., 2018; Müller et al., 2020).
The sensitivity of dMRI is based on the diffusion of water
molecules, which reflects the tissue microenvironment of the
cellular components, such as cell bodies, neurites, axons, or
blood vessels. Neurodegeneration, axonal plasticity and injury,
inflammation, or dendritic remodeling are some factors that can
potentially alter the tissue microenvironment and be detected
by DTI parameters (Laitinen et al., 2010; Haber et al., 2017;
Robinson et al., 2017; Benjamini et al., 2020; Clément et al., 2020;
Graham et al., 2020; Tavor et al., 2020). However, the complexity
of these cellular alterations complicates the interpretation
of DTI parameters, at present, their characterization is far
from satisfactory.

Changes in DTI parameters in the diseased brain have been
assessed with histology. Histological stainings and quantitative
analyses are known to provide morphological information on
the cellular components and their changes occurring during
pathological conditions (Herrera et al., 2008; Augustinack et al.,
2010; Concha et al., 2010; Flint et al., 2010; Chang et al.,
2017). Traditional quantitative analyses, such as optical density,
counting, or stereological-based methods, have been used to
extract tissue-derived parameters that can be correlated to
dMRI parameters (Trivedi et al., 2009; Jespersen et al., 2010;
Laitinen et al., 2010; Bennett et al., 2012; Janz et al., 2017;
Göbel-Guéniot et al., 2020). Recently, advanced histological
analysis methods have introduced new ways to quantify tissue
parameters directly comparable to dMRI parameters, e.g.,
Fourier transform- and structure tensor (ST)-based analyses
that extract anisotropy, orientation, or dispersion data (Budde
et al., 2011; Budde and Frank, 2012; Salo et al., 2017, 2021;
Breu et al., 2019; San Martín Molina et al., 2020). Moreover,
specific histological methods for quantifying the morphology
of glial cells in both the resting and activated states (Avignone
et al., 2015; Lanjakornsiripan et al., 2018; Young and Morrison,
2018; Clément et al., 2020), can provide new insights into the
relationship between dMRI parameters and changes occurring
in the tissue during pathological conditions. However, it
remains a major challenge in the field to determine how
DTI parameters could be associated with one and/or several
tissue changes, and more importantly, how imaging data
would be able to predict the tissue changes in response to
pathological conditions.

This present study describes how the interpretation of
DTI can be improved by utilizing a multivariate statistical
model of tissue microstructure and assessing the relationship
between several DTI and histological parameters. The model
evaluates if in vivo DTI can explain and predict the underlying

microstructural tissue changes after status epilepticus (SE)
induced-brain damage. In vivo DTI was performed 79 days
after SE, subsequently, the brains were prepared for histology.
Previous studies have described brain histopathological changes
after SE in rats, such as axonal sprouting (Kuo et al., 2008;
Laitinen et al., 2010; Sierra et al., 2011), axonal and astrocytes
reorganization (Salo et al., 2017), neurodegeneration and gliosis
(Sierra et al., 2015), or white matter alterations (Sierra et al.,
2011; van Eijsden et al., 2011; Luna-Munguia et al., 2021). Here,
we evaluated the cytoarchitecture and axonal and astrocyte
morphology in controls and SE rats using automated cell
counting, ST-, and morphological skeleton-based analyses in
the corpus callosum, layers V and VI of the parietal cortices,
and hippocampal subfield CA3b. As a novelty in our study,
we performed estimation-based statistics to assess the effects
of SE in both DTI and histological parameters. Moreover, we
constructed a regression model based on DTI, which could
predict tissue microstructural alterations after SE, by adopting
a leave-one-animal out and leave-one-brain region out cross-
validation (CV). Thus, this study combines several brain areas
and tissue morphological parameters together with advanced
analytical and statistical tools, which improve the interpretation
of DTI outcomes in the damaged brain.

Materials and methods

Animals and status epilepticus model

Adult male Wistar rats were used in all the experiments
(10 weeks old, 300–350 g, National Laboratory Animal Center,
Kuopio, Finland), housed individually in cages in a climate-
controlled room with an ad libitum diet. All animal procedures
were approved by the Animal Ethics Committee of the
Provincial Government of Southern Finland and performed in
accordance with the guidelines set by the European Community
Council Directives 2010/63/EEC.

All the experimental procedures and data acquisition were
as described in Salo et al. (2017). Briefly, we induced SE, which
models temporal lobe epilepsy, by injection of kainic acid (i.p.,
10 mg/kg, K2389, Sigma-Aldrich, St. Louis, MO, United States;
n = 14) or pilocarpine (s.c., 1 mg/kg, #S-8502, Sigma-Aldrich;
n = 14). The control group was treated with an injection of
0.9% NaCl (n = 4). The development of SE and its severity
score were assessed within 3 h after the injections (Racine, 1972).
After kainic acid injection, seven animals died during or after
SE, and one animal did not exhibit signs of SE (not included in
the study). In the pilocarpine group, diazepam was administered
120 min after the appearance of SE to reduce mortality. After
pilocarpine injection, six animals died, and one animal did not
show signs of SE (not included in the study). Altogether, the
total number of surviving SE animals included in this study,
and that had experienced recurrent generalized seizures for at
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least 30 min, was six in the kainic acid group and seven in the
pilocarpine group.

In vivo diffusion tensor imaging
acquisition and data processing

During the MRI scans, the animals were under 1.0–1.5%
isoflurane anesthesia, breathing 70% nitrogen/30% oxygen, and
had a stable body temperature (approximately 37◦C). In vivo
DTI was conducted using a horizontal 7-T Bruker PharmaScan
MRI system (Bruker BioSpin, Germany) with an actively
decoupled quadrature volume transmitter coil and a quadrature
rat receiver surface coil. In the acquisition of in vivo DTI data, we
used a diffusion-weighted segmented spin-echo planar imaging
pulse sequence with the following parameters: TE = 30 ms,
TR = 2.5 s, number of averages = 32, number of segments = 4,
21 directions (1 = 11 ms, δ = 4 ms, b-value = 1,000 s/mm2),
FOV of 21.2 × 14.08 mm2 (covered with 192 × 128 points,
resolution of 110 × 110 µm2), number of slices = 14, slice
thickness= 500 µm, and scan time= 2 h 20 min. These animals
were part of a longitudinal study (Salo et al., 2017), and in the
present study, we used data from the last time point, 79 days,
which corresponded to histology.

In the DTI data processing, all data were corrected for
motion and eddy current distortions with FMRIB’s Linear
Image Registration Tool (FLIRT) (Jenkinson and Smith, 2001;
Jenkinson et al., 2002) in the FMRIB Software Library (FSL 4.0).1

After eddy current corrections, the diffusion tensors, and their
respective eigenvalues (λ1, λ2, and λ3) were determined using
FSL. Then, we generated the fractional anisotropy (FA), axial
diffusivity (AD), radial diffusivity (RD), and mean diffusivity
(MD) maps (Basser and Pierpaoli, 1996; Pajevic and Pierpaoli,
1999). We also calculated linear (CL), planar (CP), and spherical
(CS) anisotropy indices (Westin et al., 2002), which provide
additional information related to changes in the anisotropic
diffusion geometry in the tissue microstructure, as previously
demonstrated post-SE (Salo et al., 2017).

Tissue processing for histology and
stainings

After the scans, all the rats were deeply anesthetized
by an i.p. injection (6 ml/kg) with an anesthetic cocktail
containing sodium pentobarbital (58 mg/kg), chloral hydrate
(60 mg/kg), magnesium sulfate (127.2 mg/kg), propylene glycol
(42.8%), and absolute ethanol (11.6%). The deep level of
anesthesia was kept by 5% isoflurane (70/30 N2/O2) followed
by transcardial perfusion, first with 0.9% NaCl, and then, by

1 http://www.fmrib.ox.ac.uk/fsl/

4% paraformaldehyde (PFA). The brains were removed from
the skull and postfixed in 4% PFA for 4 h. Then, the brains
were placed in a cryoprotective solution [20% glycerol in 0.02 M
potassium phosphate-buffer saline (KPBS), pH 7.4 for 36 h]. The
brains were frozen in dry ice and stored at −70◦C until cutting.
The brains were sectioned in a sliding microtome (coronal
plane, 30 µm, 1-in-5 series). We stored the first series of sections
in 10% formalin, and the remaining series in cryoprotectant-
tissue collecting solution (30% ethylene glycerol, 25% glycerol
in 0.05 M sodium phosphate buffer) at−20◦C until processing.

The first series of sections were stained with Nissl (thionin)
to assess the cytoarchitectonics and severity of tissue damage
after SE. The second series of sections were stained for myelin
using gold chloride to examine the myeloarchitecture (Laitinen
et al., 2010). Briefly, we incubated the sections mounted
on gelatin-coated slides in a 0.2% gold chloride solution
(HAuCl4·3H2O, G-4022 Sigma-Aldrich, Finland) in 0.02 M
sodium phosphate buffer (pH 7.4) containing 0.09% NaCl for
3–4 h in dark at room temperature (RT). After washing in
0.02 M sodium phosphate buffer containing 0.09% NaCl, the
sections were incubated in 2.5% sodium thiosulfate solution
(5 min). Then, the sections were washed in the buffer solution,
dehydrated in an ascending ethanol series, cleared in xylene, and
cover-slipped with DePeX (BDH, Laboratory Supplies, Dorset,
United Kingdom).

From the third series of sections, we stained three
consecutive sections immunohistochemically with an astrocyte
marker, glial fibrillary acidic marker (GFAP), to assess the
morphology of the astrocytes (Salo et al., 2017). Briefly, free-
floating sections were washed in 0.02 M KPBS and incubated
in 1% H2O2 (15 min) to remove endogenous peroxidase
activity. After washing in buffer, non-specific binding in the
sections was blocked by placing them in 10% normal horse
serum (NHS) solution (0.4% Triton X-100, 0.02 M KPBS)
for 2 h. Then, the sections were incubated for 48 h (4◦C)
in the primary antibody (mouse anti-GFAP, 1:4,000, #814369;
Boehringer Mannheim, Germany) diluted in 1% NHS, 0.4%
Triton X-100 in KPBS. Next, sections were washed and
incubated for 2 h at RT in the secondary antibody (biotinylated
horse anti-mouse immunoglobulin G, 1:200, BA-2000; Vector
Laboratories, Burlingame, CA, United States) solution (1%
NHS, 0.4% Triton X-100, KPBS). After washing, the sections
were incubated for 1 h at RT in 1% avidin-biotin in KPBS
(PK-4000, Vector Laboratories). Then, the sections were placed
black into the secondary antibody solution (45 min), followed by
immersion in the avidin-biotin solution (30 min). To visualize
the secondary antibody, we used a solution containing 0.05%
3′,3′ -diaminobenzidine (#34001, Pierce Chemical, Rockford, IL,
United States) and 0.04% H2O2 in KPBS. After washing in 0.1
M PB, we mounted the sections on gelatin-coated slides and
dried them overnight (37◦C). The sections were intensified with
osmium (OsO4, #19170, Electron Microscopy Sciences, Hatfield,
PA, United States) and thiocarbohydrazide (#21900, Electron

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.944432
http://www.fmrib.ox.ac.uk/fsl/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-944432 July 25, 2022 Time: 17:5 # 4

San Martín Molina et al. 10.3389/fnins.2022.944432

Microscopy Sciences). Finally, the sections were washed with
the buffer, dehydrated in an ascending ethanol series, cleared in
xylene, and cover-slipped with DePeX.

Histological data and analyses

We acquired high-resolution photomicrographs of the
whole brain in three consecutive Nissl-, myelin-, and GFAP-
stained sections with a ZeissAxioImager2 light microscope
(White Plains, NY, United States) equipped with a digital camera
(Zeiss Axiocam color 506). The images were acquired as tiles
with a resolution of 0.013 µm2/pixel.

In Nissl-stained sections, we quantified cell density (CD)
using an automated cell counting in-house MATLAB code as
described in San Martín Molina et al. (2020) and available at.2

An increase in CD on Nissl-stained sections was indicative
of gliosis as reported in previous studies (Sierra et al., 2015;
San Martín Molina et al., 2020). To assess the performance
of our automated cell counting analysis, we adjusted the
image threshold of 10 randomly selected photomicrographs
and compared the results with manual counting performed
by an expert (I.S.M.M.). The mean percentage error from the
automated cell counting analysis was 11.30% (Supplementary
Figure 1). In myelin- and GFAP-stained sections, we used
ST-based analysis to calculate the anisotropy index (AI) as
a histological derived parameter using the eigenvalues, which
were obtained by applying the pixel-wise ST-based method in
each image following the same procedure and parameters as
previously described in San Martín Molina et al. (2020). Briefly,
we first convolved the images with a directional derivative of
a 2D Gaussian function in two directions (size = 11 pixels,
σ = 3 pixels), to extract the directional derivatives of an
image. Then, we formed a tensor from the partial derivatives
and summed the STs into a pixelwise ST. Additionally, in
GFAP-stained sections, we used a skeleton-based approach to
extract morphological parameters of the astrocyte processes
by adopting the Analyze Skeleton 2D/3D plugin from the Fiji
project in ImageJ software3 (ImageJ version 1.53c, National
Institutes of Health, United States) as developed by Arganda-
Carreras et al. (2010). We optimized the protocol steps to
our photomicrographs based on the workflow introduced
by Young and Morrison (2018) (Supplementary Figure 2)
by visualizing the skeleton-derived morphology in random
photomicrographs to ensure that the skeleton plugin worked
in our images. Briefly, we removed the noise by first applying
a bandpass filter (large structure filter = 40, small structure
filter = 3) and removing the background of the images (rolling
ball radius = 200 pixels). Then, we adjusted the brightness
and contrast (min = 10, max = 254) and used an unsharp
mask filter (σ = 1.5 pixels, mask weight = 0.6) to enhance

2 https://github.com/aAbdz/cell_counter

3 https://imagej.net/AnalyzeSkeleton

the contrast of the features in the images. Next, we used
a despeckle function to remove the noise created from the
unsharp mask filter step. Following these steps, we converted
the grayscale image to a binary image by thresholding with
values between 0 and 223 (corpus callosum = 0–218, layer V
of parietal cortex = 0–223, layer VI of parietal cortex = 0–
219, CA3b = 0–223). Additionally, we applied three function
steps to remove noise and gaps between processes from the
binary images (despeckle, close, and remove outliers). Finally,
we skeletonized the images using the skeletonize step and
ran the AnalyzeSkeleton 2D/3D plugin. From the skeletonized
images, we first discarded small fragments remaining after image
thresholding, where we determined a minimum cut-off value
measuring several random small fragments in the images (cut-
off value = 0.7 µm length). Then, we sorted the data according
to endpoint voxels from largest to smallest, and by branch
length. Subsequently, we removed the values that contained 2
endpoints with a branch length less than the determined cut-off
value. Finally, we extracted the following parameters: number
of branches defined by slab segments connecting endpoints and
junctions’ parameters, branch length, triple points (junctions
with three branches), and quadruple points (junctions with four
branches). In each skeleton-derived parameter, we summed all
the values extracted to obtain the total number. Additionally,
we calculated the average length of the astrocyte processes per
animal by dividing the total branch length per total number of
branches in each image, to assess the overall change in length of
the astrocyte processes in each animal.

Region-of-interest based approach for
diffusion tensor imaging and histology

The selection of brain areas was based on previous
studies. The subfield CA3b of the hippocampus and the
corpus callosum have been reported as damaged after SE
in rats (Sierra et al., 2011; Salo et al., 2017; Luna-Munguia
et al., 2021). The parietal cortex has not been described as
a component of the network in the SE model; however, we
observed activated astrocytes in GFAP staining on layers V
and VI (refer to Results), which motivated the inclusion of
these layers in the analyses. We extracted DTI and histological
parameters by adopting an region-of-interest (ROI)-based
approach. An expert (I.S.M.M.) manually outlined the brain
regions mentioned above at −3.60 mm from bregma on
the left hemisphere in both DTI maps and histological
photomicrographs (Figure 1). We ensured that DTI and
histology ROIs were drawn in the same location by utilizing
whole brain photomicrographs and anatomical landmarks, such
as whole brain, ventricles, shape, and size of white and gray
matter, nuclei and layers, to find the corresponding location as
in DTI maps. The ROIs outlined in histological sections were
representative of the DTI ones. We outlined the ROIs in DTI
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maps using an in-house Matlab tool called AEDES4 (Matlab
R2018b; MathWorks, Natick, Massachusetts, United States)
(Figure 1A). Similarly as in DTI, we outlined all the ROIs
on photomicrographs to extract histological-derived parameters
using the ZEN software (version 3.1; Carl Zeiss Microscopy
GmbH, Germany) (Figure 1B).

Statistical analyses

Estimation statistics-based approach
In the statistical analyses, we aimed to assess the effect

of SE in DTI and histological parameters, reporting the effect
sizes of SE-induced brain damage in addition to null hypothesis
significance testing and utilizing an estimation statistics-based
approach. In the present study, we consider both kainic acid-
and pilocarpine-treated animals as one SE animal group for
statistical analyses, since both animal models exhibited similar
histopathological and DTI profiles based on previous studies
(Covolan and Mello, 2000; Salo et al., 2017). We performed
estimation statistics using the DABEST package (version 0.3.1)
developed by Ho et al. (2019) in Python (version 3.8). As
outputs, we quantified the effect sizes with Cohen’s d along
with its confidence intervals (CI). The CIs were computed
bias-corrected and accelerated bootstrap. In order to simplify
the interpretation of the effect sizes, we followed the standard
practice to consider Cohen’s |d| = 0.8, |d| = 0.5 and |d| = 0.2 as
large, medium, and small effect size, respectively (Cohen, 1988).
We complemented the effect size statistics with hypothesis
tests using a studentized two-sided permutation t-test (100,000
permutations). We applied the multiple comparison correction
by using the Benjamini-Hochberg false discovery rate (BH-FDR;

4 http://aedes.uef.fi/

Benjamini and Hochberg, 1995) to the p-values, but the reported
CIs are uncorrected. The plots for both MRI and histological
parameters represent the values expressed as mean with 95% CI,
using GraphPad Prism (version 5.03, GraphPad Software Inc.,
La Jolla, CA, United States).

Multiple linear regression and Pearson
correlation analyses

When evaluating the relationship between DTI and
histology in the selected brain regions, we performed a
multiple linear regression in an attempt to explain histological
parameters based on DTI parameters. The model that we used is

ykj = bTxkj + c+ ekj

where ykj is a histological parameter for animal k in the region
j (corpus callosum, layer V, layer VI, CA3b), xkj is the vector
of DTI parameters (FA, RD, MD, CP, CS) for animal k in the
region j, b and c are the regression parameters, and ekj represents
normally distributed independent and identically distributed
errors. We concatenated parameters from all the regions and all
the animals into a single model.

We excluded AD and CL from the DTI parameters to avoid a
singular variance-covariance matrix as AD= 3∗MD - 2∗RD and
CL = 1 – CP – CS. We further noted that all DTI parameters
were non-linear functions of just three eigenvalues of the
diffusion tensor. Therefore, the five remaining DTI parameters
displayed a notable amount of structural collinearity, which
means that the inferences concerning individual coefficients
of the regression model were not reliable. However, the
five-parameter model had a non-singular variance-covariance
matrix, and the explanatory and predictive accuracy of the
model could be evaluated. The choice of AD and CL as the
parameters to be removed was arbitrary and had no influence
on the evaluation of the model’s accuracy. We used SPSS to

FIGURE 1

Outlined ROIs in coronal fractional anisotropy (FA) map (A) and Nissl-stained section (B) from a control animal. The ROIs included in this study
are corpus callosum (blue color), subfield CA3b of the hippocampus (yellow), layers V (red), and VI (green) of the parietal cortex, and the
equivalent in the Nissl-stained section. The ROI area outlined on the histological photomicrographs in the left corpus callosum, layers V and VI
of the parietal cortices was 180.81 × 141.31 µm2, whereas the ROI area in CA3b was 104.42 µm2

× 89.89 µm2. The gray scale reveals FA values
between 0 (black) and 1 (white). Scale bar: 500 µm.
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fit the regression model and estimated the 95% CI values
for R2 using the SPSS code from Smithson (2001). Due to
the structural collinearity of DTI parameters, we assessed the
relationships between individual DTI (FA, RD, MD, CP, and CS)
and histological parameters in all selected brain regions using
Pearson correlation analysis with GraphPad Prism (version 5.03,
GraphPad Software Inc., La Jolla, CA, United States). We report
the correlation coefficient R along with 95% CI and applied
multiple comparison corrections based on the p-values (i.e., CIs
are uncorrected). Moreover, we also report the F statistics to
support that the regression model provides a better fit than a
model without independent variables. The 95% CI values were
computed as accelerated bootstraps in SPSS (version 27, IBM
SPSS Statistics, United States).

Cross-validation by leaving-one-animal out
and by leaving-one-brain region out

We assessed how predictive DTI would be with regard
to histology by evaluating the performance of the regression
model by running leave-one-animal out and leaving-one-region
out CV. Since the regression model (incorrectly) assumes that
the parameters from different regions of the same animal are
independent, we evaluated its predictive performance using
leave-one-animal out CV. We report the quality of validated
predictions using a cross-validated correlation coefficient R
and the coefficient of determination (Q2) of the relationship
between the two has been analyzed in detail in Moradi et al.

(2017). Q2 is defined by Q2
= 1−

(1/KJ)
∑

k
∑

j
(
ykj−ŷkj

)2

(1/KJ)
∑

k
∑

j(ykj−ykj)2 , where

ykj is the true histological parameter, ŷkj is the predicted
histological parameter of the animal k in the region j and ykj

is the average of the true histological parameter values. CV-
analyses were performed by using an in-house MATLAB code
available at.5

Results

Effects of status epilepticus-induced
brain damage in diffusion tensor
imaging and histological parameters

In the corpus callosum, the effect of SE was large in CS
[|d| = 1.160, 95% CI (0.23, 2.32); Table 1 and Figure 2G]
and medium in FA and AD (Table 1 and Figures 2A,B).
However, CIs for FA and AD were wide, which was evidence
of uncertainty about the effect of SE in these DTI parameters
(Table 1). Despite no apparent changes in cellularity or the
morphology of axons or astrocyte processes between SE and
control animals (Figures 3A1–F1), the effect of SE was large in
CD [|d| = 1.480, 95% CI (0.01, 2.70); Table 2 and Figure 4A]
and in all extracted skeleton-based parameters (|d| > −0.8;
Table 2 and Figures 4E–L), except for average length (Table 2
and Figure 4D). It is important to highlight that although the
effect size of SE was large in all skeleton-based parameters, wide
CIs are indicative of uncertainty regarding the effect size in these
histological parameters. In AIMyelin and AIGFAP, the effect of SE
was small (Figures 4B,C).

5 https://github.com/jussitohka/mrihistology

TABLE 1 Effect of SE-induced brain damage in quantitative ROI-based analyses of DTI parameters.

cc Layer V Layer VI CA3b

DTI parameters Cohen’s |d|(95% CI)
q

Cohen’s |d|(95% CI)
q

Cohen’s |d|(95% CI)
q

Cohen’s |d|(95% CI)
q

FA −0.596 (−1.45, 0.43)
0.739

0.029 (−0.89, 0.84)
0.978

1.080 (−0.59, 2.42)
0.286

2.09 (0.98, 3.22)*
0.026

AD −0.726 (−1.37, 0.05)
0.620

0.018 (−1.30, 0.94)
0.978

0.559 (−0.30, 1.87)
0.740

0.993 (−0.26, 2.64)
0.322

RD 0.312 (−1.17, 1.32)
0.763

−0.364 (−2.23, 1.93)
0.746

0.077 (−0.81, 1.14)
0.962

−0.479 (−1.83, 0.62)
0.740

MD −0.402 (−1.84, 0.54)
0.746

−0.149 (−1.51, 1.23)
0.895

0.318 (−0.50, 1.49)
0.763

0.154 (−1.29, 1.66)
0.895

CL −0.402 (−1.26, 0.69)
0.746

0.530 (−0.64, 1.77)
0.740

0.165 (−0.95, 1.32)
0.895

1.150 (0.41, 1.92)
0.239

CP −0.465 (−1.62, 0.45)
0.740

−0.691 (−1.85, 0.74)
0.620

1.250 (0.53, 2.12)
0.239

1.210 (0.40, 1.99)
0.239

CS 1.160 (0.23, 2.32)
0.239

0.422 (−0.50, 1.46)
0.740

−1.430 (−2.48,−0.01)
0.239

−2.560 (−3.71,−1.33)*
0.013

The effect of SE- The effect of SE-induced brain damage was large in CS in the corpus callosum; in FA, CP, and CS in layer VI of the parietal cortex; in FA, AD, CL, CP, and CS in the subfield
CA3b. BH-FDR-corrected q-values are denoted with asterisks (*q < 0.05; two-side permutation t-test). AD, axial diffusivity; CA, cornus ammonis; cc, corpus callosum; CI, confidence
interval; CL, linear anisotropy; CP, planar anisotropy; CS, spherical anisotropy; DTI, diffusion tensor imaging; FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity.
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FIGURE 2

In vivo DTI parameters in control and status epilepticus animals at 79 days (A–G). Controls are represented as yellow diamonds, kainic
acid-treated as green, and pilocarpine-treated as blue circles, respectively. The bars represent mean values with 95% CI. Differences between C
and SE animals are denoted with asterisks (BH-FDR-corrected q-value * < 0.05; two-sided permutation t-test). SE animals exhibited an increase
in FA (A) or a decrease in CS (G) parameters in the subfield CA3b as compared to controls. AD, axial diffusivity; C, control; CA, cornus ammonis;
cc, corpus callosum; CL, linear anisotropy; CP, planar anisotropy; CS, spherical anisotropy; FA, fractional anisotropy; MD, mean diffusivity; RD,
radial diffusivity; SE, status epilepticus.

In layer V of the parietal cortex, the effect of SE was
medium in CL and CP (Table 1 and Figures 2E,F). We did
not observe any apparent changes in cyto- or myeloarchitecture
between SE and control animals (Figures 3A2–D2), but we
detected an increase in both the number and the length
of the astrocyte processes in SE animals (Figure 3F2) as
compared to controls (Figure 3E2) (Figure 3F2). The effect
of SE was clear in all extracted skeleton-based parameters
(|d| > 0.8; Table 2 and Figures 5E–L) except for average length
(Table 2 and Figure 5D), and medium in AIMyelin (Table 2
and Figure 5B). Although the effect of SE was medium in CL,
CP, and AIMyelin, CIs were wider in those parameters in this
cortical layer, indicating uncertainty about the effect of SE in
those parameters. In CD and AIGFAP, the effect of SE was small
(Figures 5A,C). In layer VI of the parietal cortex, the effect of
SE was large in FA [|d| = 1.080, 95% CI (−0.59, 2.42)], CP
[|d| = 1.250, 95% CI (0.53, 2.12)] and CS [|d| = 1.430, 95%
CI (−2.48, −0.01)] (Table 1 and Figures 2A,F,G). Moreover,
the effect of SE was medium in AD, but CI revealed extensive
variation, and uncertainty about the effect of SE should be
considered (Table 1 and Figure 2B). We did not observe any
apparent changes in cellularity when comparing control and
SE animals (Figures 3A3,B3), but myelinated axons appeared
more numerous and aligned in a dorso-ventral orientation
(Figures 3C3,D3). There was also an increase in the number and
length of astrocyte processes in SE animals (Figures 3E3,F3). In
GFAP-stained sections, the ST-based analysis revealed that the
effect of SE was large in AIGFAP [|d|= 1.350, 95% CI (0.20, 2.70);
Table 2 and Figure 6C] and in all skeleton-based parameters

(|d| > 0.8; Table 2 and, Figures 6D–L). However, the effect of
SE was small in CD and AIMyelin (Figures 6A,B). Altogether,
the effects of SE in AIGFAP, and skeleton-based parameters,
in layers V and VI in the parietal cortex are indicative of
changes in the organization and morphology of the astrocyte
processes in SE rats.

In the CA3b, the effect of SE was large in FA [|d| = 2.090,
95% CI (0.98, 3.22)], AD [|d| = 0.993, 95% CI (−0.26, 2.64)],
CL [|d| = 1.150, 95% CI (0.41, 1.92)], CP [|d| = 1.210, 95%
CI (0.40, 1.99)] and CS [|d| = −2.560, 95% CI (−3.71, −1.33)]
(Table 1 and Figures 2A,B,E–G). It is noteworthy that the
effect of SE was large in DTI parameters with narrow CIs,
revealing the robustness of the effect evoked by SE. As compared
to controls, the animals which had experienced SE exhibited
increased cellularity (Figures 3A4,B4), a reorganization of
myelinated axons (Figures 3C4,D4), and an increase in the
number and length of astrocyte processes (Figures 3E4,F4).
The effect of SE was large in CD [|d| = 1.250, 95% CI
(0.41, 2.71)], AIMyelin [|d| = 2.300, 95% CI (0.45, 4.34)],
and AIGFAP [|d| = 1.650, 95% CI (0.80, 3.14)] (Table 2 and
Figures 7A–C). The effect of SE was medium in the number
of branches, total length, slab, and endpoint voxels (Table 2
and Figures 7E–G,J), but the CIs displayed large variation.
On the other hand, the effect of SE was small in average
length, junction voxels, junctions, triple and quadruple points
(Figures 7D,H,I,K,L). Thus, the large effect of SE in AIGFAP

and AIMyelin suggested reorganization of both myelinated
axons and astrocyte processes in the CA3b after SE. In DTI
parameters such as RD and MD, we did not find the effect
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FIGURE 3

Representative high-magnification photomicrographs in Nissl-, myelin-, and GFAP-stained sections of one control (A,C,E) and one status
epilepticus (B,D,F) animal in white and gray matter areas. White arrowheads indicate changes in the organization of myelinated axons (D3,D4).
Black arrowheads indicate increased cellularity (B4) and an increase in the number of astrocyte processes and length (F2,F3,F4) at 79 days
post-SE. The same animals are shown in the three stainings. Scale bar: 50 µm. C, control; CA, cornus ammonis; GFAP, glial fibrillary acidic
protein; SE, status epilepticus.

of SE in any of the areas analyzed in this study (Figures
2C,D).

Relationship between histological and
diffusion tensor imaging parameters

When using the multivariate DTI model, we found that
AIMyelin was extremely well explained by DTI parameters

[R2
= 0.822, R2 adj = 0.807, 95% CI (0.72, 0.86); Table 3],

where FA, RD, and CS showed large effects [R2 > 0.60, R > 0.80;
Table 4 and Figures 8A,B] according to the univariate DTI
model. Similarly to AIMyelin, DTI parameters explained AIGFAP

well [R2
= 0.855, R2 adj = 0.843, 95% CI (0.77, 0.88); Table 3],

whereas FA, RD, and CS also exhibited large effects [R2 > 0.65,
R > 0.80; Table 4 and Figures 8C,D]. In CD, over 50% of
the variation was explained by the multivariate DTI model
[R2
= 0.557, R2 adj = 0.521, 95% CI (0.35, 0.64); Table 3],
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TABLE 2 Effect of SE-induced brain damage in quantitative ROI-based analyses of histological parameters.

cc Layer V Layer VI CA3b

Histological parameters Cohen’s |d|(95% CI)
q

Cohen’s |d|(95% CI)
q

Cohen’s |d|(95% CI)
q

Cohen’s |d|(95% CI)
q

AIMyelin −0.275 (−1.15, 1.31)
0.690

0.512 (−0.67, 1.91)
0.546

0.201 (−0.54, 1.00)
0.760

2.300 (0.45, 4.34)*
0.012

AIGFAP −0.452 (−0.94, 0.51)
0.590

0.273 (−0.75, 1.51)
0.690

1.350 (0.20, 2.70)
0.068

1.650 (0.80, 3.14)*
0.044

CD 1.480 (0.01, 2.70)
0.051

−0.476 (−1.49, 0.58)
0.569

0.120 (−0.60, 1.26)
0.848

1.250 (0.41, 2.71)
0.071

Average length 0.340 (−0.42, 1.03)
0.627

0.421 (−1.86, 2.91)
0.590

2.060 (0.96, 3.57)*
0.018

0.058 (−0.68, 0.93)
0.920

Branches −1.520 (−2.78,−0.22)*
0.047

2.580 (1.50, 4.01)**
0.001

1.550 (0.37, 2.71)*
0.047

0.503 (−0.69, 1.22)
0.547

Branch length −1.370 (−2.62,−0.16)
0.068

3.430 (1.87, 5.12)**
0.001

1.800 (0.80, 2.82)*
0.031

0.576 (−0.70, 1.40)
0.490

Slab voxels −1.340 (−2.59,−0.14)
0.068

3.510 (1.88, 5.31)***
2.400× 10−6

1.830 (0.83, 2.84)*
0.029

0.603 (−0.67, 1.44)
0.464

Junction voxels −1.360 (−2.78,−0.17)
0.068

2.390 (1.47, 3.76)**
0.001

1.500 (0.45, 2.46)*
0.047

0.388 (−0.98, 1.05)
0.596

Junctions −1.330 (−2.73,−0.09)
0.068

2.400 (1.42, 3.67)**
0.003

1.520 (0.49, 2.49)*
0.047

0.394 (−0.96, 1.04)
0.596

Endpoint voxels −1.630 (−2.84,−0.27)*
0.044

2.620 (1.53, 3.98)**
0.003

1.520 (0.14, 2.94)*
0.047

0.752 (−0.23, 1.61)
0.320

Triple points −1.330 (−2.74,−0.05)
0.068

2.470 (1.48, 3.75)***
2.400× 10−6

1.560 (0.54, 2.53)*
0.047

0.396 (−0.94, 1.05)
0.596

Quadruple points −1.280 (−2.83,−0.32)
0.072

1.790 (0.75, 2.81)*
0.029

0.989 (−0.29, 1.91)
0.156

0.368 (−1.09, 1.02)
0.596

The effect of SE-induced brain damage was large in CD and all skeleton-based parameters in the corpus callosum; in all skeleton-based parameters in layer V of the parietal cortex; AIGFAP ,
average length and in all skeleton-based parameters in layer VI of the parietal cortex; in AIMyelin , AIGFAP and CD in the subfield CA3b. BH-FDR-corrected q-values are denoted with
asterisks (*q < 0.05; **q < 0.01; ***q < 0.001; two-side permutation t-test). AI, anisotropy index; C, control; CA, cornus ammonis; cc, corpus callosum; CD, cell density; CI, confidence
interval.

whereas the univariate DTI model indicated that FA, RD,
and CS parameters also showed medium effects [R2 > 0.20,
R > 0.45; Table 4 and Figures 8E,F). Moreover, all skeleton-
based and DTI parameters correlated, except for average length;
in these cases, DTI explained over 20% of the variation in
these histological parameters (Table 3). In more detail, DTI
parameters explained over 60% of the variation in endpoint
voxels [R2

= 0.659, R2 adj= 0.632, 95% CI (0.48, 0.73); Table 3],
and over 50% of the variation in branches [R2

= 0.507, R2

adj = 0.467, 95% CI (0.29, 0.60); Table 3], whereas FA, RD, and
CS exhibited medium effects (R2 > 0.40, R > 0.60; Table 4).
Altogether, these findings indicate that the multivariate DTI
model explained the histological parameters better than the
univariate DTI models.

The CV analysis revealed the strong predictive accuracy of
DTI parameters for assessing AIMyelin (R = 0.876; Q2

= 0.766)
and AIGFAP (R = 0.909; Q2

= 0.825), and moderate for CD
(R= 0.489; Q2

= 0.050) when applying the approach of leaving-
one-animal out (Table 3). We also found that the model did not
have a predictive value for skeleton-based parameters (R > 0.05;
Q2 > −11.00; Table 3). Moreover, a leave-one-brain region out
CV analysis indicated that the inclusion of subfield CA3b was

necessary if one wished to obtain strong predictive relationships
between DTI and histological parameters (Table 5).

Discussion

In this study, we investigated the association of in vivo
DTI parameters to one and/or several changes in histological
parameters after SE-induced brain damage and examined the
prediction of underlying tissue changes based on DTI. When
comparing SE animals to controls, changes in in vivo DTI
parameters in the corpus callosum might be associated with
changes in cellularity and morphology of astrocyte processes. In
the parietal cortex, these alterations might be related to changes
in the morphology of astrocyte processes in layer V, as well
as in the morphology and organization of astrocyte processes
in layer VI. In CA3b, changes in in vivo DTI parameters
might associate with morphometric changes in all the cellular
components analyzed in this study. More importantly, we
found that in vivo DTI parameters were highly predictive
of AIMyelin and AIGFAP, moderately predictive of CD, but
not predictive for skeleton-based parameters. Furthermore, we
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FIGURE 4

Histological-derived parameters from automated cell counting analyses (A), structure tensor (ST)-based analyses of myelin (B), and ST (C) and
skeleton-based analysis (D–L) from GFAP-stained sections in the corpus callosum. Controls are represented as yellow diamonds, kainic
acid-treated as green, and pilocarpine-treated as blue circles, respectively. The bars represent the mean values with 95% CI. Differences
between C and SE animals are denoted with asterisks (BH-FDR-corrected q-value * < 0.05; two-side permutation t-test). SE animals exhibited
decreases in branches (E) and endpoint voxels (J) parameters as compared to controls. AI, anisotropy index; C, control; CD, cell density; SE,
status epilepticus.

FIGURE 5

Histological-derived parameters from automated cell counting analyses (A), structure-tensor (ST)-based analyses of myelin (B), and ST (C) and
skeleton-based analysis (D–L) from GFAP-stained sections in layer V of the parietal cortex. Notations as in Figure 4. SE animals revealed
increases in all skeleton-based parameters (E–L) as compared to controls (BH-FDR-corrected q-values * < 0.05, ** < 0.01, *** < 0.001;
two-side permutation t-test). AI, anisotropy index; C, control; CD, cell density; SE, status epilepticus.
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FIGURE 6

Histological-derived parameters from automated cell counting analyses (A), structure-tensor (ST)-based analyses of myelin (B), and ST (C) and
skeleton-based analysis (D–L) from GFAP-stained sections in layer VI of the parietal cortex. Notations as in Figure 4. SE animals exhibited
increases in average length (D) and in all skeleton-based parameters (E–L) as compared to controls (BH-FDR-corrected q-value * < 0.05;
two-side permutation t-test). AI, anisotropy index; C, control; CD, cell density; SE, status epilepticus.

FIGURE 7

Histological-derived parameters from automated cell counting analyses (A), structure-tensor (ST)-based analyses of myelin (B), and ST (C) and
skeleton-based analysis (D–L) from GFAP-stained sections in the subfield CA3b. Notations as in Figure 4. SE animals revealed increases in
AIMyelin (B) and AIGFAP (C) parameters as compared to controls (BH-FDR-corrected q-value * < 0.05; two-side permutation t-test). AI,
anisotropy index; C, control; CD, cell density; SE, status epilepticus.
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TABLE 3 Multiple linear regression analyses between DTI and
histological parameters and leave-one-animal out cross-validation.

R2 (95% CI)
q

R2 adj. F R
Q2

AIMyelin 0.822 (0.72, 0.86)***
2.349× 10−20

0.807 57.076 0.876
0.766

AIGFAP 0.855 (0.77, 0.88)***
8.038× 10−23

0.843 73.086 0.909
0.825

CD 0.557 (0.35, 0.64)***
1.176× 10−8

0.521 15.585 0.489
0.050

Average length 0.104 (0.00, 0.20)
0.331

0.032 1.439 −0.014
−0.161

Branches 0.507 (0.29, 0.60)***
2.238× 10−7

0.467 12.758 0.207
−15.160

Branch length 0.467 (0.24, 0.57)***
1.856× 10−6

0.424 10.874 0.209
−15.040

Slab voxels 0.453 (0.22, 0.56)***
3.452× 10−6

0.409 10.268 0.206
−14.984

Junction voxels 0.326 (0.10, 0.44)**
0.001

0.272 6.008 0.114
−18.482

Junctions 0.317 (0.09, 0.43)**
0.001

0.262 5.750 0.113
−17.735

Endpoint voxels 0.659 (0.48, 0.73)***
5.871× 10−12

0.632 23.977 0.296
−11.236

Triple points 0.322 (0.10, 0.44)**
0.001

0.268 5.895 0.116
−17.569

Quadruple points 0.251 (0.04, 0.37)*
0.014

0.191 4.158 0.062
−19.835

Multivariate DTI regression model (R2) strongly explained AIMyelin and AIGFAP by
DTI, while DTI explained 50 and 20% of the variation in CD and all skeleton-based
parameters, respectively. Cross-validation of the model by leaving-one-animal out (R)
indicated that DTI accurately predicted AIMyelin and AIGFAP , while moderately CD. BH-
FDR-corrected q-values for multiple linear regression tests between DTI and histological
parameters are denoted with asterisks (*q < 0.05; **q < 0.01; ***q < 0.001; multiple linear
regression model). AI, anisotropy index; CD, cell density; CI, confidence intervals.

found that it was necessary to include the CA3b brain region
when modeling histopathology based on DTI. In this regard,
this study indicates that a multivariate DTI model approach
provides a better explanation of histological parameters than any
single univariate model. Altogether, our results represent a step
forward in the interpretation of DTI parameters, showing how
they potentially reflect the underlying changes in the rat brain’s
tissue microstructure after SE.

Previous studies have reported changes in DTI parameters
in the corpus callosum after SE, e.g., either an increase (Sierra
et al., 2011) or a decrease in FA (Luna-Munguia et al., 2021),
as well as a decrease in AD (van Eijsden et al., 2011; Luna-
Munguia et al., 2021), an increase in RD (Luna-Munguia et al.,
2021) and a decrease in MD (van Eijsden et al., 2011). Here,
we found that the effects of SE in DTI parameters revealed a
large effect in CS, and medium in FA and AD with wide CIs
that indicate uncertainty about the effects of SE, but altogether
the changes in these DTI parameters might associate with an
increase in cellularity and morphological changes of astrocyte
processes in the corpus callosum. However, no apparent changes
were observed in myelinated axons. van Eijsden et al. (2011)

examined the changes in the corpus callosum at 4 and 8 weeks
after SE using the pilocarpine model. These authors found a
transient decrease in MD at 4 weeks and a persistent decrease
in AD at 4 and 8 weeks post-SE, related to a decrease and
partial recovery in myelin intensity, respectively. No apparent
changes in myelinated axons found in the previous and present
study at the chronic phase might indicate axonal alterations in
the early stages after SE with recovery over time. However, in
this study, Nissl and GFAP stainings revealed evidence of still
active and ongoing inflammatory processes at 79 days. These
results may be indicative of ongoing inflammation without
axonal alterations in the corpus callosum at this timepoint after
SE. Thus, these results also indicate that not only myelinated
axons can modify the microstructural environment, but those
other cellular contributors, such as inflammatory cells, can
also influence DTI parameters, in agreement with previous
reports in other white matter regions (Sierra et al., 2011;
Luna-Munguia et al., 2021).

Reactive glial cells change their morphology and increase
the number and length of their processes. Budde et al. (2011)
performed a quantitative Fourier transform-based histological
analysis after an experimental traumatic brain injury and
reported that increased FA in the cortex was associated with
changes in the structural organization of reactive astrocytes. In
the present study, we also associated changes in in vivo DTI
parameters with changes in astrocyte processes at 79 days post-
SE. In layer V of the parietal cortex, we hypothesized that the
changes in the morphology of astrocyte processes might relate
to the medium effects of SE in DTI parameters such as CL and
CP, although the CIs revealed uncertainty about these effects.
In layer VI, the large effect of SE in FA, CP, and CS might
associate with changes in both the organization and morphology
of astrocyte processes, but uncertainty about the effects of SE in
FA and CS should be considered since wide CIs were revealed. It
is noteworthy that although we did not detect any effect of SE in
the organization of myelinated axons in layer VI, our findings
revealed a greater number, which was more aligned in the
dorso-ventral orientation in SE animals. Therefore, our findings
indicate that the reorganization of astrocytes and myelinated
axons in the cortex can be reflected in DTI parameters after SE.

Several studies have described increased FA in the
hippocampus and dentate gyrus associated with axonal plasticity
in rats (Kuo et al., 2008; Laitinen et al., 2010; Parekh et al.,
2010; Sierra et al., 2011, 2015; Salo et al., 2017). It has been
reported that increases in FA and CP and a decrease in CS in
both the CA3b and CA3c subfields were related to changes in
the reorganization of myelinated axons and astrocyte processes
(Salo et al., 2017), and a decreased FA has been linked to
neurodegeneration and microglial scarring of the pyramidal cell
layer in the CA1 (Sierra et al., 2015; Janz et al., 2017). Here,
we found that the effect of SE in FA, AD, CL, CP, and CS,
might be associated with an increase in CD, and a reorganization
of myelinated axons and astrocytes in CA3b. It is important
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TABLE 4 Pearson’s correlations analyses between DTI and histological parameters.

FA RD MD CP CS

R (95% CI)
R2

q

R (95% CI)
R2

q

R (95% CI)
R2

q

R (95% CI)
R2

q

R (95% CI)
R2

q

AIMyelin 0.858 (0.77, 0.91)***
0.736

1.224× 10−19

−0.805 (−0.87,−0.71)***
0.648

1.300× 10−15

0.484 (0.30, 0.63)***
0.234

5.111× 10−5

0.584 (0.40, 0.73)***
0.341

5.418× 10−7

−0.875 (−0.92,−0.81)***
0.766

3.474× 10−21

AIGFAP 0.881 (0.81, 0.93)***
0.776

1.046× 10−21

−0.817 (−0.88,−0.72)***
0.667

2.235× 10−16

0.535 (0.36, 0.68)***
0.286

6.576× 10−6

0.563 (0.40, 0.71)***
0.317

1.672× 10−6

−0.893 (−0.94,−0.82)***
0.797

7.443× 10−23

CD 0.524 (0.41, 0.62)***
0.275

9.861× 10−6

−0.575 (−0.68,−0.46)***
0.331

8.502× 10−7

−0.113 (−0.35, 0.09)
0.013
0.359

0.161 (−0.05, 0.34)
0.026
0.196

−0.494 (−0.61,−0.36)***
0.244

3.340× 10−5

Average length −0.278 (−0.46, 0.09)*
0.077
0.026

0.251 (0.06, 0.43)*
0.063
0.043

−0.151 (−0.37, 0.07)
0.023
0.223

−0.238 (−0.46, 0.02)
0.057
0.055

0.285 (0.10, 0.48)*
0.081
0.023

Branches 0.677 (0.50, 0.80)***
0.458

1.387× 10−9

−0.647 (−0.76,−0.50)***
0.419

1.231× 10−8

0.362 (0.14, 0.56)**
0.131
0.004

0.331 (0.09, 0.56)**
0.110
0.008

−0.673 (−0.79,−0.51)***
0.453

1.807× 10−9

Branch length 0.645 (0.46, 0.78)***
0.416

1.341× 10−8

−0.616 (−0.75,−0.42)***
0.379

7.766× 10−8

0.345 (0.12, 0.53)**
0.119
0.006

0.301 (0.01, 0.56)*
0.091
0.017

−0.638 (−0.76,−0.48)***
0.407

2.013× 10−8

Slab voxels 0.632 (0.47, 0.78)***
0.399

2.885× 10−8

−0.603 (−0.73,−0.45)***
0.364

1.705× 10−7

0.342 (0.11, 0.54)**
0.117
0.006

0.292 (0.03, 0.55)*
0.085
0.020

−0.625 (−0.76,−0.46)***
0.391

4.463× 10−8

Junction voxels 0.540 (0.36, 0.68)***
0.292

5.364× 10−6

−0.513 (−0.67,−0.33)***
0.263

1.528× 10−5

0.297 (0.08, 0.49)*
0.088
0.018

0.259 (−0.001, 0.50)*
0.067
0.038

−0.535 (−0.69,−0.33)***
0.286

6.576× 10−6

Junctions 0.529 (0.33, 0.70)***
0.280

8.246× 10−6

−0.500 (−0.67,−0.31)***
0.250

2.683× 10−5

0.298 (0.06, 0.51)*
0.089
0.018

0.255 (0.003, 0.50)*
0.065
0.040

−0.523 (−0.68,−0.32)***
0.273

9.896× 10−6

Endpoint voxels 0.774 (0.66, 0.86)***
0.599

8.530× 10−14

−0.745 (−0.83,−0.65)***
0.555

2.192× 10−12

0.400 (0.19, 0.58)**
0.160
0.001

0.383 (0.16, 0.60)**
0.147
0.002

−0.771 (−0.85,−0.67)***
0.594

1.042× 10−13

Triple points 0.533 (0.31, 0.71)***
0.284

7.047× 10−6

−0.502 (−0.66,−0.30)***
0.252

2.475× 10−5

0.303 (0.10, 0.50)*
0.092
0.016

0.261 (−0.003, 0.52)*
0.068
0.037

−0.527 (−0.68,−0.34)***
0.278

8.739× 10−6

Quadruple points 0.468 (0.25, 0.64)***
0.219

9.796× 10−5

−0.456 (−0.63,−0.25)***
0.208

1.502× 10−4

0.228 (0.05, 0.42)
0.052
0.065

0.180 (−0.07, 0.42)
0.032
0.149

−0.461 (−0.65,−0.23)***
0.212

1.254× 10−4

Univariate DTI analysis by Pearson’s correlation highlighted that FA, RD, and CS showed strong correlations with histological parameters. BH-FDR-corrected q-values for Pearson’s
correlations between DTI and histological parameters are denoted with asterisks (*q < 0.05; **q < 0.01; ***q < 0.001; Pearson’s correlation). AI, anisotropy index; CD, cell density; CI,
confidence intervals; CP, planar anisotropy; CS, spherical anisotropy; FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity.

to highlight that AD and CS showed wider CI and should be
considered the uncertainty of the effects of SE in this regard.
Thus, previous and current findings suggest that changes in both
axons and astrocytes can be detected in the hippocampus by DTI
in rats after SE.

Our findings highlight that DTI parameters were
substantially associated with anisotropy of myelinated
axons and astrocyte processes in white and gray matter
areas. Moreover, a multivariate DTI model provided a better
explanation of the histological parameters as compared to the
univariate models. Our CV of the regression model confirmed
that DTI parameters were very predictive of these histological
changes in white and gray matter areas at 79 days post-SE.
Furthermore, DTI moderately explained CD although it was

less useful in explaining skeleton-based parameters. Regarding
the selected brain regions, we found that the predictive models,
which did not include data from CA3b, were much less accurate
than those including this brain region. This indicates that one
needs to have sufficient heterogeneity of quantitative parameters
if the intent is to build predictive models of histological
parameters. Modeling approaches focusing exclusively on a
single brain region might not be successful.

There are a few limitations in our study that should be
considered. First, based on the CV of DTI and histology,
future studies should increase the number of animals and brain
regions. As we demonstrated that including CA3b achieved a
better prediction of histological parameters based on DTI when
compared to other brain regions. In this regard, the presence of
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FIGURE 8

Representative relationships between DTI and histological parameters in all selected brain regions. The line represents the regression fit
between histological and DTI parameters. Controls and status epilepticus animals are represented by colors, while brain regions by shapes. FA
and CS showed large effects in AIMyelin and AIGFAP (A–D), while medium in CD (E,F) when analyzing the relationships between DTI and
histological parameters individually. R2 and BH-FDR corrected q-values for the univariate Pearson’s correlation between DTI and histological
parameters are shown in each graph. FA, fractional anisotropy; AI, anisotropy index; CA, cornus ammonis; cc, corpus callosum; CD, cell density;
CS, spherical anisotropy.

wide confidence intervals is also an indication that increasing
the sample size would be one way to improve the estimations
about the impact of SE when assessing changes in both DTI
and histology. Second, as only a limited number of diffusion
directions were measured with relatively low-b-value, we used
a tensor model of diffusion and this may underestimate the
interpretation of complex alterations in tissue microstructure
(Jeurissen et al., 2013). Therefore, more advanced dMRI

methods and post-processing tools in vivo might improve
the detection of tissue changes under pathological conditions
(Tournier et al., 2004, 2007; Zhang et al., 2012; Jeurissen et al.,
2014; Topgaard, 2017; de Almeida Martins et al., 2021). Third,
it is also important to highlight the partial volume effect when
comparing DTI and histology parameters extracted by ROI
analysis. The different resolutions in DTI (110 × 110 × 500
µm3) and histology (0.114 × 0.114 µm2) might influence
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TABLE 5 Leave-one-brain region out cross-validation of multiple linear regression analyses between DTI and histological parameters.

All brain regions cc layer V layer VI CA3b

R R R R R

AIMyelin 0.206 0.289 0.049 0.353 0.557

AIGFAP 0.226 0.030 0.097 −0.045 0.206

CD 0.157 −0.088 −0.217 −0.014 0.300

Average length −0.002 0.045 −0.223 −0.019 −0.050

Branches 0.154 −0.059 0.023 0.125 −0.071

Branch length 0.165 0.358 0.288 0.020 0.168

Slab voxels 0.165 0.055 0.032 −0.034 −0.456

Junction voxels 0.108 0.185 0.236 0.353 0.384

Junctions 0.107 −0.016 −0.063 0.132 0.441

Endpoint voxels 0.190 −0.016 0.039 0.020 0.228

Triple points 0.109 0.086 0.072 0.007 0.234

Quadruple points 0.070 −0.059 0.001 −0.022 0.242

Cross-validation by leaving-one-brain region out (R) revealed that the inclusion of the subfield CA3b was necessary for predicting histology based on DTI. AI, anisotropy index; CA,
cornus ammonis; cc, corpus callosum; CD, cell density.

the delineation of ROIs and the outcomes when comparing
both methodologies. Also, larger ROIs outlined in DTI maps
might exhibit more microstructural heterogeneity than the
representative ROIs in photomicrographs, affecting the effect
sizes of SE and the relationship between DTI and histological
parameters. Moreover, the effects of chemical fixation and
staining procedures can affect the tissue microstructure, and
thus, the comparisons between in vivo DTI and ex vivo
histological parameters (Sun et al., 2003; Howard et al., 2019).
Fourth, we compared a 2D histological assessment against 3D
in vivo DTI data. Thus, 3D quantitative histological analyses
can provide a more reliable comparison with DTI (Khan
et al., 2015; Morawski et al., 2018; Schilling et al., 2018;
Salo et al., 2021). Furthermore, automated cell counting- and
quantitative skeleton-based analyses are useful to extract CD
and morphology information from the tissue, respectively;
however, these algorithms might require further development
to increase their accuracy. Finally, the focus of our study
was on the relationship between histopathology and DTI in
SE-induced brain damage, a similar approach can be utilized
when studying other brain diseases and disorders by combining
other MRI methods, several cell markers, or even different
methodologies, such as electrophysiology or behavioral data. For
example, to fully characterize resting and activated astrocytes,
additional specific markers should be considered (Jurga et al.,
2021). Also, future studies including other glial cell markers
could associate the full inflammatory response post-SE to DTI
parameters. These additions can improve the robustness of
our predictive model and the CV approach after SE, or when
implementing this type of analysis in other disease models
or human studies.

In conclusion, our findings suggest that in vivo DTI can
be predictive of quantitative tissue microstructure parameters

estimated from cellularity, organization of myelinated axons,
and morphology of astrocyte processes in white and gray matter
areas after SE-induced brain damage. This study offers new
insights to help in the interpretation of in vivo DTI as it
incorporated an advanced quantitative histological assessment
and CV of DTI and histology. Future studies combining
imaging and histology with advanced analytical tools are
needed to improve our understanding of imaging outcomes in
terms of tissue microstructural mechanisms during pathological
conditions and to open new perspectives in the diagnosis and
prognosis of brain diseases.
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SUPPLEMENTARY FIGURE 1

Representative images of the automated cell counting-based approach
in Nissl-stained sections in the corpus callosum, layers V and VI of the
parietal cortex, and CA3b of a control animal. Counted cells are
highlighted with red dots by the automated cell counting-based
approach. Scale bar: 50 µm. cc, corpus callosum; CA, cornus ammonis.

SUPPLEMENTARY FIGURE 2

Representative images of the skeleton-based approach in GFAP-stained
sections in the corpus callosum, layer V and VI of the parietal cortex,
and CA3b of a control animal. Astrocyte morphology is delineated in
black by the skeleton-based approach. Scale bar: 50 µm. cc, corpus
callosum; CA, cornus ammonis.
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