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Abstract 

Purpose:  To develop a nomogram model for predicting local progress-free survival (LPFS) in esophageal squamous 
cell carcinoma (ESCC) patients treated with concurrent chemo-radiotherapy (CCRT).

Methods:  We collected the clinical data of ESCC patients treated with CCRT in our hospital. Eligible patients were 
randomly divided into training cohort and validation cohort. The least absolute shrinkage and selection operator 
(LASSO) with COX regression was performed to select optimal radiomic features to calculate Rad-score for predicting 
LPFS in the training cohort. The univariate and multivariate analyses were performed to identify the predictive clinical 
factors for developing a nomogram model. The C-index was used to assess the performance of the predictive model 
and calibration curve was used to evaluate the accuracy.

Results:  A total of 221 ESCC patients were included in our study, with 155 patients in training cohort and 66 patients 
in validation cohort. Seventeen radiomic features were selected by LASSO COX regression analysis to calculate Rad-
score for predicting LPFS. The patients with a Rad-score ≥ 0.1411 had high risk of local recurrence, and those with a 
Rad-score < 0.1411 had low risk of local recurrence. Multivariate analysis showed that N stage, CR status and Rad-score 
were independent predictive factors for LPFS. A nomogram model was built based on the result of multivariate analy‑
sis. The C-index of the nomogram was 0.745 (95% CI 0.7700–0.790) in training cohort and 0.723(95% CI 0.654–0.791) 
in validation cohort. The 3-year LPFS rate predicted by the nomogram model was highly consistent with the actual 
3-year LPFS rate both in the training cohort and the validation cohort.

Conclusion:  We developed and validated a prediction model based on radiomic features and clinical factors, which 
can be used to predict LPFS of patients after CCRT. This model is conducive to identifying the patients with ESCC 
benefited more from CCRT.
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Introduction
Esophageal cancer (EC) is the sixth common malignant 
tumors in China with an estimated 477.9 thousand new 
cases, accounting for half of the new esophageal cancer 
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worldwide [1, 2]. In China, approximately 90% of the 
patients with esophageal cancer are histologically diag-
nosed as esophageal squamous cell carcinomas (ESCC) 
which is different from esophageal adenocarcinoma 
(EAC) in risk factors and prognosis [3]. Most patients 
with locally advanced ESCC lost the opportunity for sur-
gery, and concurrent chemo-radiotherapy (CCRT) has 
been recommended as a standard treatment [4]. How-
ever, more than half of patients treated with standard 
dose CCRT eventually developed local recurrence or dis-
tant metastases and succumbed to this disease [5, 6]. A 
individual CCRT strategy with escalated radiation dose 
based on PET-CT would benefit the patients with high 
tumor burden and risk of recurrence [7, 8]. To facilitate 
a individual CCRT strategy in an early stage, solid predic-
tive model for local recurrence and prognosis could play 
an important role.

For patients received CCRT, local and regional recur-
rence is the most common failure pattern and pre-treat-
ment clinical TNM staging is still the most commonly 
used system for prognosis prediction [9]. However, the 
currently used clinical TNM staging follows the same 
criteria as pathological staging, which is based on imag-
ing assessment of tumor size and surrounding invasion, 
ignoring the information such as length and volume of 
esophageal cancer lesions. Recently, a series of clinico-
pathologic biomarkers have been investigated and veri-
fied to be available for prediction of therapeutic response 
and prognosis [10–12]. Radiomics is a new technique for 
image quantitative analysis about computed tomography 
(CT) images, magnetic resonance (MR) images, posi-
tron emission tomography (PET) images, etc. [13]. Sev-
eral studies demonstrated that radiomic features could 
potentially identify prognostic phenotype in patients 
with EC. Yip et al. [14] suggested that a model combined 
CT-based texture feature and esophageal maximal wall 
thickness assessment could predict the overall survival 
in EC patients treated with CCRT. Moreover, the model 
performed better than treatment response alone. Larue 
et  al. [15] extracted out five radiomic features from CT 
image before chemoradiotherapy to describe the hetero-
geneity of tumors and found that these five features could 
predict the 3-year survival rate of patients with EC after 
neo-chemoradiotherapy. However, most radiomic studies 
included a small number of patients with EAC and ESCC.

In this study, we explored the prognostic value of 3D 
radiomic features from pretreatment CT images of 
esophageal cancer patients and developed a model com-
bined radiomic features and clinical information to pre-
dict LPFS in patients with ESCC after CCRT. To evaluate 
the performance of the model, a validation cohort of 
patients were employed for validation.

Patients and methods
Patients’ cohort
We collected the clinical data of patients diagnosed as 
ESCC and received CCRT in our hospital during the 
period from January 2013 to December 2015. Patients 
were excluded if they met the exclusion criteria as follows: 
(1) patients received esophagectomy and preoperative 
or postoperative adjuvant radiotherapy; (2) patients had 
distant metastatic disease; (3) patients received low-dose 
(< 50  Gy) palliative radiotherapy; (4) clinicopathological 
information of the patients was incomplete; (5) patients 
were diagnosed as esophageal fistula before treatment; 
(6) poor visualization quality due to image artifacts or 
the tumor was too small to be recognized on CT images; 
(7) patients had other primary tumor; (8) patients died 
within three months after chemoradiotherapy.

After multiple iterations, a total of 221 patients were 
randomly divided into two groups, with 155 patients 
in the training cohort and 66 patients in the validation 
cohort. To improve the generalization property of the 
result, multi-factors stratification was used to keep the 
characteristics of sub cohort consistent with the whole 
cohort. The process of patients’ enrollment and randomi-
zation were shown in Fig. 1. This study was approved by 
the Institutional Committee of our hospital on Human 
Rights. Disease of the patients was staged according to 
the 8th edition of AJCC TNM classification for esopha-
geal cancer [16].

Chemoradiotherapy protocol
Radiotherapy was delivered daily to patients with three-
dimensional conformal radiation therapy (3DRT) or 
intensity-modulated radiation therapy (IMRT) tech-
nique using a Varian IX or Varian 23EX linear accelera-
tor in this study. The gross tumor volume (GTV) includes 
the esophageal cancer (GTVp) and the positive regional 
lymph nodes (GTVnd). The GTV was delineated on CT 
imaging according to barium esophagogram, endoscopic 
examination or PET imaging. The CTV was defined as 
the GTVp with 0.5–1 cm radial expansion and 2.5–3 cm 
axial direction expansion or the GTVnd with 0.5–0.8 cm 
uniform expansion. The planning target volume (PTV) 
was defined as CTV with a 1  cm uniform expansion. A 
total prescribed dose of 50–72  Gy (median, 64  Gy) in 
conventional fractionation was delivered to the patients.

Two cycles of platinum-based chemotherapy were 
administered concurrently with radiotherapy. Sixty-one 
patients received TP (paclitaxel + cisplatin) chemo-
therapy every three weeks, which consists of cisplatin 
(60  mg/m2 on Day 1) plus paclitaxel (135–180  mg/m2 
on Days 1). One hundred and sixty patients received the 
PF (cisplatin + fluorouracil) regimen every four weeks, 
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Fig. 1  Flow chart of patients’ screening and allocation
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which consists of cisplatin (60 mg/m2 on Day 1) and fluo-
rouracil (750 mg/m2 /24 h on Days 1–4).

Response evaluation
The response to chemo-radiotherapy was evaluated one 
month after CCRT according to the criteria of short-term 
response evaluation standard on esophageal cancer using 
CT images and barium esophagogram. According to the 
response evaluation criteria, clinical response was classi-
fied as complete response (CR), partial response (PR), no 
response (NR), or progressive disease (PD). Patients who 
were classified as CR by barium esophagogram and had 
the maximal esophageal wall thickness of ≤ 1.2  cm and 
the volumes of residual lymph nodes of ≤ 1.0 cm3 on CT 
were finally defined as CR [17].

Radiomic feature extraction
All patients were scanned using GE Lightspeed 64-slice 
spiral CT (GE Medical systems, Milwaukee, Wis) before 
radiotherapy. CT image acquisition was performed 
according to the following acquisition protocol: The CT 
tube voltage was 120  kV and the tube current was 120 
mAs. Rack rotation time: 0.6  s; Detector collimation 
parameters: 64 × 0.625  mm; field of view (FOV): 400-
500  mm; Matrix: 512 × 512; Layer thickness is 5  mm, 
layer spacing is 5  mm. Contrast medium was injected 
with a high-pressure syringe at a flow rate of 3.0  ml/s 
(1–1.5  ml/kg, ioproxamine injection 300), followed by 
30 to 40 ml of normal saline for flushing, and late arterial 
CT images were collected with a delay of 30 s. To reduce 
the variability between images from different patients, all 
images were resampled to voxel of 1*1*1mm3.

3D Slicer (version, 4.10.2, Stable Release) with radiom-
ics extension was used for image segmentation to obtain 
volume of interest (VOIs). The primary tumor volume 
(GTV) delineated by radiation oncologists for radiother-
apy treatment planning design was defined as VOI for 
radiomic features extraction. Any pixel with an attenua-
tion of less than − 50 HU was excluded to avoid adjacent 
air, fat, blood vessels and surrounding organs. Image seg-
mentation was performed independently by a radiation 
oncologist and another radiologist. To assess the repro-
ducibility of the radiomic features extraction, tumor seg-
mentation was performed again two months later by the 
same radiologist in 30 randomly chosen patients.

Pyradiomics V3.6.2 was used to extract radiomic fea-
tures from delineated VOIs. Several categories of features 
were extracted from VOIs, including first order statistics 
features (IH, intensity histogram), shape-based histogram 
features, and texture features (gray-level co-occurrence 
matrix, GLCM; gray-level size-zone matrix, GLSZM; 
gray-level run-length matrix, GLRLM; neighboring 
gray-tone difference matrix, NGTDM; and gray-level 

dependence matrix, GLDM). The wavelet filter was used 
in image pre-processing for texture features extraction. 
In all, for each VOI, 107 original features (Additional 
file  1: Table  S1) and 744 wavelet features (Additional 
file 1: Table S1) were collected. Among the 107 original 
features, there were 18 first order statistics features, 14 
shape-based histogram features, 24 GLCM features, 14 
GLDM features, 16 GLRLM features、16 GLSZM fea-
tures and 5 NGTDM features. Mathematical definitions 
of these radiomic features have previously been described 
[18] and available at https://​pyrad​iomics.​readt​hedocs.​io/​
en/​latest/​featu​res.​html.

Statistical analysis
At the first, statistical analyses were performed with Chi-
squared test or Fisher’s to assess the difference of the 
clinical characteristics between training cohort and vali-
dation cohort. A p-value of < 0.05 was considered statisti-
cally significant.

In the pre-processing of radiomic features, all the val-
ues of radiomic features were normalized using Z-score 
normalization, which made features values lying within 
similar ranges and reduced the influence of large dis-
crete values. The intra-class correlation coefficient (ICC) 
analysis was performed to evaluate the reproducibility of 
each radiomic feature. Only the features with ICCs val-
ues ≥ 0.900 were selected for further analysis. Then, the 
least absolute shrinkage and selection operator (LASSO) 
with COX regression was performed using R software 
version 3.6.2 (R Foundation for Statistical Computing, 
Vienna, Austria) to identify the features associated with 
LPFS in the training cohort. The optimal parameter 
lambda (λ) was chosen from the LASSO model using ten-
fold cross-validation with the minimum partial likelihood 
deviance. Radiomic feature score (Rad score) for each 
patient was built based on the LASSO COX regression 
model in the training cohort. The LASSO COX regres-
sion formula:

In the above formula, X1, X2 … Xn are the different 
radiomic features identified by the LASSO COX regres-
sion model, and β1, β2 … βn are the regression coef-
ficients of the corresponding features in the regression 
model.

Univariate analysis was performed to identify the 
potential prognostic factors associated with LPFS. Multi-
variable COX regression analysis was performed to iden-
tify the independently predictors for LPFS. A nomogram 
model combined Rad-score and clinical factors for pre-
dicting LPFS was developed and validated based on the 
results of multivariable COX regression analysis using 
rms package and foreign package in R software. The 

Rad score = β1X1+ β2X2+ β3X3+ · · · + βnXn

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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predictive accuracy of the nomogram model was assessed 
using Calibration curve validation in both training cohort 
and validation cohort. All the analyses were performed 
with R software version 3.6.2.

Results
Patients’ characteristics
A total of 221 ESCC patients who received chemoradio-
therapy in our hospital were eligible for further analysis 
in this study. Patients’ characteristics were summarized 
in Table 1. The median follow-up time was 18.6 months. 
By the end of the last follow-up, 153 patients developed 
local regional disease progression or died. The median 
LPFS in the whole group was 13.7 months, and the rates 

of 1-year, 2-year and 3-year LPFS were 56.1%, 37.4% and 
32.1%, respectively (Fig. 2).

In order to develop and validate a radiomics-based 
model for predicting LPFS of the patients, they were ran-
domly divided into training cohort and validation cohort. 
There were 155 patients in the training cohort and 66 
patients in the validation cohort. No significant differ-
ences (All p > 0.05) were found between the distribution 
of baseline characteristics in two cohorts, such as age, 
gender, tumor location, T stage, N stage, clinical staging, 
lactate dehydrogenase (LDH), neutrophil to 1ymphocyte 
ratio (NLR), platelet to lymphocyte ratio (PLR) and CR 
ratio (33.5% in the training cohort vs 39.4% in the valida-
tion cohort). Therefore, the two cohorts of patients were 
comparable.

Table 1  Comparison of patients’ characteristics between training cohort and validation cohort

Variables Training cohort (n = 155) Validation cohort (n = 66) χ2/t p

Age (years), Mean ± SD 65.7147 ± 9.74 64.73 ± 10.16 0.678 0.499

Gender 0.342 0.559

 Male 116 (74.8) 45 (68.2)

 Female 39 (25.2) 21 (31.8)

Tumor location 5.814 0.121

 Cervical 6 (3.9) 8 (12.1)

 Upper thoracic 34 (21.9) 16 (24.2)

 Middle thoracic 91 (58.7) 33 (50.00)

 Lower thoracic 24 (15.5) 9 (13.6)

T stage 3.193 0.363

 T1 2 (1.3) 0 (0)

 T2 11 (7.1) 9 (13.6)

 T3 66 (42.6) 27 (40.9)

 T4 76 (49.0) 30 (45.5)

N stage 1.856 0.603

 N0 20 (12.9) 13 (19.7)

 N1 70 (45.2) 28 (42.4)

 N2 55 (35.5) 22 (33.3)

 N3 10 (6.5) 3 (4.5)

Clinical stage 3.152 0.369

 I 2 (1.3) 0 (0)

 II 15 (9.7) 11 (16.7)

 III 88 (56.8) 37 (56.1)

 Iva 50 (32.3) 18 (27.3)

Radiation dose, Median (range) 64 (60–66) 64 (60–66) − 0.920 0.358

LDH group 1.282 0.258

 High 88 (56.8) 32 (48.5)

 Normal 67 (43.2) 34 (51.5)

NLR, Median (range) 2.73 (1.96–3.71) 2.76 (2.00–3.63) − 0.448 0.654

PLR, Median (range) 137.78 (100.56–181.43) 138.87 (101.31–182.26) − 0.344 0.731

CR ratio 52 (33.5) 26 (39.4) 0.693 0.405

Rad-score, Mean ± SD − 0.0289 ± 0.35 − 0.058 ± 0.538 0.474 0.636
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Rad‑score building based on radiomic features
LASSO-COX regression was used to screen out the 
optimal radiomic features associated with LPFS of 
the patients in the training cohort (Fig.  3A, B). As a 
result, seventeen radiomic features were screened 
out (The features and their coefficients were listed in 
the Table  2). The Rad-score was calculated as follows: 
Rad-score = -0.104667846*original_firstorder_Skew-
ness + 0.001161134*origin_glszm_SizeZoneNonUni-
formityNormalized + 0.034339901*origin_glszm_Size-
ZoneNonUniformity-0.017089976*origin_glszm_Low-
GrayLevelZoneEmphasis + 0.062595767*wavelet-HLL_
glcm_Idn + 0.026703955*wavelet-HLL_firstorder_Maxi-
mum +  0.042957143*wavelet-HLL_glszm_SizeZo-
neNonUniformityNormalized + 0.017543973*wavelet-
LHL_firstorder_TotalEnergy + 0.003781538*wavelet-
LHL_firstorder_Maximum-0.007364328*wavelet-
LLH_gldm_SmallDependenceLowGrayLevelEmpha-
sis + 0.157807433*wavelet-LLH_glcm_DifferenceVari-
ance + 0.042028490*wavelet-LLH_glrlm_ShortRunHigh-
GrayLevelEmphasis-0.101981005*wavelet-LLH_ngtdm_
Coarseness-0.073958943*wavelet-HLH_gldm_SmallDe-
pendenceLowGrayLevelEmphasis + 0.051287394*wave-
let-HLH_firstorder_Maximum-0.055239045*wavelet-
HHH_glcm_MaximumProbability-0.028958889*wavelet-
LLL_glcm_Imc2.

There was an optimal cutoff value of Rad score to 
divide the patients into two groups with different risk of 
local recurrence. As shown in Fig. 3C, the patients with 
a Rad-score ≥ 0.1411 had high risk of local recurrence, 
and those with a Rad-score < 0.1411 had low risk of local 
recurrence. In the training cohort, the patients in the 
group with high risk of local recurrence had significantly 
shorter time of LPFS than those with risk of local recur-
rence (Fig. 4A, HR 2.882, 95% CI 1.926–4.313, p < 0.001). 

The same result was found in the validation cohort 
(Fig. 4B, HR 1.997, 95% CI 1.070–3.728, p = 0.026).

Development and validation of a predictive nomogram 
based on Rad‑score
In order to develop a model to predict LRFS based on 
multiple factors, we performed univariate and multi-
variate analyses to identify predictive factors for LPFS. 
Univariate analysis showed that the T stage, N stage, 
clinical stage and CR status were significantly associated 
with LPFS both in training cohort and validation cohort 
(Table 3). Multivariate analysis showed that N stage, CR 
status and Rad-score were independent predictive fac-
tors for LPFS in ESCC patients after chemoradiotherapy 
(Table  4). A nomogram model for predicting LPFS was 
built based on the result of multivariate analysis (Fig. 5A). 
As shown in Fig. 5 1-year, 2-year and 3-year LPFS prob-
ability of every patient could be predicted based on the 
independent clinical characteristics and Rad-score. The 
C-index of the nomogram was 0.745 (95% CI 0.7700–
0.790) in training cohort and 0.723(95% CI 0.654–0.791) 
in validation cohort.

Finally, we performed calibration curve to evaluate the 
accuracy of the nomogram model. As shown in Fig.  6, 
the 3-year LPFS rate predicted by the nomogram model 
based on Rad-score was highly consistent with the actual 
3-year LPFS rate both in the training cohort and the vali-
dation cohort.

Discussion
Concurrent chemoradiotherapy (CCRT) is a radical 
treatment for patients with inoperable esophageal can-
cer or refused surgery [4]. Many studies have shown that 
dose-escalation radiotherapy properly can improve the 
local control and survival of patients with ESCC [19–22]. 
Nevertheless, 30–50% of patients have local recurrence 
within 3  years [23–25]. In our present study, we con-
structed a prediction model combined the clinical char-
acteristics and CT radiomic features which can predict 
the LPFS of patients after CCRT. With the help of this 
model, we can preliminarily judge the probability of LPFS 
of patients and identify the patients benefit more from 
CCRT.

Radiomics studies in esophageal cancer started rela-
tively late, and there are still few data about applying radi-
omics analysis to evaluate the prognosis of esophageal 
cancer. Ganeshan et  al. [26] first analyzed the radiomic 
features of CT before treatment in esophageal cancer 
patients and found that the radiomic features represent-
ing uniformity parameters were significantly different 
between stage I/II and stage III/IV disease, which were 
independent predictors of patients’ prognosis. Subse-
quently, Yip et al. [14] found that the tumor heterogeneity 

Fig. 2  Kaplan–Meier curve of local-progression free survival for all 
patients
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could be represented by the change of CT radiomic fea-
tures before and after neoadjuvant treatment, which was 
related to the prognosis and survival of patients. Larue 
et al. [15] also found that five radiomic features extracted 
from CT before chemoradiotherapy could be used to 
describe the tumor heterogeneity and predict the 3-year 
survival rate of patients after neoadjuvant chemoradio-
therapy and surgery with AUCs (AUC, area under the 
receiver) of 0.69 in the training group and 0.61 in the vali-
dation group. All these studies suggested that radiomic 
features played an important role in evaluating the prog-
nosis of esophageal cancer and could be used to predict 
the long-term survival of esophageal cancer patients after 

chemoradiotherapy, which was also supported in our 
study.-

Clinical TNM staging before treatment is still the most 
commonly used prediction system of prognosis for ESCC 
patients treated with chemoradiotherapy. Combination 
of TNM staging and other prognostic factors can predict 
the prognosis of patients more individually and accu-
rately [27, 28]. Some studies have shown that the progno-
sis of patients who achieved CR after chemoradiotherapy 
was better than that of patients not CR [29, 30]. There-
fore, CR after CCRT had become another important 
predictor for the prognosis of patients besides clinical 
stages. In the present study, univariate analysis showed 

Fig. 3  Selection of radiomic features associated with LPFS using the LASSO COX regression model. A Coefficients profiles of radiomic features. The 
horizontal axis value is logλ, and the vertical axis value represent the coefficients of radiomic features. B The cross-validation curve. The horizontal 
axis value is logλ, and the vertical axis value is partial likelihood deviance. C The optimal cutoff of Rad-score. Red lines or red dots represent patients 
at high risk of local recurrence and green lines or green dots represent patients at low risk of local recurrence. The optimal cutoff value is 0.1411, as 
shown in the vertical line in the figure
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that pre-treatment clinical T stage, N stage, clinical stage 
and CR after radiotherapy were the prognostic factors 

related to LPFS after CCRT. Moreover, Rad-score based 
on 17 radiomic features extracted from CT images before 
chemoradiotherapy was significantly related to LPFS of 
patients after chemoradiotherapy. Further multivariate 
analysis showed that Rad-score, N stage and CR after 
radiotherapy were independent predictors of patients’ 
LPFS, while T stage and clinical stage had no statistical 
significance in this multivariate analysis model, prob-
ably because Rad-score derived from the primary tumor 
focus and had interactive effects with T stage and clinical 
stage. We developed and validated a nomogram model 
based on the results of multivariate analysis. C-index 
and calibration curve were used to evaluate the perfor-
mance and prediction accuracy of the nomogram model. 
The C-index of the model was 0.745(95% CI 0.700–0.790) 
in the training cohort and 0.723(95% CI 0.654–0.791) 
in the validation cohort, indicating high prediction 

Table 2  Radiomics feature associated with LPFS selected by LASSO COX analysis

Radiomics features Coefficients

original_firstorder_Skewness − 0.104667846

origin_glszm_SizeZoneNonUniformityNormalized 0.001161134

origin_glszm_SizeZoneNonUniformity 0.034339901

origin_glszm_LowGrayLevelZoneEmphasis − 0.017089976

wavelet-HLL_glcm_Idn 0.062595767

wavelet-HLL_firstorder_Maximum 0.026703955

wavelet-HLL_glszm_SizeZoneNonUniformityNormalized 0.042957143

wavelet-LHL_firstorder_TotalEnergy 0.017543973

wavelet-LHL_firstorder_Maximum 0.003781538

wavelet-LLH_gldm_SmallDependenceLowGrayLevelEmphasis − 0.007364328

wavelet-LLH_glcm_DifferenceVariance 0.157807433

wavelet-LLH_glrlm_ShortRunHighGrayLevelEmphasis 0.042028490

wavelet-LLH_ngtdm_Coarseness − 0.101981005

wavelet-HLH_gldm_SmallDependenceLowGrayLevelEmphasis − 0.073958943

wavelet-HLH_firstorder_Maximum 0.051287394

wavelet-HHH_glcm MaximumProbability − 0.055239045

wavelet-LLL_glcm_Imc2 − 0.028958889

Fig. 4  Kaplan–Meier survival curve of patients with high and low 
recurrence risk based on Rad-score. A LPFS survival curve of patients 
in the training cohort: green line represents patients with low risk 
of local recurrence and red represents patients with high risk of 
local recurrence. The difference is significant between two groups, 
p < 0.001. B LPFS survival curve of patients in the validation cohort: 
green line represents patients with low risk of local recurrence and 
red line represents patients with high risk of local recurrence. The 
difference is significant between two groups, p = 0.026

Table 4  Multivariate analysis of prognostic factors 
associated with LPFS for patients with ESCC treated with 
chemoradiotherapy

Variables Multivariate analysis p

HR 95% CI p

T stage 0.858 0.526–1.400 0.540

N stage 1.892 1.122–3.190 0.017

Clinical stage 0.627 0.313–1.258 0.189

Rad-score 4.423 1.993–9.814 0.000

CR status 0.154 0.080–0.297 0.000
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performance. The calibration curve also showed a high 
prediction accuracy. Therefore, we believe that this pre-
diction model based on Rad-score can provide a more 
accurate tool to predict LPFS, which was a convenient 
and economical means.

Although a prognosis prediction model was established 
and validated, there are some challenges for interpreta-
tion of the results. Due to the fact that the machine and 
scanning parameters of CT in other centers are usually 
different and not standardized, the utility of the results 
or the radiomic features in other study was full of uncer-
tainty. Moreover, radiomic-biology correlations have not 
yet to be identified in published literature and clinical 
experience, so there is no concrete interpretation about 
the features or the feature sets. On the other hand, differ-
ent methodologies for feature selection and the focus on 

Table 3  Univariate analysis of prognostic factors associated with LPFS in patients with ESCC treated with chemoradiotherapy

Variables Training cohort p Validation cohort p

HR 95% CI p HR 95% CI p

Age 0.987 0.967–1.007 0.202 0.984 0.957–1.011 0.252

Gender 1.639 1.014–2.650 0.044 1.198 0.652–2.202 0.560

Tumor location 1.120 0.851–1.473 0.419 1.289 0.917–1.812 0.143

T stage 2.015 1.453–2.793 < 0.001 1.943 1.227–3.077 0.005

N stage 1.867 1.446–2.410 < 0.001 1.765 1.215–2.563 0.003

Clinical stage 2.194 1.581–3.044  < 0.001 2.309 1.440–3.704 0.001

Radiation dose 0.965 0.923–1.009 0.118 0.996 0.921–1.078 0.927

LDH 1.641 1.116–2.414 0.012 1.369 0.778–2.408 0.276

NLR 1.069 0.965–1.184 0.199 1.015 0.901–1.142 0.810

PLR 1.001 0.999–1.003 0.177 1.001 0.999–1.004 0.377

CR status 0.128 0.072–0.228 < 0.001 0.295 0.157–0.556 < 0.001

Fig. 5  Nomogram model for predicting LPFS based on Rad-score. 
Rad.score refers to Rad-score. 0, 1, 2, and 3 refers to N0, N1, N2 and 
N3 in N stage line respectively. CR represents complete response, the 
value of 0 and 1 refer to non-CR and CR status respectively

Fig. 6  Calibration curve validation for Nomogram model in training cohort (A) and validation cohort (B). The horizontal axis represents the 
predicted 3-year LPFS and the vertical axis represents the actual 3-year LPFS. The blue diagonal dot line represents the ideal nomogram, and the red 
line represents the observed nomogram. The closer the calibration curve is to the diagonal line, the higher the consistency between the predicted 
results and the actual situation
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different feature sets could have led to different results. 
These issues have also been addressed in other studies 
[31].

Our study provides a good enlightenment to the com-
ing studies to prospectively establish patient cohorts. 
However, there are some defects worth noting. First 
of all, this study is a retrospective study. Because of the 
long-time span of CT images used in image data acquisi-
tion, there were inevitably some problems that the image 
quality and scanning parameters were hard to be exactly 
the same, especially the development time and dosage 
of enhancer, so this study only collects the information 
of plain CT images. Secondly, as patients’ response to 
chemoradiotherapy could not be evaluated pathologi-
cally, clinical CR used in our study can’t represent patho-
logical CR completely truly. Fortunately, a considerable 
number of patients achieved CR had been confirmed by 
gastroscopy pathology. Being limited by the nature of 
a single-center retrospective study, the results may be 
biased to some extent, and its reliability and universality 
still need different centers to further carry out large sam-
ple size research verification.

Conclusion
In a word, this study established and validated a predic-
tion model based on radiomic features and clinical fac-
tors, which can be used to predict LPFS of patients after 
CCRT. As an intuitive and convenient prediction method, 
this model is conducive to identifying the patients with 
ESCC benefited more from CCRT.
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