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Abstract: Carbon fiber (CF) reinforced thermoplastic composites have gradually become increasingly
popular in composite production owing to their lower hazard level, good structural flexibility and
recyclability. In this work, a multilayered carbon–fabric/polycarbonate laminate (multi-CFPL) was
fabricated by a two-step hot-press process, mainly based on the thermoplastic properties of its
polycarbonate (PC) matrix. Different from the conventional one-step method, the two-step hot-press
process was composed of two separate procedures. First, a unit-hot-press operation was introduced
to prepare a single-layered carbon–fabric/PC laminate (simplified as unit-CFPL). Subsequently,
a laminating-hot-press was employed to compress several as-prepared unit-CFPLs bonded together.
This combined process aims to reduce the hot-press temperature and pressure, as well as facilitate
the structure designability of this new composite. Several mechanical investigations were conducted
to analyze the effect of the hot-press parameters and unit-CFPL numbers on the performance of this
multi-CFPL material, including flexural, uniaxial tensile and impact tests. The results reveal that
the multi-CFPL exhibits a good stability of flexural and tensile properties in terms of strength and
modulus. Furthermore, during impact tests, the multi-CFPL presents an accelerated growth of peak
force and energy absorption capability with increasing unit-CFPL layers.
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1. Introduction

Carbon fiber reinforced plastic (CFRP) laminates contain several layers of unit composites bonded
together to form a united body. Compared with conventional homogeneous composites, CFRP
laminates offer many superior advantages due to their remarkable specific strength and modulus [1],
corrosion resistance, fatigue properties [2] and impact resistance. Therefore, the CFRP laminates are
widely applied in industries such as wind turbine blades in clean energy fields [3] and fuselages, wing
skins, and other critical components in aircraft fields [4,5]. In addition, the CFRP laminates present
highly flexible designability [6–9], making their fabrication process easily tailored to meet different
application requirements.

At present, the most popular CFRP laminates are thermosetting, and their most common matrices
are epoxy [10]. Moreover, some additional chemical additives may be incorporated into the epoxy to
achieve special performance such as high toughness [11] and self-healing during abrasion damage [12].
Unfortunately, these additives are always harmful to the environment and human beings. To achieve
a green manufacturing process, researchers are attempting to increase the structural flexibility and
recyclability of CFRP laminates [13]. However, it is difficult to realize the recycling of epoxy-based
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CFRP laminates because of their inherent thermal setting attributes. Therefore, another CFRP laminate
candidate, carbon fiber (CF) reinforced thermoplastic laminate, has gradually become increasingly
popular in composite production owing to their less hazardous chemical composition and high
productivity production potential [14,15].

Traditionally, a film/fabric stacking technique followed by a hot-press process is a convenient
and effective method to prepare high-performance CF-reinforced thermoplastic laminates [13,15,16].
In this method, all raw materials placed in designated positions, layer-by-layer, are directly hot-pressed
to obtain a united body in one operation, which, in this work, is defined as one-step hot-press
technique. Sufficient CF-matrix impregnation [2] and precise CF position [7] are two key points to be
addressed in processing because they significantly affect the mechanical properties of the laminates.
To achieve sufficient impregnation, high molding pressure and temperature are always adopted to
enhance the flowability of the matrix during hot-press processing. Ozaki et al. [17] analyzed the
effect of the hot-press parameters on the bending properties of a CF/polycarbonate (PC) laminate,
and Tanaka et al. [18] investigated the interfacial bonding strength and the interlaminar shear strength
of this laminate. They suggested that an optimal hot-press temperature should be set at approximately
300 ◦C and 6 MPa pressure accompanied by sufficient holding time (half an hour of whole hot-press
process or several minutes of maximum temperature) to obtain secure CF-PC interfacial bonding.
Qian et al. [19] researched the effect of polycarbonate film surface morphology and oxygen plasma
treatment on mechanical properties of composite laminates. They selected relatively low temperature
at 180 ◦C to fabricate laminates, which at cost of 2 h of hot-press time. Even in the fabrication of carbon
nanotube/PC composite, Choi et al. [20] still set melting temperature of twin extruder at 300 ◦C.

Unfortunately, a critical shortcoming has emerged under high pressure and temperature during
laminate preparation. Under high pressure and temperature molding situations, the melted matrix can
easily scour CF tows away from their pre-placed positions, thereby causing the mechanical performance
of the laminates to deteriorate [7,21]. To address this problem, on the one hand, researchers have
tried to increase the CF density to enhance the rigidity of the fabric to resist the fluid scouring
force. However, high CF density undoubtedly requires further growth of the molding pressure and
temperature to guarantee sufficient CF-matrix impregnation. On the other hand, the requirements of
excessive pressure and temperature can be relieved by reducing the CF density of the woven fabric,
which can be achieved by using spread CF tows to weave into the fabrics. For example, El-Dessouky
and Lawrence [22] successfully adapted spread CF tows to make high-performance thermoplastic
laminates because of the improvement of the CF-matrix impregnation process. By applying spread CF
tows, previous work [23] successfully manufactured an ultra-thin (thickness ≤0.3 mm) single-layered
carbon-fabric/PC laminate (simplified as unit-CFPL) under relatively low molding parameters—240 ◦C
molding temperature, 6 MPa molding pressure and 3.5 min molding time. These parameters were
much lower than the parameters that were necessary without spread CF tows [17,18]. Thus, it is
promising to make multilayered laminates by using spread CF tows as raw material.

For a multilayered laminate fabricated in a one-step hot-press technique under certain conditions,
the CF-matrix interfacial bonding strength will significantly decrease as its layer number or thickness
increases because of its significant impregnation resistance gradient in the direction of its thickness.
Normally influenced by the temperature gradient and thermal conductivity, different layers in thick
multilayered laminates must present different impregnation rates, i.e., outer layers will complete a
suitable impregnation process with lower molding parameters than the inner layers. Nevertheless,
slightly exceeding the temperature and holding time would be able to displace spread CF tows from
their predetermined position for each layer because of their bad fiber collection [23]. Therefore, it is
improper to fabricate multilayered laminates using a one-step hot-press technology because it is very
difficult to ensure both CF-matrix impregnation and correct fiber position of each layer.

As Ramalakshmi et al. [24] illustrated, in addition to affording loads, the matrix also played
a role of holding the fiber phase in the desired position. Therefore, a separate process called a
two-step hot-press technology has been identified and takes advantage of the reprocessing property of
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thermoplastic resin. This technique consists of unit-hot-press and laminating-hot-press in sequence,
which is a quick and precise way that ensures both the CF tow position and impregnation. In addition,
the fabrication parameters can also be optimized more precisely layer-by-layer.

In this work, a multi-CFPL was fabricated by a two-step hot-press method. Although there are
many studies focused on the mechanical properties of CFRP laminates, little attention has been paid to
the laminates produced repeatedly by the same composite material. The purpose of this work was to
investigate the mechanical properties of multi-CFPLs made by the two-step hot-press technique and to
certify the reliability of this method. For performance testing, the flexural failure is one of the most
important mechanical properties in the application to blades [3] and aircraft wings [5]. Additionally,
impact damage is commonly recognized as the greatest failure threat to laminated composites [25,26].
Therefore, a set of different multi-CFPLs were prepared and studied to test the flexural, tensile and
impact properties. Limited by experimental amounts, the layer numbers of laminates were no more
than 10, with an appropriate thickness interval (≤2.3 mm thick) in most studies [27–29].

2. Experimental Procedures

2.1. Multi-CFPL Preparation

The raw materials of a multi-CFPL consist of polyacrylonitrile (PAN)-based CFs and PC, with CFs
used as reinforcement and PC serving as the matrix.

The CF was T700SC (12 K, Toray Industries, Tokyo, Japan) in a continuous tow shape. Its major
physical properties were 4.9 GPa tensile strength and 230 GPa tensile modulus [30]. Its overall
geometric dimensions were 20 mm in width and 0.040 mm in thickness, obtained by a further
pneumatic spreading technique [31]. The PC film, purchased from LEXAN SABIC Company,
Saudi Arabia, was 0.125 ± 0.002 mm in thickness, 65 MPa in tensile strength, 2506 MPa in tensile
modulus, and 153 ◦C in glass transition temperature, which was measured by a differential scanning
calorimeter (Model 214, NETZSCH, Selb, Germany). No further processing was applied.

The multi-CFPL was prepared by a two-step hot-press technique, i.e., a unit-hot-press operation
followed by a laminating-hot-press process, as shown in Figure 1a. At first, the unit-hot-press operation
was introduced to prepare unit-CFPLs. Based on a series of pre-experiments [23], the processing
parameters of the unit-hot-press were optimized as 240 ◦C molding temperature, 6 MPa molding
pressure and 2 min holding time. This holding time was set at nearly half of the optimal value (3.5 min)
that was determined in previous work [23] based on the consideration of making a reservation for
following the laminating-hot-press. A detailed molding history is shown in Figure 1b, and the specific
fabrication information can be found in previous work [23].

After the unit-hot-press operation, the laminating-hot-press was employed to compress
as-prepared unit-CFPLs bonded together. All unit-CFPLs were first cut into the same dimensions
of 120 mm × 120 mm. Then, several layers of unit-CFPL were piled up in an orderly manner in a
mold with two release films on each outside surface. Finally, a multi-CFPL was compressed together
and finished by an additional laminating-hot-press. Because the interfacial bonding between CFs and
PC had been achieved well by the unit-hot-press, the laminating-hot-press could be carried out at a
relatively lower temperature and with a shorter holding time, as shown in Figure 1c. The detailed
hot-press parameters of the laminating-hot-press will be determined via a series of experiments.
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Figure 1. The schematic diagram of multi-CFPL fabrication using the two-step hot-press process:
(a) Main operation step illustration; (b) the molding history of the unit-hot-press, in which Tm1

is the hot-press temperature and Pm is the hot-press pressure; (c) the molding history of the
laminating-hot-press, in which Tm2 is the forming temperature.

2.2. Flexural and Uniaxial Tensile Testing

The flexural and tensile properties are regarded as fundamental characteristics when a laminated
composite is used as the structural material [17]. It should be noted that some multi-CFPLs were also
attempted to manufacture by the one-step hot-press technique, using similar hot-press parameters
as previous work [23]. However, the laminates presented very bad fiber orientation which were not
viable for comparison.

To evaluate the effect of the hot-press parameters and unit-CFPL layer numbers on the flexural
behavior of multi-CFPLs, flexural tests were conducted on a universal material testing machine (Model
Z100, Zwick/Roell, Ulm, Germany) equipped with a 1 kN load based on the testing standard of ASTM
D790 [32]. Various multi-CFPLs with 7 to 10 layers of unit-CFPLs have a shape of 1.60 mm to 2.28 mm
in thickness, 12.7 mm in width and 50.8 mm in length. All specimens were precisely cut from as-tested
laminates by a CNC milling machine (Guangzhou Machine Tool Works Co., Ltd., Guangzhou, China).
Subsequently, the specimens were tested at a cross-head speed of 0.01 mm/mm/min. A span-to-depth
ratio of 16 was set between two specimen supports [28]. Their selected positions are shown as the
green double-dot-dashed outline exhibited in Figure 2a. In addition, a series of uniaxial tensile tests
were also conducted on the same testing apparatus at the speed of 2 mm/min using specimens with
10 mm × 80 mm dimensions, according to the ASTM Standard D 3039 [33]. All tensile specimens
were extracted from as-tested multi-CFPLs at the position illustrated as the yellow dot-dashed outline
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displayed in Figure 2a. In addition, all tensile specimens were end-tabbed using epoxy resin to prevent
any potential failures occurring at the specimen/grip interface. Limited by the relatively poor adhesion
ability between the epoxy tab and the specimens, the tensile tests could only be successfully conducted
from the 1- to 4-layer laminates in this work. To minimize testing errors, all tests were carried out with
five replicates for each parameter.
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Figure 2. Preparation of specimens and testing apparatus: (a) illustration of the sampling position for
the tensile, flexural and impact tests; (b) the scene photos of a drop-weight impact test.

2.3. Impact Testing

The impact resistance of multi-CFPLs was tested following the ASTM Standard D 7136 [34],
using a drop-weight impact machine (9250 HV, Instron, Norwood, MA, USA). Each impact test was
performed by dropping a 12.7 mm-diameter hemispherical striker with a 17.6055 kg mass on a specimen
mounted in a pneumatic fixture. Subsequently, the corresponding dynamic response of the specimen
was recorded and analyzed. Each impact specimen was tailored to the dimensions of 60 mm × 60 mm,
which was large enough to be completely clamped in the fixture as the blue-dashed outline shown in
Figure 2a. Other testing conditions included 800 kHz sampling rate, 15 J applied energy, and 86.9 mm
drop height. To eliminate potential testing errors caused by strike position difference, all impact
specimens were penetrated in the middle of the CF tows rather than the edge [34].

2.4. Other Characterizations

To evaluate the interfacial adhesion behavior between CF filaments and PC polymers,
the cross-sections and failure sections of multi-CFPLs selected after the testing were observed via a
digital optical microscope (VHX-1000, Keyence Company, Osaka, Japan).

3. Results and Discussion

3.1. The Parameter Selection for the Laminating-Hot-Press Process

The performance of a multi-CFPL is greatly affected by its molding parameters [35]. In previous
work [23], the molding parameters of the unit-hot-press have been thoroughly investigated. Therefore,
in this work, a series of experiments were conducted to optimize the processing parameters of the
laminating-hot-press. Based on the experience of the unit-hot-press, the forming temperature of the
laminating-hot-press was pre-set, varying from 190 to 230 ◦C in increments of 10 ◦C to elucidate the
effect of temperature, while the forming pressure was maintained at 6 MPa, the forming time at three
min and the cooling time at 10 min. Moreover, in these experiments, all multi-CFPLs were made from
a seven-layer unit-CFPL, with a finished thickness (1.6 mm) that was appropriate for flexural tests.

Figure 3 shows the flexural properties of multi-CFPLs prepared by different forming temperatures
in the laminating-hot-press. The results indicate that the flexural strength increases with increasing
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forming temperature. As the forming temperature increases from 190 to 230 ◦C, the flexural strength
increases from 277.22 to 417.89 MPa. However, there is a rapid growth gap in this work between
200 and 210 ◦C, which divides the growth rate of flexural strength into two parts. This variation
tendency can be explained using two typical failure images illustrated as the insets in Figure 3.
When the forming temperature is below 210 ◦C, the as-prepared multi-CFPLs show several obvious
delamination failure areas within each unit-CFPL layer, indicating insufficient interfacial bonding
strength. This defect is similar to the interlaminar shear mode described as the Standard ASTM
D2344 [36]. When the forming temperature is above 210 ◦C, the failure image of the multi-CFPL looks
identical to the failure image caused by compression failure [37] owing to exceeding the compression
limit of the material. No obvious delamination trails were found at this temperature, implying
sufficient interfacial bonding strength among each of the unit-CFPLs. Therefore, the increase in the
forming temperature in the laminating-hot-press can promote the impregnation between CF and
PC and transfer the failure from interlaminar shear to compression fracture, thereby significantly
enhancing the flexural ability of the laminates. However, there is a maximum limitation on the forming
temperature. An excessively high forming temperature will generate an extremely high scouring
force in the melting matrix and induce quality defects. As shown in Figure 3d, the CF location and
the pre-determined uniformity associated with the weaving process are easily disturbed by a high
scouring force, thereby reducing the stability of the quality of the laminated composites [21]. Under a
comprehensive consideration, a set of optimal laminating parameters for this work was selected at
210 ◦C forming temperature and 6 MPa forming pressure.
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Figure 3. The flexural properties of 7-layer multi-CFPLs fabricated by different forming temperatures
in the laminating-hot-press: (a) flexural strength bars; (b,c) are the digital pictures of multi-CFPLs
prepared at 200 ◦C and 210 ◦C forming temperature, respectively; (d) shows the visual image
comparison between the multi-CFPL prepared at 210 ◦C and 220 ◦C forming temperature.
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3.2. Morphology Observation

With the optimal unit-hot-press and laminating-hot-press parameters mentioned above,
a unit-CFPL and a 10-layer multi-CFPL were manufactured for comparative observation, as shown in
Figure 4a,b, respectively. From the appearance, the surfaces of both the unit-CFPL and the multi-CFPL
are smooth and flat without any obvious bubbles, and a good CF uniform distribution is displayed,
i.e., all weave CF tows in these specimens are stuck at their pre-designed positions. In addition,
it is interesting to determine that the thickness of the multi-CFPL is slightly lower than the layer
number times the thickness of its identical unit-CFPL. For example, the unit-CFPL is 0.26 mm-thick,
and the as-prepared 10-layer multi-CFPL is 2.28 mm-thick, which is smaller than 10 mm × 0.26 mm.
This thickness reduction is attributed to two reasons. One reason is that some PC has further pressed
into the pores of the weave carbon fabric by laminating-hot-press, and another reason is that some PC
is squeezed out. Therefore, the thickness reduction can be used as an indirect indication of enhancing
the interfacial bonding strength by laminating-hot-press.
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Figure 4. The morphologies of a unit-CFPL and several multi-CFPLs prepared by optimal
laminating parameters: (a,b) show the visual images of 1-layer and 10-layer multi-CFPLs from
the axonometric view, respectively; (c–e) shows the cross sections of 1-layer, 2-layer and 5-layer
multi-CFPLs, respectively.

To evaluate the impregnation quality of the CF-matrix and the interfacial bonding quality of the
layer–layer, several multi-CFPLs with 1, 2 and 5 layers of unit-CFPL were carefully cut to observe
their cross-sections, as shown in Figure 4c–e. All sections exhibit a good bonding interface, i.e.,
all unit-CFPLs combine well with each other after laminating-hot-press. In addition, there is no
visible void, bubble or delamination inside each unit-CFPL. As claimed by Moaseri et al. [38], a good
combination of carbon fabric and PC films suggested outstanding mechanical properties. Moreover,
there are clear boundary lines between the weave carbon fabric and PC films due to their substantially
different material compositions. These lines are straight and tidy as well as parallel to each other,
similar to the pre-arranged unit-CFPL layers. This appearance can be used as evidence that the major
properties of unit-CFPLs may be reserved in their as-prepared multi-CFPLs.
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3.3. Flexural Analysis

Generally, the impact property of a component is closely related to its flexural properties [26].
Therefore, the flexural behavior of the multi-CFPLs was first analyzed to help in the understanding of
impact behaviors. Due to the limitation of the testing standard ASTM D790 [32], a basic thickness of
1.6 mm for the specimen is required. Therefore, all flexural tests in this work were conducted on the
multi-CFPLs consisting of 7 to 10 layers of unit-CFPLs, with thicknesses larger than 1.6 mm.

Figure 5a exhibits the strain-stress curve of multi-CFPLs. All these strain-stress curves display a
similar developing tendency. In the initial stage, the flexural stress shows a nonlinear growth over the
strain when the strain is below 0.3 mm/mm. In this stage, the cross-head of the testing machine comes
in contact with the upper surface of the specimen. Because there are many pure PC layers in the inner
structure, the multi-CFPL will easily appear to have a certain retreat under the elastic deformation of
the PC. As the strain increases further, the flexural stress will exhibit a linear rising period until the
first failure point appears (as the dash circles show in Figure 5a). This linear rising period is known
as the Hookean region [32], and the entire laminate begins to bear bending stress. The slopes of each
curve are almost coincident, and their first failure points are arranged almost equidistantly along
with the reduction of the layer numbers. Next, the flexural stress has a slight reduction and holds a
value for a brief time. Finally, the stress continues to rise and comes to a severe damage stage, and the
multi-CFPL presents a ductile flexural failure other than a catastrophic break [8]. When the damage
is just beginning to appear in a multi-CFPL, the PC layers could act as protectors to avoid further
cracking because of their good plasticity. Therefore, the final stage would exhibit many slight reduction
points rather than an instant fracture such as brittle rupture. This phenomenon is ideal for the actual
application of composites.
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failure point in the flexural stress curve done on the CFPL with a 7-layer unit-CFPL.
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Figure 5b shows the flexural strengths and modulus of multi-CFPLs versus the unit-CFPL layer.
In general, the flexural strength presents a slight tendency to decline as the layers of the unit-CFPL
increase. For instance, the flexural strength decreases from 374.78 to 330.75 MPa as the layer numbers
increase from 7 to 10. Katsiropoulos et al. [16] reported that with increasing numbers of layers in a
laminate, some bond line defects (e.g., voids, kissing bonds, and porosity) were increased, adversely
affecting the mechanical properties of bonding joints. Moreover, in a flexural test, the bending moment
and the shear force exist simultaneously, resulting in a mixing failure mode including delamination,
tension and compression [39]. Therefore, the flexural strength of a multi-CFPL is hard to keep stable
with the growth of the unit-CFPL layers. However, the flexural modulus of a multi-CFPL is relatively
stable. As the layer number increases from 7 to 10, the flexural modulus fluctuates slightly up and
down between 15.39 to 15.89 GPa, which demonstrates the stability of the rigidity of this laminate.
This behavior is also reflected in the Hookean region of stress–strain curves.

For a further comparison, the loading forces of first failure points in the flexural stress-strain
curves were calculated as given in Figure 5a. All these forces are approximately 250 N, demonstrating
that the first failure force may be a specific property of this two-step hot-press laminate and has nothing
to do with the unit-CFPL layer numbers. To validate this induced conclusion, an additional flexural test
was conducted on a seven-layer multi-CFPL. In this test, the cross-head was immediately stopped and
slowly removed from the laminate when its first failure point in the stress curves emerged, as shown
in Figure 5c. The result indicated that the bending deformation of the multi-CFPL would gradually be
recovered when its flexural load was removed, which is similar to the flexural behavior of an elastic
beam. Therefore, the multi-CFPL at this moment is still treated in the elastic deformation. However,
some bulges were observed on the upper surface layer of multi-CFPL. For a deeper understanding
of these bulges, a partial enlarged image in cross section was acquired, as shown in Figure 5d. Some
obvious defects only appeared in the first layer of the multi-CFPL. Meanwhile, there was no visible
damage generated in other layers. Because there was a thick pure PC part on the upper layer which
was not reinforced by carbon fabric. In addition, it was not constrained by carbon fabric as other layers
either. Therefore, when the load increased to a certain degree, the surface of laminates was kinked
firstly, thereby generating a similar failure force for various multi-CFPLs with different layer numbers.

When the loading flexural stress is over its peak value, the as-tested laminates would be damaged.
To determine the failure mechanism, all these failure multi-CFPLs were investigated by partial enlarged
images observed in cross-section, as illustrated in Figure 6. The results indicate that these failure
multi-CFPLs are dominated by compression and delamination failure modes, while tension breakage
seldom occurs. Generally, the bottom layer of a multi-CFPL that is opposite the cross-head behaves
under tensile stress while the upper layer suffers compressive stress during the flexural loading
process [5,40]. Moreover, shear stress exists in the combination boundary between each carbon
fabric and PC film. Under such a complex stress field, the fracture of multi-CFPLs will exhibit a
different dominating failure mechanism with increasing layer numbers. For the 7-layer multi-CFPL,
the compression mode dominates, so there are few delamination trails between the carbon fabric
and the PC. When the layers increase to 10, the extent of the compression of the upper layer in
multi-CFPLs gradually decreases, and its compression fracture trails decrease correspondingly, whereas
the delamination defects increase and become the major part because of the increase in their shear
stress. In summary, all the partial enlarged images validate the homogeneous structure of multi-CFPLs
fabricated by the two-step hot-press technique.
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Figure 6. The partial enlarged images of multi-CFPLs in cross section with different layers of
unit-CFPLs: (a) 7 layers; (b) 8 layers; (c) 9 layers; (d) 10 layers. All these images were taken at
major failure locations after the flexural tests.

3.4. Uniaxial Tensile Analysis

Figure 7 illustrates the tensile properties of several multi-CFPLs with 2- to 4-layer unit-CFPLs
in terms of their stress-strain responses, strengths and failure morphologies. In addition, a pristine
unit-composite is set as a comparison. As shown in Figure 7a, all tensile specimens exhibit a specific
linear-elastic period followed by a dramatic fracture without a yield stage, which is a classical tensile
behavior of the CF-reinforced plastic composites with a high modulus [33]. Moreover, the elongations
of all these multi-CFPLs are nearly equal, and their values are fluctuating around at 2.5%, while the
unit-composite has a slightly higher elongation at 2.67%. For the tensile strength, all these multi-CFPLs
appear to have an approximately constant value of approximately 380 MPa, which is slightly higher
than the value of the unit-CFPL (360 MPa). This similar comparative result can also be observed in
the aspect of the tensile modulus. The results indicate that the tensile modulus of all multi-CFPLs
is as high as approximately 17 GPa, which is higher than the tensile modulus of the unit-CFPL
(16.3 GPa). All these comparison differences (elongation, tensile strength and modulus) between the
multi-CFPLs and unit-CFPL are attributed to the action of the second hot-press step. On the one hand,
the multi-CFPLs become denser after the laminating-hot-press because some residual pores in its
components (unit-CFPLs) were fully occupied. Therefore, the CF volume fractions of all multi-CFPLs
were increased. On the other hand, the CF-PC interfacial bonding strength that was enhanced due
to that additional holding time brought by the laminating-hot-press is beneficial to improve the
impregnation process in porous material [23]. These two aspects are helpful to enhance tensile strength
and modulus as well as reduce elongation.
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Figure 7. Tensile properties of the carbon–fabric/PC laminates with different layer numbers:
(a) stress-strain curves; (b) tensile strength curves and tensile fracture morphologies; (c–f) are the
fracture morphologies of multi-CFPLs with 1-, 2-, 3- and 4-layer unit-CFPLs, respectively.

Figure 7c–f show the fracture morphologies of multi-CFPLs with different layers of unit-CFPLs.
All laminates show a relatively neat fracture section with only a little bit of pull-out CFs, which is
similar to the unit-CFPL. No apparent difference in the fracture feature is observed between different
laminates. This tensile appearance illustrates that with the second step in the forming process,
the tensile properties of the unit-composite were well retained.

The flexural and tensile properties show stability in both performance and failure modes.
The second step forming process, i.e., the laminating-hot-press, could realize a stable stack of laminates.
The flexural strength of multi-CFPLs exceeds 300 MPa, and the modulus reaches 15 GPa, which reflects
the good prospect of application for withstanding flexural loads as a beam structure [17,39,41].

3.5. Impact Property Analysis

A set of impact tests was conducted on all multi-CFPLs with unit-CFPL layers ranging
from 1 to 9 prepared using the optimal laminating parameters discussed previously. Because its
impact resistance is beyond 15 J, which is the maximum impact energy applied in this work, there is
no discussion about the impact behavior of the 10-layer multi-CFPL.

Figure 8a–c show some typical impact fracture images captured on the multi-CFPLs with 1, 3 and
5 layers. They demonstrate typical four-sided pyramidal (tetrahedral) fractures, attributed to the
bi-directional layup of the woven fabric composites [42]. All multi-CFPLs show a similar fracture
morphology and exhibit a typical brittle fracture mode, which is definitely distinct from the plastic
deformation of the PC sheet [23]. In addition, the fracture area of each laminate does not present an
obvious variation trend with increasing layer numbers. The fracture area is limited by the unit cell
area of weave carbon fabric, whose length equals the width of the pristine CF tow.

Figure 8d,e are two partial enlarged images taken of the fracture of the unit-CFPL and 5-layer
multi-CFPL. The results indicate that there are three types of failure behaviors observed in these images:
(i) Matrix failure, observed as the cracking of the matrix phase parallel to the fibers; (ii) delamination
of the laminate layers due to interlaminar stresses; and (iii) fiber failure such as fiber breakage and
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fiber buckling. These characteristics have also been reported by Thanomsilp and Hog [43]. Compared
with conventional composites [17,43], the matrix failure of the multi-CFPLs is much more apparent
because of the relatively high matrix fraction, which achieves more than 80% in height. Moreover,
the delamination defect of multi-CFPLs was found to increase as the growth of the unit-CFPL layer
numbers. In addition, these laminates are also damaged due to the full penetration of the striker
during impact tests.Polymers 2018, 10, x FOR PEER REVIEW  12 of 17 
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Figure 8. Impact fracture images of a multi-CFPL with different layer numbers of unit-CFPLs:
(a) Unit-CFPL; (b) 3 layers; (c) 5 layers; (d,e) are the enlarged images of the unit-CFPL and 5-layer
laminates, respectively.

For a better understanding of the impact performance of multi-CFPLs, the impact distance-force
data were recorded and analyzed, as shown in Figure 9a. For all multi-CFPLs, their impact forces first
increase in an approximately linear tendency. After feeding a certain distance, these impact forces will
achieve a peak value. At this moment, fiber failure is first observed, meaning that the peak value is the
force limitation that a multi-CFPL can afford [44]. Moreover, the growth rate of the impact force seems
to be proportional to the layer numbers of multi-CFPLs, i.e., the more unit-CFPL layers, the higher the
growth rate of the impact force of multi-composites.

Furthermore, the impact distance of multi-CFPLs at the peak force moment is inversely
proportional to the layer numbers of the unit-CFPLs. A thicker laminate always exhibits a shorter
impact distance to achieve its maximum impact force. Figure 9b presents the peak force versus layers
of multi-CFPLs. With polynomial fitting, the peak force and the layer display a two-polynomial growth
relationship, whose degree of Adj. R-Square is 0.986, validating its good fitting quality, as listed in
Table 1. Therefore, in terms of peak force, it is acceptable to design thick multi-CFPLs.

After reaching its peak value, the impact force will be sharply reduced by a certain value. Differing
from the variation of peak force, this reducing value is inversely proportional to the layer number of
the unit-CFPLs. The distance-force curve also indicates that a multi-CFPL with a larger layer number
achieves its peak value in a shorter distance, whereas a longer distance is required to absorb all impact
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energy. According to the integral area of the distance-force curve, the entire absorbed impact energy of
the multi-CFPLs increases with increasing unit-CFPL layer number.
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Figure 9. The impact properties of multi-CFPLs prepared by differently layered unit-CFPLs:
(a) The force-distance curves of the multi-CFPLs with 1- to 5-layer unit-CFPLs; (b) the curve of
the peak force versus layers; (c–e) are the schematic diagrams of the impact movement, a quasi-tensile
stage and a quasi-flexural stage in an impact process; (f,g) are the energy absorption-distance and
force-distance curves of the multi-CFPLs with 1-layer and 5-layer unit-CFPLs, respectively; (h) is the
curves of energy absorption versus layers.

Table 1. The fitting equations of peak force and absorbed energy for multi-CFPLs in the impact process,
in which x represents the unit-CFPL layer numbers and y represents the objection.

Objection Fitting Equation Adj. R-Square

Peak force y = 27.41823x2 − 96.38021x + 814.63241 0.98564
Absorbed energy in the quasi-tensile stage y = 0.07501x2 − 0.37486x + 1.6387 0.97704
Absorbed energy in the quasi-flexural stage y = 0.09994x2 + 0.07799x + 0.64861 0.99477

Total absorbed energy y = 0.17494x2 − 0.29687x + 2.28731 0.99326
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To help in revealing the fundamental mechanism of this absorbed energy behavior, the whole
penetration impact process of a multi-CFPL (shown in Figure 9c) is divided into two significant stages
according to the peak force, as reported by Thanomsilp and Hogg [43], which is defined as quasi-tensile
(happened first) and quasi-flexural (happened second) in this study. In this division, it is assumed that
there is no fracture in the laminates before the impact force reaches its peak value, according to the
failure mode proposed by Huber et al. [44]. These two stages were distinguished by the peak force on
the distance-force curve as the boundary, and their schematic diagrams were exhibited in Figure 9d,e.
The whole impact fracture process of the multi-CFPL is more similar to a combination of tensile and
flexural behavior [9].

In the quasi-tensile stage, multi-CFPLs would extend under the compression of the striker and
form a conic limited by the circle fixture. Along the fiber orientation, the deformation area could be
regarded as a triangle. Meanwhile, the striker has a hemispherical shape. Therefore, the elongation
zone of a laminate in two dimensions can be regarded as two parts—a straight line and an arc. In this
work, the space diameter of the specimen fixture was 40 mm, and the impact displacement of the
striker at the peak force moment of unit-CFPL was 4.36 mm. After a geometric calculation, the result
shows that the calculated break elongation value is 2.40%, which is close to the tested break elongation
(2.67%) of the unit-CFPL. The gap between these two values is probably caused by the neglected
interlaminar shear stress in the pure tensile assumption because the interlaminar shear stress of the
multi-CFPL must exist during the impact test.

In the quasi-flexural stage, the free sides in the failure area of the multi-CFPL were bent as the
striker feeds. The impact force during this stage has a drastic force fluctuation that is similar to the
final damage stage of the flexural stress-strain curve mentioned above. Since there are four free ends of
the failure area, which means that there are four pieces occurring as different flexural deformations at
the same time, the fluctuating frequency of the impact force in this stage is higher than the fluctuating
frequency of the flexural tests mentioned above.

With the two-stage division of an impact process, the impact resistance capability of a multi-CFPL
can also be divided into two corresponding parts [25]. Figure 9f,g show the force-distance and
absorbed energy-distance curves of the multi-CFPLs with 1-layer and 5-layer unit-CFPLs, respectively.
Obviously, the energy absorption proportion of the quasi-tensile stage and the quasi-flexural stage for
multi-CFPLs differs as unit-CFPL layers change during the impact process. The total energy absorption
in the quasi-tensile stage takes a major part for the one-layer multi-CFPL, with a proportion of more
than 80%. By contrast, the energy absorption capacity for a five-layer multi-CFPL is dominated by the
quasi-flexural stage, which occupies more than 70%. Traditionally, the peak force determines the energy
absorption of conventional composites during complete penetration by the striker [43]. However,
the total energy absorption capabilities of multi-CFPLs do not seem to be closely related to the peak
force in this work. Although the peak force increases as the unit-CFPL layers increase, the rigidity
of the multi-CFPLs also correspondingly increase, thereby reducing the impact distance, leading
to the relatively slow energy absorption increase in the quasi-tensile stage. For the quasi-flexural
stage, the bending resistance of multi-CFPLs increases as the unit-CFPL layers increase because of its
enhanced rigidity, indicating an enhanced energy absorption capability in this stage.

Figure 9h illustrates the relationship between unit-CFPL layers and absorbed energies, including
the energy absorbed in the quasi-tensile stage and in the quasi-flexural stage, and their summation.
In addition, the scattered experimental data were fitted by polynomial lines, of which the specific
fitting equations and the degree of the freedom-adjusted coefficient of determination (Adj. R-Square)
are listed in Table 1. The one-layer multi-CFPL (unit-CFPL) is not considered in the fitting line
because its CF-PC interfacial bonding strength is relatively low without the laminating-hot-press.
The degrees of Adj. R-Squares of different laminates all exceed 0.97, validating the good fitting quality.
These results indicate that the total energy absorption capabilities present a similar variation tendency
and accelerated growth, which shows that the choice of thick laminates could obtain a higher impact
performance than the choice of thin laminates. In addition, the increased rate of energy absorption in
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the quasi-flexural stage is much larger than the increased rate of energy absorption in the quasi-tensile
stage. The absorbed energy in the quasi-flexural stage gradually dominates in the impact process as
unit-CFPL layer numbers increase. In other words, the energy absorbing ability of a thick multi-CFPL
mainly resists impact damage by its quasi-flexural process.

4. Conclusions

A multi-CFPL was manufactured by a novel two-step hot-press process based on the recyclability
of thermoplastic PC. The optimal laminating parameters of this multi-CFPL in the laminating-hot-press
were selected as 210 ◦C forming temperature, 6 MPa forming pressure, 3 min forming time and 10 min
cooling time. Meanwhile, the unit-hot-presses were optimally prepared as 240 ◦C molding temperature,
6 MPa molding pressure and 2 min holding time.

The flexural strength of multi-CFPLs presents a slight declining tendency as the layers of the
unit-CFPL increase, whereas the flexural modulus of a multi-CFPL is relatively stable. In addition,
there is a unique point of first failure force in the flexural-strain curve, which can be used as an
indication of the failure beginning in the first unit-CFPL layer during the flexural test. In addition,
the tensile strength and modulus of the multi-CFPLs appear to have an approximately constant value
of approximately 380 MPa and 17 GPa, respectively, which are slightly higher than the value of their
pristine unit-CFPL. By contrast, the elongation of multi-CFPLs (2.50%) is slightly lower than the
elongation of their pristine unit-CFPL (2.67%).

The impact failure behavior of multi-CFPLs demonstrates typical four-sided pyramidal
(tetrahedral) fractures. There is a peak force in the impact force-distance, whose value is proportional
to the layer numbers of multi-CFPLs, while the impact distance at the peak force moment is just the
opposite. Moreover, the impact behavior of multi-CFPLs could be divided by peak force into two main
stages—quasi-tensile and quasi-flexural processes. The absorbed energy in the quasi-flexural stage
gradually dominates in the impact process as unit-CFPL layer numbers increase.

Author Contributions: Conceptualization, X.L. and L.L.; Investigation, X.L. and B.Y.; Supervision, Y.T.; Validation,
Z.W.; Writing—original draft, B.Y.; Writing—review & editing, L.L.

Funding: The present work was supported by the National Natural Science Foundation of China (No. 51775197),
the Natural Science Foundation of Guangdong Province, China (Nos. 2015A030313201 and 2014A030312017) and
the Science and Technology Planning Project of Guangdong Province, China (No. 2015A010105007).

Acknowledgments: The authors also extend thanks to the Pearl River S&T Nova Program of Guangzhou.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Laforte, L.P.; Lebel, L.L. Thermal analysis and degradation of properties in carbon fiber/epoxy laminate
riveting at high temperatures. Polym. Test. 2018, 67, 205–212. [CrossRef]

2. Ma, Y.; Yang, Y.; Sugahara, T.; Hamada, H. A study on the failure behavior and mechanical properties of
unidirectional fiber reinforced thermosetting and thermoplastic composites. Compos. B 2016, 99, 162–172.
[CrossRef]

3. Liu, Z.; Li, P.F.; Srikanth, N.; Liu, T.; Chai, G.B. Quantification of flexural fatigue life and 3D damage in
carbon fibre reinforced polymer laminates. Compos. A 2016, 90, 778–785. [CrossRef]

4. Borba, N.Z.; Blaga, L.; Santos, J.F.D.; Amancio-Filho, S.T. Direct-Friction Riveting of polymer composite
laminates for aircraft applications. Mater. Lett. 2018, 215, 31–34. [CrossRef]

5. Li, H.G.; Xu, Y.W.; Hua, X.G.; Liu, C.; Tao, J. Bending failure mechanism and flexural properties of GLARE
laminates with different stacking sequences. Compos. Struct. 2017, 187, 354–363. [CrossRef]

6. Subagia, I.D.G.A.; Kim, Y.; Tijing, L.D.; Kim, C.S.; Shon, H.K. Effect of stacking sequence on the flexural
properties of hybrid composites reinforced with carbon and basalt fibers. Compos. B 2014, 58, 251–258.
[CrossRef]

http://dx.doi.org/10.1016/j.polymertesting.2018.02.002
http://dx.doi.org/10.1016/j.compositesb.2016.06.005
http://dx.doi.org/10.1016/j.compositesa.2016.09.008
http://dx.doi.org/10.1016/j.matlet.2017.12.033
http://dx.doi.org/10.1016/j.compstruct.2017.12.068
http://dx.doi.org/10.1016/j.compositesb.2013.10.027


Polymers 2018, 10, 720 16 of 17

7. Srivathsan, A.; Vijayaram, B.; Ramesh, R.; Gokuldass. Investigation on mechanical behavior of woven fabric
glass/kevlar hybrid composite laminates made of varying fibre inplane orientation and stacking sequence.
Mater. Today Proc. 2017, 4, 8928–8937. [CrossRef]

8. Singh, S.B.; Vummadisetti, S.; Chawla, H. Influence of curing on the mechanical performance of FRP
laminates. J. Build. Eng. 2018, 16, 1–19. [CrossRef]

9. Li, X.; Zhang, X.; Guo, Y.B.; Shim, V.P.W.; Yang, J.L.; Chai, G.B. Influence of fiber type on the impact response
of titanium-based fiber-metal laminates. Int. J. Impact Eng. 2018, 114, 32–42. [CrossRef]

10. Rahmani, H.; Najafi, S.H.M.; Ashori, A. Mechanical performance of epoxy/carbon fiber laminated
composites. J. Reinf. Plast. Compos. 2014, 33, 733–740. [CrossRef]

11. Shin, S.; Jang, J. Toughness improvement of high-performance epoxy resin using aminated polyetherimide.
J. Appl. Polym. Sci. 2015, 65, 2237–2246. [CrossRef]

12. Saurín, N.; Sanes, J.; Bermúdez, M.D. Self-Healing of Abrasion Damage in Epoxy Resin–Ionic Liquid
Nanocomposites. Tribol. Lett. 2015, 58, 4. [CrossRef]

13. Vaidya, U.K.; Chawla, K.K. Processing of fibre reinforced thermoplastic composites. Metall. Rev. 2008,
53, 185–218. [CrossRef]

14. Mathijsen, D. The black magic of carbon fiber reinforced thermoplastics. Reinf. Plast. 2015, 59, 185–189.
[CrossRef]

15. Sorrentino, L.; Vasconcellos, D.S.; D’Auria, M.; Sarasini, F.; Tirillo, J. Effect of temperature on static and low
velocity impact properties of thermoplastic composites. Compos. B 2017, 113, 100–110. [CrossRef]

16. Katsiropoulos, C.V.; Pantelakis, S.G.; Meyer, B.C. Mechanical behavior of non-crimp fabric PEEK/C
thermoplastic composites. Theor. Appl. Fract. Mech. 2009, 52, 122–129. [CrossRef]

17. Ozaki, H.; Nakada, M.; Uzawa, K.; Miyano, Y. Effect of molding condition on flexural strength of textile
carbon fiber reinforced polycarbonate laminates. J. Reinf. Plast. Compos. 2014, 33, 1893–1901. [CrossRef]

18. Tanaka, K.; Suzue, M.; Isshiki, S.; Shinohara, M.; Katayama, T. Interfacial and interlaminar shear strength of
carbon fiber reinforced polycarbonates made with unidirectional sheets. J. Text. Stud. 2016, 42, 82–94.

19. Qian, X.; Kravchenko, O.G.; Pedrazzoli, D.; Manas-Zloczower, I. Effect of polycarbonate film surface
morphology and oxygen plasma treatment on mode I and II fracture toughness of interleaved composite
laminates. Compos. A 2018, 105, 138–149. [CrossRef]

20. Choi, E.Y.; Kim, J.Y.; Kim, C.K. Fabrication and properties of polycarbonate composites with polycarbonate
grafted multi-walled carbon nanotubes by reactive extrusion. Polymer 2015, 60, 18–25. [CrossRef]

21. Yurgartis, S.W. Measurement of small angle fiber misalignments in continuous fiber composites.
Compos. Sci. Technol. 1987, 30, 279–293. [CrossRef]

22. El-Dessouky, H.M.; Lawrence, C.A. Ultra-lightweight carbon fibre/thermoplastic composite material using
spread tow technology. Compos. B 2013, 50, 91–97. [CrossRef]

23. Yang, B.B.; Lu, L.S.; Liu, X.K.; Xie, Y.X.; Li, J.W.; Tang, Y. Uniaxial tensile and impact investigation of
carbon-fabric/polycarbonate composites with different weave tows widths. Mater. Des. 2017, 131, 470–480.
[CrossRef]

24. Ramalakshmi, P. Investigation of interlaminar shear strength in carbon epoxy and carbon epoxy carbon
nanotubes using experimental and finite element technique. Int. J. Eng. Res. Appl. 2013, 2, 587–592.

25. Bensadoun, F.; Depuydt, D.; Baets, J.; Verpoest, I.; Vuure, A.W.V. Low velocity impact properties of flax
composites. Compos. Struct. 2017, 176, 933–944. [CrossRef]

26. Lou, X.F.; Cai, H.N.; Yu, P.F.; Jiao, F.; Han, X.C. Failure analysis of composite laminate under low-velocity
impact based on micromechanics of failure. Compos. Struct. 2017, 163, 238–247. [CrossRef]

27. Mehndiratta, A.; Bandyopadhyaya, S.; Kumar, V.; Kumar, D. Experimental investigation of span length for
flexural test of fiber reinforced polymer composite laminates. J. Mater. Res. Technol. 2018, 7, 89–95. [CrossRef]

28. Dong, C.S.; Sudarisman; Davies, I.J. Flexural properties of E glass and TR50S carbon fiber reinforced epoxy
hybrid composites. J. Mater. Eng. Perform. 2013, 22, 41–49. [CrossRef]

29. Qin, W.Z.; Vautard, F.; Askeland, P.; Yu, J.R.; Drzal, L.T. Incorporation of silicon dioxide nanoparticles at
the carbon fiber-epoxy matrix interphase and its effect on composite mechanical properties. Polym. Compos.
2015, 38, 1474–1482. [CrossRef]

30. Lu, L.S.; Xing, D.; Xie, Y.X.; The, K.S.; Zhang, B.; Chen, S.M.; Yong, T. Electrical conductivity investigation of
a nonwoven fabric composed of carbon fibers and polypropylene/polyethylene core/sheath bicomponent
fibers. Mater. Des. 2016, 112, 383–391. [CrossRef]

http://dx.doi.org/10.1016/j.matpr.2017.07.244
http://dx.doi.org/10.1016/j.jobe.2017.12.002
http://dx.doi.org/10.1016/j.ijimpeng.2017.12.011
http://dx.doi.org/10.1177/0731684413518255
http://dx.doi.org/10.1002/(SICI)1097-4628(19970912)65:11&lt;2237::AID-APP21&gt;3.0.CO;2-Z
http://dx.doi.org/10.1007/s11249-015-0490-9
http://dx.doi.org/10.1179/174328008X325223
http://dx.doi.org/10.1016/j.repl.2015.02.012
http://dx.doi.org/10.1016/j.compositesb.2017.01.010
http://dx.doi.org/10.1016/j.tafmec.2009.08.003
http://dx.doi.org/10.1177/0731684414549223
http://dx.doi.org/10.1016/j.compositesa.2017.11.016
http://dx.doi.org/10.1016/j.polymer.2015.01.031
http://dx.doi.org/10.1016/0266-3538(87)90016-9
http://dx.doi.org/10.1016/j.compositesb.2013.01.026
http://dx.doi.org/10.1016/j.matdes.2017.06.048
http://dx.doi.org/10.1016/j.compstruct.2017.05.005
http://dx.doi.org/10.1016/j.compstruct.2016.12.030
http://dx.doi.org/10.1016/j.jmrt.2017.06.010
http://dx.doi.org/10.1007/s11665-012-0247-7
http://dx.doi.org/10.1002/pc.23715
http://dx.doi.org/10.1016/j.matdes.2016.09.096


Polymers 2018, 10, 720 17 of 17

31. Chen, J.C.; Chao, C.G. Numerical simulation and experimental investigation for design of a carbon fiber tow
pneumatic spreading system. Carbon 2005, 43, 2514–2529. [CrossRef]

32. ASTM, Standard D790, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced
Plastics and Electrical Insulating Materials. 2010. Available online: https://doi.org/10.1520/D790_D790M-
10 (accessed on 30 June 2018).

33. ASTM, Standard D3039/D3039, Standard Test Method for Tensile Properties of Polymer Matrix Composite
Materials. 2000. Available online: https://doi.org/10.1520/D3039_D3039M-00 (accessed on 30 June 2018).

34. ASTM, Standard D7136, Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced
Polymer Matrix Composite to a Drop-Weight Impact Event. 2015. Available online: https://doi.org/10.
1520/D7136_D7136M-15 (accessed on 30 June 2018).

35. Hao, A.; Zhao, H.; Chen, J.Y. Kenaf/polypropylene nonwoven composites: The influence of manufacturing
conditions on mechanical, thermal, and acoustical performance. Compos. B 2013, 54, 44–51. [CrossRef]

36. ASTM, Standard D2344/D2344M, Standard Test Method for Short-Beam Strength of Polymer Matrix
Composite Materials and Their Laminates. 2000. Available online: https://doi.org/10.1520/D2344_D2344M-
00 (accessed on 30 June 2018).

37. Serna Moreno, M.C.; Romero Gutierrez, A.; Martínez Vicente, J.L. Flexural testing on carbon fibre laminates
taking into account their different behaviour under tension and compression. Mater. Sci. Eng. 2016,
139, 12–47.

38. Moaseri, E.; Maghrebi, M.; Baniadam, M. Improvements in mechanical properties of carbon fiber-reinforced
epoxy composites: A microwave-assisted approach in functionalization of carbon fiber via diamines.
Mater. Des. 2014, 55, 644–652. [CrossRef]

39. Chen, Q.; Zhao, Y.; Zhou, Z.P.; Rahman, A.; Wu, X.F.; Wu, W.D.; Xu, T.; Fong, H. Fabrication and
mechanical properties of hybrid multi-scale epoxy composites reinforced with conventional carbon fiber
fabrics surface-attached with electrospun carbon nanofiber mats. Compos. B 2013, 44, 1–7. [CrossRef]

40. Moreno, M.C.S.; Muñoz, S.H.; Gutiérrez, A.R.; Rappold, C.; Martínez Vicente, J.L.; Morales-Rodríguez, P.A.;
Cela, J.J.L. Pseudo-ductility in flexural testing of symmetric ±45◦ angle-ply CFRP laminates.
Compos. Sci. Tech. 2018, 156, 8–18. [CrossRef]

41. Lee, J.H.; Rhee, K.Y.; Park, S.J. Silane modification of carbon nanotubes and its effects on the material
properties of carbon/CNT/epoxy three-phase composites. Compos. A 2011, 42, 478–483. [CrossRef]

42. Soliman, E.M.; Sheyka, M.P.; Taha, M.R. Low-velocity impact of thin woven carbon fabric composites
incorporating multi-walled carbon nanotubes. Int. J. Impact Eng. 2012, 47, 39–47. [CrossRef]

43. Thanomsilp, C.; Hogg, P.J. Penetration impact resistance of hybrid composites based on commingled yarn
fabrics. Compos. Sci. Technol. 2003, 63, 467–482. [CrossRef]

44. Huber, T.; Bickerton, S.; Müssig, J.; Pang, S.S.; Staiger, M.P. Flexural and impact properties of all-cellulose
composite laminates. Compos. Sci. Technol. 2013, 88, 92–98. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.carbon.2005.05.015
https://doi.org/10.1520/D790_D790M-10
https://doi.org/10.1520/D790_D790M-10
https://doi.org/10.1520/D3039_D3039M-00
https://doi.org/10.1520/D7136_D7136M-15
https://doi.org/10.1520/D7136_D7136M-15
http://dx.doi.org/10.1016/j.compositesb.2013.04.065
https://doi.org/10.1520/D2344_D2344M-00
https://doi.org/10.1520/D2344_D2344M-00
http://dx.doi.org/10.1016/j.matdes.2013.10.040
http://dx.doi.org/10.1016/j.compositesb.2012.09.005
http://dx.doi.org/10.1016/j.compscitech.2017.12.015
http://dx.doi.org/10.1016/j.compositesa.2011.01.004
http://dx.doi.org/10.1016/j.ijimpeng.2012.03.002
http://dx.doi.org/10.1016/S0266-3538(02)00233-6
http://dx.doi.org/10.1016/j.compscitech.2013.08.040
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Procedures 
	Multi-CFPL Preparation 
	Flexural and Uniaxial Tensile Testing 
	Impact Testing 
	Other Characterizations 

	Results and Discussion 
	The Parameter Selection for the Laminating-Hot-Press Process 
	Morphology Observation 
	Flexural Analysis 
	Uniaxial Tensile Analysis 
	Impact Property Analysis 

	Conclusions 
	References

