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Abstract
Coronavirus disease 2019 (COVID-19), an infection that is highly contagious. It has a regrettable effect on the world and
has resulted in more than 4.6 million deaths to date (July 2021). For this contagious disease, numerous nations implemented
control measures. Every country has vaccination programs in place to achieve the best results. This research is done in
two stages, including partial and complete vaccination, to enhance the efficiency and effectiveness of the vaccination. Our
study found that receiving this vaccination lowers the risk of contracting a disease and its side effects, such as severity,
hospitalization, need for oxygen, admission to the intensive care unit, and infection-related death. Taking into account, the
system is built using fractional-order Caputo sense nonlinear differential equations. A basic reproduction number is calculated
to determine the transmission rate. The bifurcation analysis predicts chaotic behavior of a system for this threshold value.
The suggested system’s recovery rate is optimized using fractional optimum controls. For the fractional-order differential
equation, numerical results are simulated using MATLAB software using real-validated data (July 2021).
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1 Introduction

The extremely contagious COVID-19 severe acute respi-
ratory syndrome (SARS) disease, which was initially cat-
egorized as a novel coronavirus, marked in the starting
period of the decade 2020. With 221 million cases and more
than 5 million fatalities worldwide, COVID-19 is spread-
ing in an unexpected way in almost every nation (https://
www.worldometers.info/coronavirus/) [1]. The globe needs
a potent COVID-19 vaccine in order to reduce or stop the
disease’s irregular spread. The first COVID-19 vaccine was
registered for human clinical testing on March 16, 2020. By
the end of 2020, there will be more than 200 COVID-19 vac-
cine candidates in development, 52 of which are now being
tested on humans, according to the World Health Organiza-
tion (WHO) [2].
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India has the second-highest number of infected cases
due to the disease’s highly contagious nature and populated
locations. The Indian government implementedmany protec-
tive measures and began one of the biggest lockdowns ever
on March 25, 2020. Additionally, it restricts travel between
states and enforces social segregation in all workplaces [3].
However, despite taking all necessary precautions, the nation
was unable to stop the spread of the disease, and in Septem-
ber 2020, a sizable number of infected cases (97,570) were
reported [4]. During February 2021, the transmission was
under control for a few days. And it was urgently hastened
following the second wave of COVID-19 infection in March
2021. In the first week of May 2021, more than 4 lakhs cases
per day were reported in the nation.

India began administering mass vaccinations on January
16, 2021, using two vaccine kinds, Covishield and Covaxin,
supplied by Serum Institute of India Ltd. and Bharat Biotech
International Ltd. [5]. 37 percent of the population in India
had received the first dose as of September 7, 2021, and 11
percent had received all three doses. In the current research,
a mathematical model is created to examine how vaccination
affects COVID-19 transmission in India. In which we calcu-
lated the severity of the illness in the demographic groups
that received vaccinations and those who did not. We have
calculated the impact of vaccination on the spread ofCOVID-
19 by comparing the simulated results produced from actual
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data, and we have noticed the largest relative reduction in
mortality due to COVID-19.

In order to simulate the COVID-19 outbreak, Higazy [6]
created a fractional SIDARTHEmodelwith continuous func-
tion, state variables, and controls. To stop the spread of
COVID-19, Shah et al. [7] used optimal control, and Shah
et al. [8, 9] used fractional optimal control. A dynamics and
control on COVID-19 using fractional derivative for India
was developed by Shaikh et al. [10]. Through mathematical
modelling, Shah et al. [6] applied a qualitative technique to
analyze the COVID-19. FODE was utilized by Ahmad et al.
[11] to create an epidemiological compartmental model.

Evaluating regional and global stability an SIRmodelwith
a fractional-order derivative was created byMouaouine et al.
[12]. A predator–prey and rabies model using a fractional-
order derivative was developed by Ahmed et al. [13]. A
fractional SIR model was created by Shah et al. [8, 9]. For
the analysis of nonlinear fractional-order models, Shah et al.
[14] contrasted the Euler method (MEM) with nonstandard
finite difference (NSFD). Shah et al. [12, 15] employed the
Caputo derivative to simulate the outcomes using the Haar
wavelet collocation technique.

The fractional-order derivative of Caputo was used in
this study. A popular tool for modelling combining the
conventional technique with long-term memory and long-
term spatial interface is fractional order. Accurate result can
be found for this epidemic model through fractional-order
derivative.

Definition 1 The Caputo fractional-order derivative of a
function y in the interval [0, T ] is defined by

C Dα
0+y(t) � 1

�(n − α)

t∫

0

(t − s)n−α−1y(n)(s) ds

whereC represents Caputo derivative, Dα denotes Caputo
fractional derivative of order n � [α] + 1, and [α] represents
the integer part of α.

Definition 2 Laplace transform of Caputo derivative is
defined as,

L
{
Dα y(t)

} � sα y(s) −
n−1∑
k�0

sα−k−1y(k)(0),

n − 1 < α < n, n ∈ N .

In Sect. 2, the mathematical transmission model has been
prepared. Stability analysis has been worked out in Sect. 3.
Then fractional optimal control theory is applied to themodel
with specified three controls in Sect. 4. Section 5 includes the
numerical simulation with the graphical presentation for real
data. Section 6 concludes the proposed model.

2 Mathematical modeling

The proposed model has eleven compartments: susceptible
populations (S) who are either vaccinated (V ) or non-
vaccinated (NV ). The infected classes are divided into three
sub-classes depending on the intensity of the infection, class
of mild (MI ), moderate (MO), and severely infected individ-
uals (SE ). There are some cases where mild infected cases
got recovered without hospitalization or by home-quarantine(
HQ

)
while moderated and severely infected cases may need

oxygen support (OS) or may be admitted in ICU (AICU) to
survive in critical cases. This scenario leads to construct the
system of nonlinear differential equations using the compart-
mental model as given in Fig. 1.

July 2nd, 2021, the data for infected cases and the vacci-
nated population in the country were collected frommultiple
sources, including websites from the Ministry of Health and
Family Welfare, the Government of India, and a website
for crowd-sourced information related to COVID-19. Using
these data calculated parametric values are given in Table 1
[16, 17].

Total population � 136.65 crore.
Total Vaccination (till July 2nd, 2021) � 33,13,07,026.
Vaccination of 1st dose � 27,30,08,676.
Vaccination of 2.nd dose � 5,82,98,350

dS

dt
� B − α1SV − α2SNV − μS

dV

dt
� α1SV − β1V − β2V + α3NV − μV

dNV

dt
� α2SNV − γ1NV − γ2NV − γ3NV

− α3NV − μNV

dMI

dt
� β1V + γ1NV − ε1MI − η1MI − μMI

dMO

dt
� β2V + γ2NV + ε1MI − ε2MO + δ1HQ

− η1MO − μMO

dSE
dt

� γ3NV + ε2MO + δ2HQ − η3SE − μSE

dHQ

dt
� η1MI − δ1HQ − δ2HQ − θHQ − μHQ

dOS

dt
� η2MO + η3SE − ξOS − μOS

d AICU

dt
� ξOS − ρ1AICU − ρ2AICU − μAICU

dR

dt
� θHQ + ρ1AICU − μR

dF

dt
� ρ2AICU − μF (1)

123



Fractional-order model on vaccination and severity of COVID-19

Fig. 1 Schematic diagram

Table 1 Description of parameters

Parameter Description References

B Birth rate [6]

α1/α2 The rate as a result of contacting among susceptible individuals and vaccinated/non-vaccinated individuals [18]/Assumed

α3 The rate at which non-vaccinated individuals get a vaccine [18]

β1/β2 The rate of vaccinated individuals is getting mild/moderate COVID-19 infection Assumed

γ1/γ2γ2/γ3 The rate of non-vaccinated individuals is getting mild/moderate/severe COVID-19 infection Assumed/ [19]/

Assumed

ε1 The rate at which mildly infected individuals moves to a class of moderately infected individuals Assumed

ε2 The rate at which moderately infected individuals moves to a class of severely infected individuals [19]

η1 The rate at which mildly infected individuals goes for treatment with home-quarantine Assumed

η2/η3 The rate at which moderate/severe infected individuals needs oxygen support [20]/Assumed

ρ1/ρ2 The rate at which individuals admitted to ICU moves to recover/fatal class [20]/ [18]

δ1/δ2 The rate of home-quarantined individuals gets moderate/severe infection Assumed

ξ The rate of oxygen supported individuals admitted to ICU [20]

θ The rate of home-quarantined individuals shifted to the recovered class [19]

μ Natural death rate Assumed

Summing all equations, the feasible region of the model
is obtained as,

� �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(S, V , NV , MI , MO , SE , HQ , OS , AICU, R, F)

∈ R11
+ : S + V + NV + MI + MO + SE + HQ + OS

+AICU + R + F ≤ B

μ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

where

R11
+ �

⎧⎪⎨
⎪⎩
(S, V , NV , MI , MO , SE , HQ , OS , AICU, R, F)

∈ R11
+ : S > 0, V , NV , MI , MO , SE , HQ , OS ,

AICU, R, F ≥ 0

⎫⎪⎬
⎪⎭.

(i) Disease-free equilibrium point:

E0

(
B

μ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

E0

(
B

μ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

(ii) Non-vaccinated-free equilibrium point: E1(S1, V 1, 0,
M1

I , M
1
O , S

1
E , H

1
Q , O

1
S , A

1
ICU, R

1, F1)

where S1 � β1+β2+μ
α1

, V 1 � Bα1−μ(β1+β2+μ)
α1(β1+β2+μ)

, N 1
V �

0, M1
I � β1V 1+γ1N1

V
ε1+η1+μ

, M1
O � β2V 1+γ2N1

V +ε1M1
I +δ1H1

Q
ε2+η2+μ

,

S1E � β1V 1+γ1N1
V

ε1+η1+μ
, H1

Q � η1M1
I

δ1+δ2+θ+μ
, O1

S � η2M1
O+η3S1E
ξ+μ

,

A1
ICU � ξO1

S
ρ1+ρ2+μ

, R1 � θH1
Q+ρ1A1

ICU
μ

, F1 � ρ2A1
ICU

μ
.
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(iii) Optimum issue point:

E∗(S∗, V ∗, N∗
V , M

∗
I , M

∗
O , S

∗
E , H

∗
Q , O

∗
S ,

× A∗
ICU, R

∗, F∗)

where S∗ � γ1+γ2+γ3+α3+μ
α2

, V ∗ �
α3N∗

V
β1+β2+μ−α1S∗ , M∗

I � β1V ∗+γ1N∗
V

ε1+η1+μ
,N∗

V �
(B(γ1+γ2+γ3+α3+μ)−α2μ)((β1+β2+μ)−α2(γ1+γ2+γ3+α3+μ))

β1+β2+μ−α1S∗ ,

M∗
O � β2V ∗+γ2N∗

V +ε1M∗
I +δ1H∗

Q
ε2+η2+μ

, S∗
E � β1V ∗+γ1N∗

V
ε1+η1+μ

, H∗
Q �

η1M∗
I

δ1+δ2+θ+μ
, O∗

S � η2M∗
O+η3S∗

E
ξ+μ

, A∗
ICU � ξO∗

S
ρ1+ρ2+μ

, R∗ �
θH∗

Q+ρ1A∗
ICU

μ
, F∗ � ρ2A∗

ICU
μ

.
Applying Caputo derivative to the system (1) [21],

C DαS � B − α1SV − α2SNV − μS
C DαV � α1SV − β1V − β2V

+ α3NV − μV
C DαNV � α2SNV − γ1NV − γ2NV

− γ3NV − α3NV − μNV

C DαMI � β1V + γ1NV − ε1MI − η1MI − μMI

C DαMO � β2V + γ2NV + ε1MI − ε2MO + δ1HQ

− η1MO − μMO

CDαSE � γ3NV + ε2MO + δ2HQ − η3SE − μSE
C DαHQ � η1MI − δ1HQ − δ2HQ − θHQ − μHQ

CDαOS � η2MO + η3SE − ξOS − μOS

C DαAICU � ξOS − ρ1AICU − ρ2AICU − μAICU

C DαR � θHQ + ρ1AICU − μR
CDαF � ρ2AICU − μF (2)

Here, C denotes Caputo derivative having order α with
initial conditions S(0) � S0, V (0) � V0 , NV (0) � NV0 ,
MI (0) � MI0 , MO (0) � MO0 , SE (0) � SE0 , HQ(0) �
HQ0 , OS(0) � OS0 , AICU(0) � AICU0 , R(0) � R0 and
F(0) � F0.

By taking Laplace transform, the generalized system (2)
can be written as,

S(i + 1) � S(i) +
rα

�(α + 1)

× (B − α1SV − α2SNV − μS)

V (i + 1) � V (i) +
rα

�(α + 1)

× (α1SV − β1V − β2V + α3NV − μV )

NV (i + 1) � NV (i) +
rα

�(α + 1)

×
(

α2SNV − γ1NV − γ2NV − γ3NV

−α3NV − μNV

)

MI (i + 1) � MI (i) +
rα

�(α + 1)

× (β1V + γ1NV − ε1MI − η1MI − μMI )

MO(i + 1) � MO(i) +
rα

�(α + 1)

×
(

β2V + γ2NV + ε1MI − ε2MO

+δ1HQ − η1MO − μMO

)

SE (i + 1) � SE (i) +
rα

�(α + 1)

× (
γ3NV + ε2MO + δ2HQ − η3SE − μSE

)

HQ(i + 1) � HQ(i) +
rα

�(α + 1)

× (
η1MI − δ1HQ − δ2HQ − θHQ − μHQ

)

OS(i + 1) � OS(i) +
rα

�(α + 1)

× (η2MO + η3SE − ξOS − μOS)

AICU (i + 1) � AICU (i) +
rα

�(α + 1)

× (ξOS − ρ1AICU − ρ2AICU − μAICU )

R(i + 1) � R(i) +
rα

�(α + 1)

(
θHQ + ρ1AICU − μR

)

F(i + 1) � F(i) +
rα

�(α + 1)
(ρ2AICU − μF) (3)

The basic reproduction number is calculated through next
generation matrix method as below.

F �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1SV
α2SNV

0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
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Fig. 2 Transmission rate of
COVID-19 in Indian states

V �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1V + β2V − α3NV + μV
γ1NV + γ2NV + γ3NV + α3NV + μNV

−β1V − γ1NV + ε1MI + η1MI + μMI

−β2V − γ2NV − ε1MI + ε2MO

−δ1HQ + η1MO + μMO

−γ3NV − ε2MO − δ2HQ + η3SE + μSE
−η1MI + δ1HQ + δ2HQ + θHQ + μHQ

−η2MO − η3SE + ξOS + μOS

−ξOS + ρ1AICU + ρ2AICU + μAICU

−θHQ − ρ1AICU + μR
−ρ2AICU + μF
−B + α1SV + α2SNV + μS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, the jacobian matrix of the above matrix F and V

are computed by matrix f �
[

∂Fi (E0)
∂X j

]
and v �

[
∂Vi (E0)

∂X j

]
respectively, where v is a non-singular matrix. Hence, the
basic reproduction number at the equilibrium point E0 is
R0 � α1B

μ(β1+β2+μ)
[22].

The class of vaccinated individuals can bewritten in terms
of R0 as,

V (i + 1) � V (i) +
rα(β1 + β2 + μ)

�(α + 1)

×
(
S0V 0μR0

B
+ α3N

0
V − V 0

)

In Fig. 2, the transmission rate of COVID-19 infection
in different parts of India is plotted using QGIS software
where the range of reproduction numbers for different states

is given. To calculate the value of reproduction number for
Indian states data of COVID-19 infection is taken from the
Ministry of Health and Family Welfare (the Government of
India) on July 2nd, 2021.

3 Stability

After taking the jacobian matrix of system (1), the condi-
tion for equilibrium points to be stable is, eigenvalues of the
jacobian matrix should be negative.

Therefore, the necessary conditions for E0 to be locally
stable is:

(i) Bα2
μ

< α3 + γ1 + γ2 + γ3 + μ

(ii) Bα1
μ

< β1 + β2 + μ

E1 is locally stablewithout any condition and E∗ is locally
stable with the following conditions.

(i) S∗α2 < α3 + γ1 + γ2 + γ3 + μ

(ii) S∗α1 < β1 + β2 + μ

Moreover, |arg(E0)| > π
2 ,

∣∣arg(E1
)∣∣ > π

2 and
|arg(E∗)| > π

2 . E0, E1 and E∗ are locally asymptotically
stable.
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Fig. 3 Diagram with controls

4 Fractional optimal control

In this paper, three controls were applied to the system. The
first control (u1) is to support non-vaccinated people to get
the vaccine, the second control (u2) is to regulate moder-
ately infected individuals to get severity for the infection and
the third control (u3) is to improve recovery of individuals
admitted in ICU. After applying optimal control theory, the
model is modified as given in Fig. 3,

An objective function can be described as,

J (ci , �) �
T∫

0

(A1S
2+A2V

2 + A3N
2
V + A4M

2
I + A5M

2
O

+ A6S
2
E + A7H

2
Q + A8O

2
S + A9A

2
ICU + A10R

2

+ A11F
2 + w1u

2
1 + w2u

2
2 + w2u

2
3) dt

where � denotes set of all compartmental variables A1, A2,
A3, A4, A5, A6, A7, A8, A9, A10, A11 denote non-negative
weight constants for compartments S, V , NV , MI , MO , SE ,
HQ , OS , AICU, R and F respectively. w1, w2 and w3 are the
weight constants for the controls u1, u2 and u3, respectively.

J (u1(t), u2(t), u3(t)) � min{J (u∗
1, �), J (u∗

2, �),

J (u∗
3, �)/(u1, u2, u3) ∈ φ}

where φ is a smooth function on the interval [0, 1].
Derived Langrangian function is,

L(�, Ai ) � A1S
2 + A2V

2 + A3N
2
V + A4M

2
I + A5M

2
O + A6S

2
E

+ A7H
2
Q + A8O

2
S + A9A

2
ICU + A10R

2 + w1u
2
1

+ w2u
2
2 + w3u

2
3 + λ1(B − α1SV − α2SNV − μS)

+ λ2(α1SV − β1V − β2V + α3NV − μV + u1NV )

+ λ3(α2SNV − γ1NV − γ2NV − γ3NV

− α3NV − μNV − u1NV )

+ λ4(β1V + γ1NV − ε1MI − η1MI − μMI )

+ λ5(β2V + γ2NV + ε1MI − ε2MO + δ1HQ

− η1MO − μMO + u2SE )

+ λ6(γ3NV + ε2MO + δ2HQ

− η3SE − μSE − u2SE )

+ λ7(η1MI − δ1HQ − δ2HQ − θHQ − μHQ )

+ λ8(η2MO + η3SE − ξOS − μOS)

+ λ9(ξOS − ρ1AICU − ρ2AICU

− μAICU − u3AICU )

+ λ10(θHQ + ρ1AICU − μR + u3AICU )

+ λ11(ρ2AICU − μF)

To calculate the adjoint variable λi � (λ1, λ2, λ3, λ4,
λ5, λ6, λ7, λ8, λ9, λ10, λ11), take partial derivatives of Lan-
grangian function for each state variable (compartment) and
we have,

•
λ1 � −∂L

∂S
� −2A1S + (λ1 − λ2)α1V

+ (λ1 − λ3)α2NV + λ1μ,
•
λ2 � − ∂L

∂V
� −2A2V + (λ1 − λ2)α1S

+ (λ2 − λ4)β1 + (λ2 − λ6)β2 + λ2μ,
•
λ3 � − ∂L

∂NV
� −2A3NV + (λ1 − λ3)α2S + (λ3 − λ2)α3

+ γ1(λ4 − λ3) + γ2(λ3 − λ5) + γ3(λ3 − λ6)

+ α3(λ3 − λ2) + λ3μ + u1(λ3 − λ2),
•
λ4 � − ∂L

∂MI
� −2A4MI + (λ4 − λ5)ε1 + (λ4 − λ7)η1 + λ4μ,

•
λ5 � − ∂L

∂MO
� −2A5MO + (λ5 − λ6)ε2 + (λ5 − λ8)η2 + λ5μ

•
λ6 � − ∂L

∂SE
� −2A6SE + (λ6 − λ5)u2 + (λ6 − λ8)η3 + λ6μ

•
λ7 � − ∂L

∂HQ
� −2A7HQ + (λ7 − λ5)δ1

+ (λ7 − λ6)δ2 + θ (λ7 − λ10) + λ7μ

•
λ8 � − ∂L

∂OS
� −2A8OS + (λ8 − λ9)ξ + λ8μ

•
λ9 � − ∂L

∂AICU
� −2A9AICU + (λ9 − λ10)ρ1

+ (λ10 − λ9)u3 + (λ11 − λ9)ρ2 + λ9μ

•
λ10 � − ∂L

∂R
� −2A10R + λ10μ

•
λ11 � − ∂L

∂F
� −2A11F + λ11μ

The necessary conditions for optimizing Lagrangian func-
tion L by taking partial derivatives − ∂L

∂u1
, − ∂L

∂u2
and − ∂L

∂u3
.

Using Pontryagin’s [23] principle, the optimized controls

are calculated as, u∗
1 � max

(
a1, min

(
b1,

NV (λ3−λ2)
2w1

))
,

u∗
2 � max

(
a2, min

(
b2,

SE (λ6−λ5)
2w2

))
and u∗

3 �
max

(
a3, min

(
b3,

AICU(λ9−λ10)
2w3

))
.
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Fig. 4 Change in compartments with change in vaccination rate
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Fig. 5 Directed graphs

5 Numerical simulation

In order to compare the model’s output with actual data from
reports released by the Ministry of Health and Family Wel-
fare (the Government of India) and worldometer, numerical
simulations are carried out.

The vaccination rate plays a vital role to control the trans-
mission of COVID-19 infection. The effect of vaccination
on the model is illustrated in Fig. 4 where we have con-
sidered variation in the model for three different values of
vaccination rate (α3 � 0.32, 0.52, 0.82) with constant param-
eters B � 0.017, β1 � 0.05, β2 � 0.01, α1 � 0.2456,
α2 � 0.7819, α3 � 0.32, γ1 � 0.2, γ2 � 0.2, γ3 � 0.6,
ε1 � 0.3, ε2 � 0.1,η1 � 0.5,η2 � 0.03,η3 � 0.7, δ1 � 0.2,
δ2 � 0.1, θ � 0.9697, ξ � 0.02, ρ1 � 0.63, ρ2 � 0.01 and
μ � 0.018. FromFig. 4a, b, c, a notable change is observed in
mild (MI ), moderate (MO), and severe (SE ) infected classes
when values of α3 change from 32 to 82%. Also, as Fig. 4d
positive impact is observed in recovered class as we increase
the rate of vaccination.

Figure 5 directed graphs demonstrate the need for vac-
cination throughout the COVID-19 outbreak. Graphs show

that classes that have recovered, been placed in their homes
under quarantine, or are only mildly to moderately infected
need vaccinations to provide themwith the immunity against
the infection. Investigations into the illness are still insuffi-
cient to determine the precise period of time that someone is
protected after recovering fromCOVID-19.However, people
who are receiving COVID-19 treatment should wait 90 days
before becoming vaccinated.

Simultaneously varying the controls, the behavior of dif-
ferent compartments is observed in Fig. 6. Figure 6a results
that, control u1 is more effective while Fig. 6b, c, d,e sug-
gests that, control u3 is more effective. It concludes that,
when u1 control is applied i.e., if people had been vacci-
nated, then oxygen support needed individuals is decreasing.
And when control u3 (treatment on people admitted in ICU)
is applied then the number of ICU individuals and fatality is
more decreasing in nature and recovered people increasing
compared to the other two controls.

In this Fig. 7, decreasing the value of an order (α) of dif-
ferential equation by 20% thenmild cases (Fig. 7a) decreases
by 16.09%, severe cases (Fig. 7b) are decreases by 22.62%,
individuals admitted in ICU (Fig. 7c) decreases by 44.46%,
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Fig. 6 Variation in compartments under the impact of optimal controls
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Fig. 7 Variation in compartments after varying order under the impact of controls
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Fig. 8 Period-doubling to chaos

fatality (Fig. 7e) also decreases by 3.32% and recovery of the
individual (Fig. 7d) increases by 34.45%.

The system parameters are fixed as mentioned and then
the bifurcation diagram is depicted in Fig. 8. The period-
doubling situation is observed when α � 0.85, B � 1 and
μ � 1. It connotes that the bifurcation construction of system
varying qualitatively that is two periodic then four periodic
and so on, with the change in the value of the order α. The
route leads to chaos. The area of the chaotic motion increases
as the value of R0 increases.

6 Conclusion

This research has been carried outwith eleven epidemicmod-
els to resolve the problem of COVID-19 transmission. A
nonlinear fractional-ordered mathematical model has been
constructed using Caputo derivative operator. The simulation
results obtained from the model are valid for 0 < α ≤ 1. The
stability with the asymptotic behavior of equilibrium points
has been obtained with necessary conditions. The model uti-
lized three controls u1, u2 and u3 in the model to construct
strategies to control the transmission of COVID-19. Out of
three controls, themost effective control is u2 which suggests
taking extra care of moderately infected individuals and stop
them to move into the class of severely infected individuals.
Simulation leads to the fact that the severity due toCOVID-19
will decrease as the vaccination rate increases. Additionally,
the bifurcation analysis of the basic reproduction numbers,
which indicate the periodic nature of the infection, is per-
formed on the vaccinated class. It implies that even among
those who have had vaccinations, the muted virus may still
influence them and cause some minor spread.
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