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Abstract: The population loss rate of a honey bee colony is a critical index to verify its health
condition. Forecasting models for the population loss rate of a honey bee colony can be an essential
tool in honey bee health management and pave a way to early warning methods in the understanding
of potential abnormalities affecting a honey bee colony. This work presents a forecasting and early
warning algorithm for the population daily loss rate of honey bee colonies and determining warning
levels based on the predictions. Honey bee colony population daily loss rate data were obtained
through embedded image systems to automatically monitor in real-time the in-and-out activity of
honey bees at hive entrances. A forecasting model was trained based on temporal convolutional
neural networks (TCN) to predict the following day’s population loss rate. The forecasting model
was optimized by conducting feature importance analysis, feature selection, and hyperparameter
optimization. A warning level determination method using an isolation forest algorithm was applied
to classify the population daily loss rate as normal or abnormal. The integrated algorithm was tested
on two population loss rate datasets collected from multiple honey bee colonies in a honey bee farm.
The test results show that the forecasting model can achieve a weighted mean average percentage
error (WMAPE) of 17.1 ± 1.6%, while the warning level determination method reached 90.0 ± 8.5%
accuracy. The forecasting model developed through this study can be used to facilitate efficient
management of honey bee colonies and prevent colony collapse.

Keywords: time series forecasting; monitoring system; early warning; temporal convolution net-
works; population daily loss rate

1. Introduction

Honey bees (Apis mellifera) are essential for global food production [1]. In the last
decades, some regions of the world have suffered from a significant loss in the number of
active honey bee colonies [2]. The decline of honey bee colonies is partly attributed to a
phenomenon known as Colony Collapse Disorder (CCD) [1,2]. To maintain healthy and
thriving honey bee colonies, it is essential for beekeepers to regularly monitor the status
of the bee hives. Currently, most beekeepers manually estimate the health of a honey bee
colony in a relatively time-consuming and imprecise approach by beehive inspection and
honey bee flight activity observation at the hive entrance. Automated monitoring system
are highly desirable to have a rapid and quantitative access to the health status information
of honey bee hives.

Various systems for automatic in-hive and hive-entrance monitoring of honey bee
activities have been developed. Reported systems use infrared sensors [3], radio frequency
identification (RFID) tags and readers [4,5], and imaging sensors [6]. In our recent work,
we described an embedded image monitoring system for automatic and highly reliable
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counting of incoming and outgoing honey bees at the hive entrance [7]. The obtained
access to in-time and quantitative data opens a path to the development of forecasting
models as an essential tool for beehive management, which is discussed here. When the
daily population loss rate exceeds a critical threshold, the system can release an automated
alert of a required and immediate intervention by the beekeeper to promptly prevent honey
bee colony collapse.

An automatic system for monitoring and forecasting honey bee activity and daily loss
rate has several advantages. An automated system reduces labor costs in maintaining the
health of a colony [1] and enables the identification of abandoned or collapsed hives [8].
It can also detect quantitative deviations from a predicted normal status, as through the
invasion of predators such as a hornet, the presence of pesticides in harvested areas, or
strong fluctuations in environmental conditions. Forecasting models may also be used
to investigate the environmental variables that largely affect the health of a honey bee
colony [9].

The collection of long-term activity data on honey bee colonies is difficult. Only few
studies related to forecasting honey bee activity are reported. An early detection system
was developed by Ferrari et al. [10] for swarm monitoring by recording the auditory activity
of honeybees. A microphone and a temperature and humidity sensor were installed inside
the beehive. The recorded audio signals were used to predict swarming. In the work of
Clarke and Robert [9], a model was developed to predict the hourly egress rate of honey
bees from local weather data such as: temperature, solar radiation, atmospheric pressure,
humidity, rainfall, wind direction and wind speed. About 78% of the observed variation
in honey bee activity could be explained by variations in temperature and solar radiation.
In a study by Bagheri and Mirzaie [11], a mathematical model was developed to predict
the effect of pollen on honey bee colony failure, whereas Gomes et al. [12] developed a
method for forecasting the hourly activity level of honey bees using a recurrent neural
network (RNN). Environmental factors, such as temperature, solar radiation and barometric
pressure, together with the history of honey bee activity, were used to train the forecasting
model producing a root mean square error of 0.2.

There are several possible ways in performing time series forecasting. Statistical
methods include autoregressive integrated moving average (ARIMA) [13] and Bayesian
algorithms [14]. Machine learning techniques, including random forest and support
vector machine, are promising explicitly for more complex datasets [15]. Honey bee
daily loss rate is a complex and dynamic model involving different variables inside and
outside the beehive. Statistical and machine learning approaches may not be adequate for
complex pattern recognition. Increasingly, more researchers were able to use deep learning
models for obtaining accurate and reliable forecasting results. Most deep learning models
for time-series forecasting comprise recurrent neural networks (RNN). RNNs are based
on mechanisms such as gated recurrent units (GRU) [16] and long-short term memory
(LSTM) [17,18]. Another form of neural network for time-series forecasting is the temporal
convolutional neural network (TCN) [19]. TCN was first introduced by Lea et al. [20]
for video-based action segmentation. TCN provides a unified approach for hierarchically
capturing data relationships with different levels of information.

Warning level categories to classify forecasted loss rates can provide insightful in-
formation to beekeepers. In the work of Bayuadji et al. [21], a flood warning level was
determined by fitting flood and rainfall data to a logistic regression model. Thereby, pre-set
probability thresholds classified rainfall into three warning levels. On the other hand,
Zhang et al. [22] used K-means clustering algorithm to classify warning levels for recorded
vegetable insect pest populations from level I to level IV, being the highest warning level.
Up to now, there is no related work for defining warning levels for honey bee collapse.

This work aims to develop a honey bee colony daily population loss rate forecasting
method, and based on the results, define warning levels. To meet these goals, specific
objectives to be fulfilled included: (1) developing a TCN model for forecasting honey bee
colony daily population loss rate; (2) optimizing the developed TCN model by finding
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its ideal hyperparameters and determining its best input features; (3) implementing an
outlier detection method, such as an isolation forest algorithm, to classify the forecasted
daily population loss rate as normal or abnormal; and (4) evaluating the developed TCN
model and isolation forest algorithm based on test datasets. The developed method can be
used by beekeepers, entomologists, and agronomists to obtain fast, essential information
about the status and abnormality in honey bee colonies.

2. Materials and Methods
2.1. Data Collection

An automated system was used for recording the traffic at the beehive entrance and
monitoring local environmental conditions. Each set of the system included an NVIDIA
Jetson TX2 (NVIDIA Corporation, Santa Clara, CA, USA) for image monitoring in the bee-
hive entrance, and a Raspberry Pi 3 (Raspberry Pi Foundation, Cambridge, UK) embedded
system for acquiring sensor data including temperature, humidity, light intensity, and rain
level. A black acrylic observation box, which included a web camera and red LED lighting
board, was attached to the beehive entrance. Technical details are discussed in our previous
work [7].

Data collected by the image monitoring system included daily incoming and outgoing
counts, daily differences in incoming and outgoing counts, daily population loss rate,
temperature, and relative humidity. The daily population loss rate (LR) of a honey bee
colony was calculated using Equation (1):

LR(t) =
Cout(t)− Cin(t)

Cout(t)
(1)

where Cin (t) and Cout (t), as functions of time (t), are the daily incoming and outgoing
counts, respectively. This equation was used in our previous work to assess the effects of
pesticides on honey bee colonies [7].

Local weather data were wind speed, wind speed gust, wind direction, wind direction
gust, precipitation, and the duration of precipitation and collected from the open-source
data platform of the Taiwan Central Weather Bureau. The local weather data were cross
verified with the rain level, temperature, and humidity sensor data collected by the moni-
toring system; as they showed similar values, they were used as additional input features of
the forecasting model. All collected data were used for feature selection of the forecasting
model and analysis. The nomenclature of the data is shown in Table 1.

Table 1. Forecasting model input data features collected from the monitoring system and the local
weather station.

Feature Name Description Units

LR daily loss rate %
cin daily incoming count -
cout daily outgoing count -
cdiff daily difference -

t ambient temperature Celsius
tmax maximum temperature Celsius
tmin minimum temperature Celsius
rh relative humidity %

rhmin minimum humidity %
ws wind speed m/s
wd wind direction degree

wsgust wind speed gust m/s
wdgust wind direction gust degree
precp precipitation mm

precphour duration of precipitation hour
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2.2. Experimental Setup

Experimental data were collected from two experiments in a honey bee farm located
in Hsinchu City, Taiwan. The details of each experiment are summarized in Table 2. The
honey bees studied in this research were Apis mellifera. In each experiment, four healthy
colonies with four honey bee combs and one queen each were prepared. The four replicated
beehives were used to test the adaptability of the proposed forecasting algorithm. The
hives were checked every two weeks to ensure the healthy condition of the colony. The data
obtained from the two experiments were referred to as dataset EAn and EBn, respectively,
where n is the beehive number.

Table 2. Information on each experiment.

Experiment# Start Date End Date # of Hives Duration

EA 2019/08/08 2019/12/08 4 122 days
EB 2020/04/14 2020/09/27 4 169 days

2.3. Honey Bee Colony Population Loss Rate Forecasting and Early Warning Algorithm

The flowchart of the forecasting and early warning algorithm is presented in Figure 1.
The algorithm was implemented using Python 3.5 with the support of Keras v2.2.6 deep
learning library [23] and SciKit-Learn machine learning library [24].
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Figure 1. Flowchart of the honey bee colony daily population loss rate forecasting and early warning algorithm.

2.3.1. Data Pre-Processing

LR data collected by the image monitoring system were pre-processed by interpolation
and data normalization before feeding into the TCN forecasting model. Sample results are
shown in Figure 1. Interpolation is a mathematical method that fits a function to a dataset
and uses the function to fill in missing data based on the nearest past and future values.
Each set of missing data was filled in with the mean computed from its four nearest values.
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Afterwards, the completed data were normalized by scaling the input feature into values
from 0 to 1 based on the minimum and maximum values of each input feature, respectively.
Dataset EA had five days of missing data while dataset EB had eight days of missing data,
both due to power outage and maintenance of the image monitoring system.

2.3.2. Temporal Convolutional Network for Daily Population Loss Rate Forecasting

A temporal convolutional network (TCN) [20] was used to forecast the future honey
bee daily population loss rate and predict potential colony collapse. The key characteristic
of TCNs is its usage of convolutions. Convolutions are causal and does not depend on
any future timestep data. Unlike other deep learning models for forecasting like GRU and
LSTM. TCN has longer memory and can process time series data of any length and generate
similar long predictions [25]. For these reasons, TCN was selected as the forecasting model
in this work.

The TCN forecasting model comprised a series of blocks, which individually contained
a sequence of convolutional layers. Each layer was composed of dilated convolutions,
associated with a dilation factor d, with rectified linear unit (ReLU) as non-linear activation
function. Dilation introduces a fixed step between every adjacent filter. Larger dilations and
larger filters of size k effectively expand the receptive field [19,20]. In these convolutions,
exponential increments in the value of d increases the depth of the network. This guarantees
the presence of a filter that hits each input within the effective history [19]. A residual
connection was added for each dilated convolution to integrate the convolutional result
with the input layer. In this work, the input of the TCN model was defined as xt and the
output was represented by yt, where xt contains n-dimensional parameters. The output of
the TCN model was the LR of the next day.

2.3.3. Warning Level Determination

LR data were fitted to an isolation forest model [26] to categorize the honey bee daily
loss rate according to different warning levels. Isolation forest is an unsupervised learning
classification method based on decision trees. It recursively creates partitions by randomly
selecting a feature and then picks a random split value between the minimum and maxi-
mum value of the selected feature. It produces smaller paths for the outlier values. Unlike
other outlier detection methods, isolation forest explicitly identifies anomalies instead of
profiling normal data points. Thus, the outlier values can be easily distinguished from
non-outlier data. Isolation forest performs better than most anomaly detection algorithms
across different datasets, based on receiver operating characteristic (ROC) performance
and precision [26] and therefore chosen for the given problematic. Anomalies from LR
data were detected by isolation forest algorithm and categorized as abnormal, while the
rest of the data were classified as normal. Normal level indicates a honey bee population
within normal conditions at a natural loss rate without the need of manual interception.
An abnormal level suggests detailed monitoring to prevent potential colony damage.

2.4. Forecasting Model Training and Optimization Strategy
2.4.1. Data Characterization

Forecasting accuracy depends strongly on the data characteristic. Determining the
data characteristic can help in developing an optimized forecasting strategy and selecting
a suitable model [27]. Two indices were computed to identify the demand pattern of the
data: average inter-demand interval (ADI) and square of the coefficient of variation (CV2).
ADI is a measure of the demand regularity in time based on the average interval between
demands while CV2 is an index that measures the variation in quantities. The two indices
were used to classify LR data according to four different categories: smooth, intermittent,
erratic, and lumpy [28].
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2.4.2. Feature Importance Analysis and Selection

The objective of feature selection is to minimize the input features to optimize forecast-
ing performance. LR data were fit to a random forest classifier to compute the importance
score of each feature using functions provided in Scikit-Learn machine learning library [24].
Afterwards, correlation analysis was carried out to generate a correlation heatmap that
describes relationships between features. The correlation coefficient computed between fea-
tures ranges from -1 to 1, where values higher than 0.5 indicate significant linear correlation.
Feature groups (FG) were formed based on the feature analysis results for comparison.

2.4.3. Model Training and Optimization

TCN models were trained based on the different feature groups obtained from the
feature selection step for comparison. Grid search was used to find the best values of the
hyperparameters, including learning rate, number of epochs, number of TCN layers, batch
size, window size, number of filters, kernel size, dilation, and dropout rate. Each model
was optimized using the Adam optimizer, while minimizing the mean squared error (MSE),
with He normal as the kernel initializer [29].

2.5. Algorithm Evaluation and Statistical Analysis

To evaluate the performance of the forecasting model, the weighted mean average
percentage error (WMAPE) was computed. WMAPE measures the absolute percentage
error in prediction and was calculated by Equation (2):

WMAPE =
∑N

i=1

∣∣∣yobs
i −ypred

i

∣∣∣
yobs

i
× 100 × yobs

i

∑N
i=1 yobs

i
(2)

where yobs
i denotes the real value, ypred

i denotes the predicted value, and N is the total
amount of data.

There is no standard in determining warnings of the daily population loss rate of
honey bee colonies. Thus, the warning level determination method was validated based
on the daily population loss rate values found in related literature. In the work of Rumkee
et al. [30], it was found that a daily mortality of forager honey bees of more than 15% led to
a rapid loss in population and a colony survival rate of only 50%. Meanwhile, Dukas [31]
discovered a natural a daily mortality rate of forager honey bees of about 13.4% due to
aging and natural deaths. Therefore, here, colonies with LR values higher than 13% were
considered to be abnormal, for verification purposes. The accuracy of the warning level
determination method was computed using Equation (3):

Accuracy (%) = 100 −

∣∣∣Apredicted − Atrue

∣∣∣
Atrue

× 100 (3)

where Apredicted and Atrue are the number of predicted abnormal LR by isolation forest
algorithm and number of true abnormal LR greater than 13%, respectively. Student paired
t-tests (p < 0.05) were used to confirm the significant differences between the results and
data acquired.

3. Results and Discussion
3.1. Data Characterization Results

LR data obtained from the beehives of each dataset were characterized by computing
ADI and CV2, as summarized in Table 3. The results showed a smooth demand pattern
for most LR data, except for dataset EB3. On average, the ADI and CV2 of all the datasets
indicated a smooth characteristic and the data were regular in time and quantity. High
regularity indicates high forecastability [27].
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Table 3. Summary of data characterization results.

Dataset Duration ADI CV2 Characteristic Condition

EA1 112 days 1.03 0.33 Smooth Normal
EA2 112 days 1.04 0.29 Smooth Normal
EA3 112 days 1.03 0.32 Smooth Normal
EA4 112 days 1.05 0.25 Smooth Normal
EB1 171 days 1.06 0.47 Smooth Collapsed
EB2 182 days 1.07 0.30 Smooth Normal
EB3 161 days 1.06 0.64 Erratic Collapsed
EB4 141 days 1.05 0.28 Smooth Normal

After each experiment, the honey bee colonies were also manually inspected to deter-
mine if their condition was normal or collapsed. A colony with thousands of in-and-out
activities at the hive entrance was classified to be normal, otherwise, as collapsed. In
experiment EA, all four beehives were normal while there were two normal beehives (EB2
and EB4) and two collapsed beehives (EB1 and EB3) in experiment EB. The higher values of
CV2 obtained from datasets EB1 and EB3 compared to the other data might be indicative.
The two collapsed beehives in experiment EB were further analyzed and are discussed in
later sections.

3.2. Model Input Feature Optimization
3.2.1. Feature Correlation and Importance Analysis

The feature importance analysis results obtained from the data on each beehive
are presented in Figure 2. The feature importance scores computed from the data of
each beehive varied. In general, it was found that precipitation, hourly precipitation,
incoming counts, outgoing counts, and daily count difference had the highest scores.
However, it was also found that the collapsed beehives (Figure 2e,g) had different results
from the normal beehives (Figure 2a–d,f,h). The feature importance score of normal hives
were high in terms of precipitation, precipitation duration, incoming counts, outgoing
counts, difference in count (Figure 2a–d,f,h). Meanwhile, the incoming count, difference
in count had high scores for collapsed hives (Figure 2e,g), suggesting that the incoming
counts and daily count difference were also important for forecasting.

The correlation heatmap of the features from dataset EA2 is shown in Figure 3a
and is representative for a normal case. The correlation heatmap is highly correlated
with the computed feature importance scores (greater than 0.7) for groups of features,
such as temperature, humidity, and precipitation, most likely due to their similarities.
Highly correlated features are often considered redundant because they do not add useful
information to the model. Hence, one feature was selected from each set of related features,
forming a feature group called FG2, as shown in Table 4. The computed correlation values
of each feature in relation to LR were sorted (Figure 3b). It was found that some features
had low correlation values of −0.25 to 0.25 such as WSgust, WS, WD, Tmin, Tmax, and
WDgust signifying that these features had neither a positive nor negative correlation to LR.
Therefore, the features were removed to form another feature group called FG3.
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Table 4. Information on each feature group.

Group Name List of Features

FG1 LR, Cin, Cout, Cdiff, T, Tmax, Tmin, RH, RHmin, WS, WD, WSgust, WDgust, Precp, Precphour
FG2 LR, Cin, Cdiff, T, RH, WS, WD, WDgust, Precp
FG3 LR, Cin, Cdiff, T, RH, Precp
FG4 LR, Cin, Cdiff, T, RH, Precp, Tt+1, RHt+1, Precpt+1

The weather forecast data from the weather station were also utilized to examine their
potential effect on the forecasting results. This formed another feature group called FG4,
which included the following day’s forecasted values of precipitation, relative humidity,
and temperature. Based on the related literature, temperature also has an effect to the
behavior of honey bees [32]. Yet, it can be seen from the feature importance score and
correlation analysis results that its effect was not considerable for the current datasets.
Even so, temperature was still added in all feature groups to ensure that the forecasting
model would also be trained to adapt to drastic changes in the environmental condition.

3.2.2. Feature Group Selection

For comparison, a feature group named FG1, which included all the available input
features, was prepared. A univariate model, using LR data as the only feature, was also
trained. Individual forecasting models were trained with a training dataset of 80 days, with
the last 20% of the training data as validation set. Other training parameters were not yet
considered and were optimized later. The results are shown in Figure 4.

Based on the testing results, the WMAPE of the univariate model was about 42.5 ± 3.4%.
This extensively high error demonstrates that using only the daily loss rate as input feature
is inadequate for forecasting. The multivariate model using FG1 performs better with a
WMAPE of 20.1 ± 2.8% as supported by T-test results with a significant difference be-
tween both approaches. There is no significant difference between FG1, FG2, and FG3,
this indicates that reducing the number of features does not affect the performance as
expected from apparent redundancies. Interestingly, adding the forecasted weather data as
an additional set of features improves the performance and reduces the error to 17.1 ± 1.6%.
This reflects that forecasted weather-data as supplemental information contribute to an
enhanced forecasting model. Based on these findings, FG4 was selected as the input feature
group of the forecasting model throughout this work.
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3.3. Model Training and Hyperparameter Optimization

The dataset was split into training, validation, and testing sets according to time. The
training set was used to train the model based on the validation set. The testing set was
used for assessing the model performance in forecasting data outside the training and
validation set. For normal colonies (EA1~EA4; EB2, EB4), the training set (Ytrain) in each
time series was the first N-day observations, where N is the number of training days. The
validation set (Yval) included the last 20% of the training set. The rest of the dataset was
used for testing (Ytest). For the collapsed colonies (EB1, EB3), the daily LR during the first
N days were normal and started to become abnormal at day 105 and 90 for EB1 and EB3,
respectively. From prior testing, it was not possible to use normal LR data to forecast the
abnormal LR data. Therefore, a model was trained using the data of EB1 for forecasting the
data of EB3 and vice versa. Similar to the normal colonies, the last 20% of the Ytrain were
used for validation.

The effect of different number of days N in training the forecasting model was eval-
uated to know how much data were needed to attain reliable forecasting performance.
TCN models, using FG4 as input feature group, were trained with values of N, ranging
from 20 to 100, as presented in Table 5. The results show that the model trained with
fewer than 80 training days had poor performances with WMAPE as high as 50.2%. Using
80 training days and above, it led to better forecasting performance with WMAPE as low
as 21.6%. Interestingly, it also shows that increasing the value of N from 80 to 100 did not
considerably improve the forecasting performance. Based on these findings, the number of
training days was set to 80 for later analysis.

Table 5. Forecasting performance using different number of training days.

Number of Training Days N

20 40 60 80 100

WMAPE (%) 50.2 45.1 27.4 21.6 21.1

The results of finding the best model hyperparameters via grid search, using N = 80, is
shown in Table 6. It was found that the model can perform best by setting the input window
size to 10; this means that the model needs at most a length of 10 days to achieve satisfactory
forecasting performance. It was also observed that 2 TCN layers were sufficient to yield
good forecasting performance; this can be mainly attributed to the smooth characteristic
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of the data. By applying the tuned hyperparameters, the WMAPE of the TCN model was
reduced to 16.2%, from 21.6% of the model using the default values.

Table 6. Optimized model hyperparameters found by grid search.

Hyperparameter Name Range of Value/s Optimized Value/s

Learning rate [0.1, 0.01, 0.001, 0.0001] 0.001
Number of epochs [30, 50, 70, 90, 110] 70

Optimizer [Adam] Adam
Loss function [MSE] MSE

Number of TCN layers [1, 2, 3] 2
Batch size [1, 5, 10, 15] 10

Window size [1, 5, 10, 15] 10
Number of filters [8, 16, 32, 64] 32

Kernel size [1, 2, 3, 4] 2
Dilation [[1, 2, 4], [1, 2, 4, 8]] [1, 2, 4]

Activation [ReLu] ReLu
Dropout rate [0.2, 0.3, 0.4, 0.5] 0.2

Kernel initializer [He normal] He normal

3.4. Daily Population Loss Rate Forecasting Results

By exploiting the optimized model, the long-term forecasting results of the honey bee
daily population loss rate for normal, and collapsed beehives are presented in Figures 5 and 6,
respectively, while the WMAPE boxplots of the forecasting model is shown in Figure 7.
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the significantly different groups.

The trained TCN model was able to successfully predict the testing LR data of normal
beehives (Figure 5). Most importantly, it was able to predict sudden changes in LR, as
particularly seen in Figure 5a–d. The TCN model performed well on the collapsed beehives
by forecasting the sudden changes in LR on both datasets, as particularly seen in Figure 6
from day 260 and so on. In general, the TCN model performed well in all datasets with
WMAPE from 17% to 19% (Figure 7), with paired t-tests showing no significant difference
between the original and predicted values per normal LR dataset. The results also indicate
that the selected features in FG4 were sufficient for forecasting, even though there were
differences in the condition of the beehives. Paired t-test showed a significant difference
between normal and collapsed beehives (EB1, EB3) which most likely was due to the
difference in data characteristics as mentioned in Table 3.
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3.5. Daily Loss Rate Warning Threshold Results

The results of applying isolation forest algorithm on normal beehives to determine
abnormal LR values are presented in Figures 8 and 9. Figure 8 applies for dataset EA1~EA4
and Figure 9 applies for datasets EB1~EB4. It can be easily distinguished that the collapsed
beehives (Figure 9e,g) had the most anomalies detected. Particularly, most of the results
showed that LR values less than 13% were classified as normal otherwise as abnormal.
Meanwhile, the results of the normal colonies showed only a few days with abnormal
LR values. Upon validation, the accuracy of the fitted isolation forest model was about
90.0 ± 8.5%, as shown in Table 7.
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Table 7. Isolation forest algorithm performance on detecting abnormal LR values.

Dataset Real Predicted Accuracy (%)

EA1 5 4 80.0
EA2 5 4 80.0
EA3 7 7 100
EA4 4 4 100
EB1 57 52 91.2
EB2 10 8 80.0
EB3 53 48 90.6
EB4 5 4 80.0

4. Discussions

The abnormal daily LR of the honey bee colonies in this study was about 13%, in
agreement with related literature [30,31]. In the work of Rumkee et al. [30], it was found
that a colony will collapse if the daily mortality of forager honey bees exceeds 15% and
was equally observed for both collapsed beehives (EB1, EB3) in this study (Figure 9e,g).

Our experiments show that honey bee colony collapses can be predicted. Previous
studies identified the collapse of honey bee colonies was most likely caused by in-hive
colony behavior and health of the honey bees [31]. A typical in-hive anomaly is caused by
the loss of a queen bee. Indicators of a queen-less colony include missing eggs and brood,
increased number of drones, a significant drop in population, and stored pollen and honey
in the brood cells. These indicators were observed from the two collapsed beehives in the
present study. Based on our recorded data, the loss of the queen occurred at about day
105 of EB1 and day 95 of dataset EB3. According to Lopes et al. [33], workers of queen-less
colonies can live up to 80 days. This was similarly observed in our study which shows that
the colony collapsed about 60–80 days after the queen disappeared (Figure 6a,b).

There are no strict conventions for defining the LR threshold of a collapsed honey
bee colony. Based on the experimental results obtained, the daily loss rate of the beehives
became abnormal or several consecutive days, which was about 50 and 60 days for dataset
EB1 and EB3, respectively. The presence of an abnormal status as automatically classified
is a strong indication for the required interference of beekeepers at early stage to prevent
further damage to the honey bee colony.

5. Conclusions

A reliable method for forecasting and early detection of abnormal honey bee colony
population loss rate is presented. The proposed method was optimized by appropriately
selecting informative features and tuning the hyperparameters of a TCN forecasting model.
The forecasting model performed best by using selected features, such as daily population
loss rate, incoming counts, difference in counts, temperature, humidity, precipitation, and
the forecasted following day’s temperature, humidity, and precipitation obtained from
the local weather station. Upon comparison with other selected feature groups, it was
discovered that using the forecasted weather data as supplemental input feature improved
the model performance. It was also found that the forecasting model performed well by
training it with at least 80 days of historical population loss rate data. The forecasting
model was able to accurately forecast the following day’s honey bee colony population
loss rate with a WMAPE of 17% to 19%. The forecasting model optimization strategy can
be used as a reference for researchers to effectively improve their model.

The population loss rate data output of the forecasting model was further utilized to
define the warning levels using an isolation forest algorithm, thus enabling the proposed
method to determine whether the beehive colony status to be normal or abnormal. By
validating the obtained values with the results of related works, it was found that the
warning level determination method was able to yield an accuracy of 90.0 ± 8.6%.

Although the exact reason why a honey bee colony collapsed remained unclear, the
data of the image monitoring system were successfully utilized to train a forecasting model
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that can potentially explain the phenomenon. If the daily loss rates were abnormal for a
certain number of consecutive days, it indicated that honey bee collapse may potentially
occur. The proposed method, together with the image monitoring system, was proven
to assist in the early detection of collapsed honey bee colonies. This work can be used to
deliver fast and reliable data-driven information to honey bee colony managers so that
they can ensure the health of their honey bee colonies.

To actualize the system, an early warning can be determined by detecting abnormal
daily loss rates while a notification can be sent to the beekeeper via mobile phone. Upon
receiving the message, beekeepers can check the beehive and prevent potential harm to the
honey bee colony. Beekeepers can install the monitoring system in selected beehives and
monitor the beehive health index remotely.
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