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Abstract: Porcine reproductive and respiratory syndrome (PRRS) is a disease caused by PRRS virus
(PRRSV), which seriously harms the pig industry. Revealing the mechanism by which PRRSV inhibits
immune response will help prevent and control PRRS. Here, we found that PRRSV-2 may hijack host
miR-541-3p to inhibit host innate immune response. Firstly, this work showed that miR-541-3p mimics
could facilitate the replication of PRRSV-2 and the results of the quantitative real time polymerase
chain reaction (qRT-PCR) showed that PRRSV-2 could up-regulate the expression of miR-541-3p in
MARC-145 cells. Since previous studies have shown that type I interferon could effectively inhibit
the replication of PRRSV-2, the present work explored whether miR-541-3p regulated the expression
of type I interferon and found that miR-541-3p could negatively regulate the transcription of type I
interferon by targeting interferon regulatory factor 7 (IRF7). More importantly, PRRSV-2 infection
could down-regulate the expression of IRF7 and over-expression of IRF7 could down-regulate
the replication of PRRSV-2 in MARC-145 cells. In conclusion, PRRSV-2 infection up-regulated
the expression of miR-541-3p to promote its replication in MARC-145 cells, since miR-541-3p can
negatively regulate the transcription of type I interferon by targeting IRF7.

Keywords: PRRSV; type I interferon; miR-541-3p; IRF7

1. Introduction

Porcine reproductive and respiratory syndrome disease (PRRS), which is caused by
PRRS virus (PRRSV) and is mainly characterized by reproductive failure of sows, high
mortality of piglets and respiratory distress of pigs of all ages, is one of the most important
diseases that seriously harm the pig industry. Taking the United States as an example, PRRS
causes approximately USD 664 million in economic losses each year [1]. PRRSV contains a
single positive-stranded RNA genome and belongs to the Arteritis virus family [2]. PRRS
was first reported in the United States in the 1980s. Then, two genetically distinct PRRSV
strains were isolated and have been divided into two independent species: PRRSV-1
(betaarteryvirus suid 1) and PRRSV-2 (betaarteryvirus suid 2) [3,4]. Both species have now
spread around the world, but PRRSV-1 is prevalent mainly in Europe, while PRRSV-2 is
prevalent in the Americas and Asia. PRRSV-1 is divided into four subtypes, and PRRSV-2
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is divided into nine lineages. Due to the high frequency mutation of PRRSV gene, the gene
recombination of different pedigrees/sublineages and the immunosuppression caused
by PRRSV, there is still no effective vaccine to prevent PRRS. Therefore, revealing the
mechanism of immunosuppression caused by PRRSV will provide help for the prevention
and control of PRRS [5,6].

MicroRNAs (miRNAs) are small endogenous non-coding RNA molecules (21–22 nt)
and take an important role in regulating almost all cellular functions such as cell dif-
ferentiation, apoptosis, proliferation and carcinogenesis, since miRNA could degrade
target mRNAs or prevent the translation of target mRNAs if the nucleotides 2–8 (seed
sequence) of the miRNAs could bind to the 3′-untranslated region (3′-UTR) of the corre-
sponding target mRNAs (5′-UTR of a few target mRNAs) [7,8]. Because one miRNA could
target many mRNAs [9–11], miRNAs are also important molecules in the regulation of
immune response. Other and our previous studies have shown that PRRSV infection has
caused changes in miRNA expression profiles in MARC-145 cells and porcine alveolar
macrophages (PAMs) and some PRRSV-regulated miRNAs have taken part in regulating
the replication of PRRSV [12–15]. miR-23 [16], which is down-regulated by infection with
PRRSV-2, could inhibit the replication of PRRSV since miR-23 positively regulates the
transcription of type I interferon, while miR-373 [15], miR-382-5p [17] and miR-30c [18],
which are up-regulated by PRRSV-2 infection, could facilitate the replication of PRRSV-2
since both miR-373 and miR-382-5p negatively regulate the transcription of type I interferon
while miR-30c could negatively influence the type I interferon response. Our previous
results of high-throughput sequencing of small RNAs from PRRSV-2-infected MARC-145
cells have shown that PRRSV-2 infection changes the expression profile of host miRNAs [15].
So, whether PRRSV regulates host miRNAs to modulate cellular immune response has
attracted our attention. In this study, we selected several miRNAs which were regulated by
PRRSV-2 infection to screen new miRNAs that could promote the replication of PRRSV-2.
We found that miR-541-3p could promote the replication of PRRSV-2 since miR-541-3p
could negatively regulate the transcription of type I interferon.

2. Materials and Methods
2.1. Cells and Virus

MARC-145 cells [19], which were derived from the African green monkey kidney
cell line MA-104 and could be cultured in Dulbecco’s modified Eagle’s medium (DMEM)
medium containing 10% fetal bovine serum (FBS), were susceptible to PRRSV-2 and were
used in vitro studies of PRRSV-2. HEK 293T cells (ATCC ACS-4500), which were derived
from the human kidney cell line HEK293 and were optimal for transient transfection
and protein expression, were used in identifying the target genes of microRNA. Both of
the above cells were incubated at 37 ◦C in an incubator with 5% CO2. PRRSV-2 strain
BJ-4 (GenBank accession No. AF331831.1), a kind gift from Prof. Hanchun Yang (China
Agricultural University, Beijing, China), was used in the present work.

2.2. Antibodies and Reagents

Antibody against IRF7 was purchased from Cell Signaling Technology (CST) (Beverly,
MA, USA). Mouse anti-Flag antibody was purchased from Sigma-Aldrich (St. Louis, MO,
USA). Mouse anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) monoclonal an-
tibody and anti-β-actin antibody were purchased from GenScript (Piscataway, NJ, USA).
Horseradish peroxidase (HRP)-conjugated labeled Goat anti-mouse IgG secondary antibody
was purchased from Jackson Immuno Research (West Grove, PA, USA). miR-541-3p mimics
and inhibitors were purchased from Qiagen (Valencia, CA, USA). Polyinosinic-polycytidylic
acid (poly(I:C)) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Lipofectamine 2000
transfection reagent was purchased from Invitrogen (Carlsbad, CA, USA).
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2.3. Plasmids

To construct the plasmid pcDNA6.2-miR-541-3p which could express miR-541-3p, the top
strand oligo for miR-541-3p and bottom strand oligo for miR-541-3p in Table 1 were used for
touchdown polymerase chain reaction (PCR), and then the primers pcDNA6.2-miR-541-3p-For
and pcDNA6.2-miR-541-3p-Rev were used for production of the double-stranded oligo which
contained the sequence of the pre-miR-541-3p, and finally the double-stranded oligo was
cloned into vector pcDNA6.2 (Invitrogen) (Carlsbad, CA, USA) by using the BamHI and Bgl
restriction sites. The IRF7-3′-UTR sequence which could be complementary to seed sequence
of miR-541-3p was synthesized by Shanghai Shenggong Co., Ltd. (Shanghai, China) and
then the double-stranded DNA sequence of IRF7-3′-UTR was formed by gradient cooling
and annealing, and finally was cloned into vector psiCHECK-2 (Promega) (Madison, WA,
USA) by using the XhoI and NotI restriction sites. The cDNA encoding amino acids of IRF7
was amplified by PCR and cloned into the HindIII and BamHI sites of the expression vector
pCMV-Flag (IRF7-Flag). All primers and oligonucleotides used in this work were shown in
Table 1. The p-284 Luc, which was an IFN-β promoter reporter plasmid, was constructed
as previously described [20]. pRL-TK (Promega) (Carlsbad, CA, USA), which contained a
Renilla-luciferase reporter gene, was used as an internal control in the dual luciferase reporter
assay system.

2.4. RNA Quantification

The indicated cellular total RNA was extracted by the RNeasy Mini Kit (Qiagen) (Valencia,
CA, USA) and was reverse transcribed by PrimeScript™ RT Master Mix (Perfect Real Time)
(Takara) (Shiga, Japan) according to the manufacturer’s protocol. Then, quantitative real time
PCR (qRT-PCR) was performed by using SYBR Green Master Kit (Takata) (Shiga, Japan) on a
7500 fast qRT-PCR system (Applied Biosystems) (Foster City, CA, USA). Primers are shown
in Table 1. The results of qRT-PCR were analyzed by 2−∆∆C

T method with GAPDH as the
internal reference [21]. In addition, miRNA analysis kits (Qiagen) (Valencia, CA, USA) were
used to analyze the expression of the miR-541-3p according to the manufacturer’s instructions,
while the U6 snRNAs were in place of GAPDH as the internal control in the method of 2−∆∆C

T
for analyzing the relative expression levels of miRNA.

2.5. Dual Luciferase Reporter Assay

The indicated cells in 24-well plates were transfected with miR-541-3p mimics, miR-
541-3p inhibitors or indicated control and p-284, RL-TK by using Lipofectamine 2000
transfection reagent. Twenty-four hours later, the cells were transfected with poly(I:C)
(10 µg/mL (Sigma-Aldrich, St. Louis, MO, USA)). Then, 9 h later, the cells were harvested
for luciferase activity assay by using the dual-luciferase reporter assay system (Promega)
(Madison, WA, USA).

In order to identify the target mRNA of miR-541-3p, the HEK 293T cells were prepared
in 24-well plates and then the cells were transfected with the pcDNA6.2-miR-541-3p or
pcDNA6.2-Mut-miR-541-3p and psiCHECK-2-IRF7-3′-UTR or psiCHECK-2-Mut-IRF7-3′-
UTR, and, 24 h later, the cells were harvested for luciferase activity assay by using the
dual-luciferase reporter assay system.
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Table 1. Primers or oligonucleotides used in plasmid construction and quantitative real time poly-
merase chain reaction (qRT-PCR).

Primers Sequence (5′-3′)

MAVS-For CTGCCTCACAGCAAGAGACCA
MAVS-Rev GTAGACACAGGCCACTTCGTC
IRAK2-For AGGCACGGGAAGCCATTCGT
IRAK2-Rev AGCCCAGCACAGGTAAGACA
IRAK3-For TTGGTCCTGGGCACAGAAA
IRAK3-Rev AATAGCTCGACGATGCCCCA
IRAK4-For TTGCTCAGGGTGCAGCTAAT
IRAK4-Rev GTGCAAGGCCAAAGTCAGAT
TRAF3-For CTCACAAATGCAGCGTCCAG
TRAF3-Rev GCTCCACTCCTTCAGCAGGT

IRF7-For GCAACGTGAGGGTGTGTCTT
IRF7-Rev GCTCCATGAGCAAGCACTCAA

IFNAR1-For TCGTTTACACCATTTCGCAAAGCTCAAA
IFNAR1-Rev ACGATCCAAAGCCCACATGACACTATCT
IFNAR2-For TGTCATTGAAGAGCAGTCAGAGGGGATT
IFNAR2-Rev GTTGAAGGAGGGTGCATTTTAAGGGAGA
GAPDH-For TGACAACAGCCTCAAGATCG
GAPDH-Rev GTCTTCTGGGTGGCAGTGAT

ORF7-For AAACCAGTCCAGAGGCAAGG
ORF7-Rev GCAAACTAAACTCCACAGTGTAA
IFN-β-For CTAGCACTGGCTGGAATGAGACT
IFN-β-Rev GGCCTTCAGGTAATGCAGAATC

Flag-IRF7-For CCCAAGCTTATGGCCTTGGCTCCTGAGAG
Flag-IRF7-Ror CGCGGATCCCTAGACGGGCTGCTCCAGCTC

Top strand oligo for miR-541-3p GGATCCTGGAGGCTTGCTGAAGGCTGTATGCTGTGGTGGGCACAG
AATC TGGACTGTTTTGGCCACTGACTGAC

Bottom strand oligo for miR-541-3p CAAAACCGGTGACTGACTGTCAGGTCTGACACGGGTGGTGTCCTG
TGTTCCGGACAATGATCGTGAGTGTACCTTGTTTACCGGGTCTAGA

pcDNA6.2-miR-541-3p-For GGATCCTGGAGGCTTGCTGAA
pcDNA6.2-miR-541-3p-Rev AGATCTGGGCCATTTGTTCCATGT

Top strand oligo for mut-miR-541-3p GGATCCTGGAGGCTTGCTGAAGGCTGTATGCTGTCTCTTACACAG
AATCTGGACTGTTTTGGCCACTGACTGAC

Bottom strand oligo for mut-miR-541-3p CAAAACCGGTGACTGACTGTCAGGTCTGACACATTCTCTGTCCTG
TGTTCCGGACAATGATCGTGAGTGTACCTTGTTTACCGGGTCTAGA

IRF7-3′UTR For TCGAACTCCAGAAAGCTGGAGCAGCCCACCTAGAGCTGGCCGC
IRF7-3′UTR Rev GGCCGCGGCCAGCTCTAGGTGGGCTGCTCCAGCTTTCTGGAGT
Mut-IRF7-3′UTR TCGAACTCCAGAAAGCTGGAGCAAGATCGTTAGAGCTGGCCGC
Mut-IRF7-3′UTR GGCCGCGGCCAGCTCTAACGATCTTGCTCCAGCTTTCTGGAGT

siIRF7-sense CCAUCUUUGACUUCAGAGUTT
siIRF7-antisense ACUCUGAAGUCAAAGAUGGTT-3

2.6. RNA Interference Assay

The specific siRNAs to IRF7 and the control siRNAs (siNC) used in this experiment
were synthesized by GenePharma (Shanghai, China), and the sequences of siRNAs are
shown in Table 1. MARC-145 cells were prepared in 24-well plates and were transfected
with 50 nM siRNA by using Lipofectamine RNAiMAX transfection reagent according to
the manufacturer’s instruction. Next, 24 h later, the cells were infected with PRRSV-2 at a
multiplicity of infection (MOI) of 0.1. Then, 2 h later, the cells were cultured with the fresh
DMEM which contained 2% FBS. Finally, the cells were harvested at the indicated time for
further analysis.

2.7. Virus Titration

Generally, PRRSV-2 infection could cause the cytopathic effect (CPE) of MARC-145 cells.
The 50% tissue culture infected dose (TCID50) of the virus could be measured by observing
the CPE, and then the TCID50 could be used to calculate the titer of the virus. So, the virus
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titration of PRRSV-2 was performed by using MARC-145 cells as previously described [22].
Briefly, MARC-145 cells were prepared in 96-well plates and were infected with ten-fold serial
dilution of the indicated virus samples. Then, 1 h later, the supernatants were replaced with
fresh DMEM which contained 2% FBS. Finally, 48 h (or the indicated time) later, the PRRSV
titers were analyzed by theTCID50 according to the Reed–Muench method [23].

2.8. Statistical Analysis

Bar graphs were plotted to show the mean ± standard deviation (SD). All statistical
analyses were performed by two-sided Student’s t test. All experiments were repeated in
at least three independent experiments. p < 0.05 could be considered statistically significant
and p < 0.01 could be considered highly significant.

3. Results
3.1. miR-541-3p Facilitated the Replication of PRRSV-2 in MARC-145 Cells

Our previous results of high-throughput sequencing of small RNAs from PRRSV-2-
infected MARC-145 cells showed that PRRSV-2 infection has changed the expression profile
of host miRNAs, and both PRRSV-2-up-regulated miR-373 and PRRSV-2-up-regulated
miR-382-5p could promote the replication of PRRSV-2 [15,17]. Therefore, the current work
selected six miRNAs which were regulated by PRRSV-2 infection in MARC-145 cells, and
used their mimics to explore whether these miRNAs regulated the replication of PRRSV-2.
The results in Figure 1A showed that only miR-541-3p mimics could promote the replication
of PRRSV-2, while miR-379-5p mimics, miR-491-5p mimics, miR-329-3p mimics, miR-1283
mimics and miR-449b-3p mimics could not.

To further confirm the above results, different concentrations of miR-541-3p mim-
ics and miR-541-3p inhibitors were introduced in the next experiment. The results in
Figure 1B,C show that the replication efficiency of PRRSV-2 in MARC-145 cells became
higher and higher with the increase concentration of miR-541-3p mimics, while with the in-
crease of the concentration of miR-541-3p inhibitors, the replication efficiency of PRRSV-2 in
MARC-145 cells became lower and lower (Figure 1D,E). This meant that miR-541-3p mimics
up-regulated the ORF7 expression levels of PRRSV-2 and the viral titers in a concentration-
dependent manner in MARC-145 cells, while miR-541-3p inhibitors down-regulated the
ORF7 expression levels of PRRSV-2 and the viral titers in a concentration-dependent
manner too, which indicted that miR-541-3p facilitated the replication of PRRSV-2 in
MARC-145 cells.

3.2. PRRSV-2 Infection Up-Regulated the Expression of miR-541-3p in MARC-145 Cells

Our previous results of high-throughput sequencing of small RNAs have shown
that PRRSV-2 infection down-regulated the expression of miR-541-3p [15], which was not
confirmed by qRT-PCR, so a PRRSV-2-infected time-course experiment and a virus dose-
dependent experiment were carried out in the present work and the expression levels of
miR-541-3p were detected by qRT-PCR. The results in Figure 2 showed that the expression
levels of miR-541-3p were up-regulated in MARC-145 cells with PRRSV-2 infection and
reached a peak at 24 h post-infection (Figure 2A). The higher dose of PRRSV-2 could
induce higher expression levels of miR-541-3p (Figure 2B). Above results indicated that
PRRSV-2 infection up-regulated the expression of miR-541-3p in MARC-145 cells, which
was not consistent with our previous results [15]. Considering the accuracy of fluorescent
quantitative PCR and the rigor of time dynamic and dose gradient experiments, the result
of the present work that PRRSV-2 infection up-regulated the expression of miR-541-3p was
more reliable.
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3.3. miR-541-3p Negatively Regulated Poly(I:C)-Induced Transcription of Type I Interferon

Now that miR-541-3p facilitated the replication of PRRSV-2, and PRRSV-2 infection
up-regulated the expression of miR-541-3p in MARC-145 cells, the mechanism where
miR-541-3p facilitates the replication of PRRSV-2 was explored in further experiments.

Other and our previous studies have shown that recombinant type I interferon could
effectively inhibit the replication of PRRSV-2, and PRRSV-2 has evolved some mechanisms
to antagonize the transcription of type I interferon [20,24–27], so the present work explored
whether the PRRSV-2-up-regulated miR-541-3p modulated the transcription of type I inter-
feron. The results in Figure 3 showed that miR-541-3p mimics and the expression plasmid
of miR-541-3p could inhibit poly(I:C)-induced IFN-β promoter activation (Figure 3A,E) and
could inhibit poly(I:C)-induced expression of IFN-β mRNA (Figure 3B,F), while miR-541-3p
inhibitors could up-regulate poly(I:C)-induced FN-β promoter activation (Figure 3C) and
could up-regulate poly(I:C)-induced expression of IFN-β mRNA (Figure 3D) in MARC-
145 cells. These results indicated that miR-541-3p was a novel microRNA that negatively
regulated the transcription of type I interferon.
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cells were transfected with poly(I:C) (10 µg/mL), and 9 h later, the mRNA expression lev-
els of IFN-β were assayed by quantitative real time polymerase chain reaction (qRT-PCR). Ctrl 
indicated that the cells were not transfected with poly(I:C). All experiments were repeated 
at least three times with similar results. ** p < 0.01. 
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like (IRAK) 2, IRAK3, IRAK4, TNF receptor-associated factor (TRAF) 3, interferon regula-
tory factor (IRF) 3, interferon alpha/beta receptor (IFNAR) 1 and IFNAR 2 as candidate 
target genes for further verification by qRT-PCR in HEK 293T cells, since these genes were 
related to the transcription and function of type I interferon. The results in Figure 4 
showed that miR-541-3p mimics could down-regulate the expression of IRF7 (Figure 4A) 
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Since miRNA made its target mRNA degrade or prevented the translation of its tar-
get mRNA by using the seed sequence (usually 6 to 8 bases) of miRNA to bind to the 3′-
UTR (5′-UTR of a few target genes) of the corresponding target mRNA [7,8], we con-
structed the 3′-UTR of IRF7 report plasmid (psiCHECK-2-IRF7-3′-UTR), 3′-UTR mutant of 
IRF7 report plasmid (psiCHECK-2-Mut-IRF7-3′-UTR), miR-541-3p expression plasmid 
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Figure 3. miR-541-3p inhibited poly(I:C)-induced production of type I interferon. MARC-145 cells
were transfected with p-284, pRL-TK and miR-541-3p mimics (A), miR-541-3p inhibitors (C) or
pcDNA6.2-miR-541-3p (E), and 36 h later, the cells were transfected with poly(I:C) (10 µg/mL),
and 9 h later, the IFN-β luciferase activities were assayed by using the dual-luciferase reporter
assay. MARC-145 cells were transfected with miR-541-3p mimics (B), miR-541-3p inhibitors (D) or
pcDNA6.2-miR-541-3p (F), and 36 h later, the cells were transfected with poly(I:C) (10 µg/mL), and 9 h
later, the mRNA expression levels of IFN-β were assayed by quantitative real time polymerase chain
reaction (qRT-PCR). Ctrl indicated that the cells were not transfected with poly(I:C). All experiments
were repeated at least three times with similar results. ** p < 0.01.

3.4. Interferon Regulatory Factor (IRF) 7 Was a Target Gene of miR-541-3p

It has been documented that miRNA regulates the physiological functions of cells by
targeting its target mRNAs. So, in this study, TargetScan, PicTar and miRPathDB software
was used to predict the potential target mRNAs of miR-541-3p. Finally, we selected mito-
chondrial antiviral-signaling protein (MAVS), interleukin-1 receptor-associated kinase-like
(IRAK) 2, IRAK3, IRAK4, TNF receptor-associated factor (TRAF) 3, interferon regulatory
factor (IRF) 3, interferon alpha/beta receptor (IFNAR) 1 and IFNAR 2 as candidate target
genes for further verification by qRT-PCR in HEK 293T cells, since these genes were related



Viruses 2022, 14, 126 8 of 13

to the transcription and function of type I interferon. The results in Figure 4 showed that
miR-541-3p mimics could down-regulate the expression of IRF7 (Figure 4A) while miR-
541-3p inhibitors could up-regulate the expression of IRF7 (Figure 4B). The concentration
gradient experiments of miR-541-3p mimics and miR-541-3p inhibitors also confirmed the
above results (Figure 4C,D).
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Figure 4. Interferon regulatory factor 7 (IRF7) was a target gene of miR-541-3p. HEK 293T cells were
transfected with miR-541-3p mimics (A), miR-541-3p inhibitors (B), NC-mimics or NC-inhibitors.
Then, 48 h later, the expression of predicted target mRNAs of miR-541-3p was measured by quantita-
tive real time polymerase chain reaction (qRT-PCR). HEK 293T cells were transfected with miR-541-3p
mimics at a final concentration of 50 nM or 100 nM (C), miR-541-3p inhibitors at a final concen-
tration of 50 nM or 100 nM (D) and NC-mimics or NC-inhibitors. Then, 48 h later, the expression
levels of IRF7 were measured by qRT-PCR. (E) Schematic presentation of base pairing between the
3′ untranslated region (UTR) of IRF-7 and the miR-541-3p sequence; the underlined red bases are
their paired bases and their corresponding mutant bases. HEK 293T cells were transfected with the
pcDNA6.2-miR-541-3p or pcDNA6.2-Mut-miR-541-3p and psiCHECK-2-IRF7-3′-UTR or psiCHECK-
2-Mut-IRF7-3′-UTR, and 24 h later, the cells were harvested for luciferase activity assay by using the
dual-luciferase reporter assay system. All experiments were repeated at least three times with similar
results. * p < 0.05; ** p < 0.01.

Since miRNA made its target mRNA degrade or prevented the translation of its
target mRNA by using the seed sequence (usually 6 to 8 bases) of miRNA to bind to
the 3′-UTR (5′-UTR of a few target genes) of the corresponding target mRNA [7,8], we
constructed the 3′-UTR of IRF7 report plasmid (psiCHECK-2-IRF7-3′-UTR), 3′-UTR mutant
of IRF7 report plasmid (psiCHECK-2-Mut-IRF7-3′-UTR), miR-541-3p expression plasmid
(pcDNA6.2-miR-541-3p) and seed sequence mutant expression plasmid of miR-541-3p
(pcDNA6.2-Mut-miR-541-3p) to confirm whether IRF7 was the target mRNA of miR-541-3p.
The results in Figure 4E showed that pcDNA6.2-miR-541-3p could down-regulate the
relative luciferase activity of psiCHECK-2-IRF7-3′-UTR but could not down-regulate the
relative luciferase activity of psiCHECK-2-Mut-IRF7-3′-UTR, so our present work indicated
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that IRF7 was the target mRNA of miR-541-3p, which was consistent with previous reports
that IRF7 was the target mRNA of miR-541-3p [28].

3.5. PRRSV-2 Infection Down-Regulated the Expression of IRF7 and the Over-Expression of IRF7
Could Inhibit the Replication of PRRSV-2 in MARC-145 Cells

PRRSV-2 infection could up-regulate the expression of miR-541-3p and IRF7 was the
target mRNA of miR-541-3p, so it is reasonable that PRRSV-2 infection could down-regulate
the expression of IRF7. The results of qRT-PCR in Figure 5A show that the infection of
PRRSV-2 could down-regulate the mRNA expression levels of IRF7 in MARC-145 cells.
To confirm the above results, a virus dose-dependent experiment in Figure 5B and a time-
course experiment in Figure 5C showed that PRRSV-2 infection also could down-regulate
the protein levels of IRF7.
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Figure 5. PRRSV-2 infection down-regulated the expression of interferon regulatory factor 7 (IRF7).
(A) MARC-145 cells were infected with PRRSV-2 at a multiplicity of infection (MOI) of 0.1, and 36 h
later, the mRNA expression levels of IRF7 were assessed by quantitative real time polymerase chain
reaction (qRT-PCR). (B) MARC-145 cells were infected with PRRSV-2 at different MOI, and 24 h
later, the protein expression levels of IRF7 were assessed by Western blots. (C) MARC-145 cells were
infected with PRRSV-2 at an MOI of 0.1, and 24 h, 36 h or 48 h later, the protein expression levels of
IRF7 were assessed by Western blots. All experiments were repeated at least three times with similar
results. ** p < 0.01.

Finally, we designed the siRNA of IRF7 to down-regulate the expression of IRF7
(Figure 6A,B) and constructed the expression plasmid of IRF7 to over-express IRF7 (Figure 6D)
in MARC-145 cells. The results in Figure 6C showed that the expression levels of PRRSV-2
ORF7 in MARC-145 cells which were transfected with IRF7-siRNA(siIRF7) were higher than
that in MARC-145 cells which were transfected with negative control siRNA. Over-expression
of IRF7 could down-regulate the expression levels of PRRSV-2 ORF7 (Figure 6E), which indi-
cated that IRF7 could inhibit the replication of PRRSV-2 but PRRSV-2 hijacked miR-541-3p to
down-regulate the expression of IRF7 in MARC-145 cells.



Viruses 2022, 14, 126 10 of 13

Viruses 2022, 14, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 6. Interferon regulatory factor 7 (IRF7) inhibited the replication of PRRSV-2. 
MARC-145 cells were transfected with siIRF7 or siNC, and 48 h later, the protein levels 
(A) and the mRNA expression levels (B) of IRF7 were assessed by Western blots and quan-
titative real time polymerase chain reaction (qRT-PCR), respectively. (C) MARC-145 cells were 
transfected with siIRF7, and 24 h later, the cells were infected with PRRSV-2, and then the 
cells were harvested and the RNA levels of Open reading frame 7 (ORF7) of PRRSV-2 
were determined by qRT-PCR. (D) MARC-145 cells were transfected with pCMV-IRF7-
Flag, and 24 h later, the protein expression levels of IRF7 were assessed by Western blots. 
(E) MARC-145 cells were transfected with pCMV-IRF7-Flag, and 24 h later, the cells were 
infected with PRRSV-2, and then the cells were harvested and the RNA levels of PRRSV-
2 ORF7 were determined by qRT-PCR. All experiments were repeated at least three times 
with similar results. ** p < 0.01. 

4. Discussion 
A virus is a strict parasitic pathogen. How to avoid the elimination of host cells is 

very important for the survival of the virus. In order to avoid the elimination of the host, 
a virus often uses its own components or the host components to regulate host physiolog-
ical activities or host natural immunity. Therefore, identification of viral components or 
cellular components that could facilitate or inhibit virus replication is very important for 
the prevention and control of the virus. 

PRRSV can cause persistent infection in pigs for more than 150 days [29]. Other and 
our previous studies have proved that PRRSV-2 can use its own components, such as non-
structural protein 1α (nsp1α), nsp1β and nsp11, to inhibit inflammation response, the 
transcription of type I interferon and the innate immunity of RNAi [20,27,30,31]. Studies 
have also found that PRRSV-2 can change the expression profiles of host miRNA and 
PRRSV-2 used its up-regulated miR-373 and miR-382-5p to promote its replication since 
both of them can inhibit the transcription of type I interferon [15,17,18]. So, whether 
PRRSV-2 regulates host miRNAs for its replication has attracted our interest. The present 
work has obtained a convincing result that PRRSV-2 could up-regulate host miR-541-3p 
to facilitate the replication of PRRSV-2 in MARC-145 cells (Figures 1 and 2). 

Some studies have shown that miR-541-3p might act as a suppressor gene in hepato-
cellular carcinoma, non-small cell lung cancer and prostate cancer since miR-541-3p could 

Figure 6. Interferon regulatory factor 7 (IRF7) inhibited the replication of PRRSV-2. MARC-145 cells
were transfected with siIRF7 or siNC, and 48 h later, the protein levels (A) and the mRNA expression
levels (B) of IRF7 were assessed by Western blots and quantitative real time polymerase chain reaction
(qRT-PCR), respectively. (C) MARC-145 cells were transfected with siIRF7, and 24 h later, the cells
were infected with PRRSV-2, and then the cells were harvested and the RNA levels of Open reading
frame 7 (ORF7) of PRRSV-2 were determined by qRT-PCR. (D) MARC-145 cells were transfected with
pCMV-IRF7-Flag, and 24 h later, the protein expression levels of IRF7 were assessed by Western blots.
(E) MARC-145 cells were transfected with pCMV-IRF7-Flag, and 24 h later, the cells were infected with
PRRSV-2, and then the cells were harvested and the RNA levels of PRRSV-2 ORF7 were determined by
qRT-PCR. All experiments were repeated at least three times with similar results. ** p < 0.01.

4. Discussion

A virus is a strict parasitic pathogen. How to avoid the elimination of host cells is
very important for the survival of the virus. In order to avoid the elimination of the host, a
virus often uses its own components or the host components to regulate host physiological
activities or host natural immunity. Therefore, identification of viral components or cellular
components that could facilitate or inhibit virus replication is very important for the
prevention and control of the virus.

PRRSV can cause persistent infection in pigs for more than 150 days [29]. Other and
our previous studies have proved that PRRSV-2 can use its own components, such as
non-structural protein 1α (nsp1α), nsp1β and nsp11, to inhibit inflammation response, the
transcription of type I interferon and the innate immunity of RNAi [20,27,30,31]. Studies
have also found that PRRSV-2 can change the expression profiles of host miRNA and
PRRSV-2 used its up-regulated miR-373 and miR-382-5p to promote its replication since
both of them can inhibit the transcription of type I interferon [15,17,18]. So, whether PRRSV-
2 regulates host miRNAs for its replication has attracted our interest. The present work has
obtained a convincing result that PRRSV-2 could up-regulate host miR-541-3p to facilitate
the replication of PRRSV-2 in MARC-145 cells (Figures 1 and 2).

Some studies have shown that miR-541-3p might act as a suppressor gene in hep-
atocellular carcinoma, non-small cell lung cancer and prostate cancer since miR-541-3p
could target transmembrane protease serines 4 (TMPRSS4), transforming growth factor-β-
induced factor 2 (TGIF2) and heat shock protein 27 (HSP27), respectively [32–34]. Although
a study has shown that HIV infection can up-regulate the expression of miR-541-3p, it has
not been reported whether miR-541-3p influences virus replication and whether miR-541-3p
influences the transcription of type I interferon. Therefore, our present work not only found
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for the first time that miR-541-3p could promote the replication of PRRSV-2, but also re-
vealed its molecular mechanism whereby miR-541-3p facilitated the replication of PRRSV-2.
Other and our previous studies have shown that PRRSV-2 modulates the production of type
I interferon and the recombined type I interferon could inhibit PRRSV replication in vitro
and in vivo [24–26], so this study explored whether miR-541-3p is involved in regulating
the transcription of type I interferon and found that miR-541-3p is a novel miRNA that
could negatively regulate the production of type I interferon (Figure 3). The present work
also confirmed that IRF7, which was an important transcription factor for the transcription
of type I interferon, was the target mRNA of miR-541-3p (Figure 4). Consistent with the
results that PRRSV-2 infection up-regulates the expression of miR-541-3p and IRF7 was the
target mRNA of miR-541-3p, PRRSV-2 infection can down-regulate the mRNA expression
and the protein expression of IRF7 (Figure 5). Furthermore, over-expression of IRF7 in
MARC-145 cells could inhibit the replication of PRRSV-2 while down-regulation of IRF7
by siIRF7 could facilitate the replication of PRRSV-2 (Figure 6), which indicated that IRF7
was also involved in antagonizing the replication of PRRSV-2. In addition, in this study,
only monkey-derived MARC-145 cells were used to explore the effect of miR-541-3p on the
replication of one strain of PRRSV-2. Considering that pigs are the natural hosts of PRRSV
and there are two species of PRRSV, both of which have virulent and normal strains [2], it
is necessary to study the effects of miR-541-3p on the replication of PRRSV-1 and different
PRRSV-2 strains in vivo and in vitro in future.

In conclusion, our present work showed that the PRRSV-2-up-regulated miR-541-3p
could facilitate the replication of PRRSV-2 since miR-541-3p could inhibit the transcription
of type I interferon in MARC-145 cells, which indicated that PRRSV-2 could use the host
component, miR-541-3p, to suppress the host antiviral immune response in MARC-145
cells. However, it is necessary to study the effects of miR-541-3p on the replication of
PRRSV-1 and different PRRSV-2 strains in vivo and in vitro in further.
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