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Introduction
There is growing evidence that the sugar N-acetylglucosamine (GlcNAc) plays diverse roles in
cell signaling pathways that impact the virulence properties of microbes and host cells. GlcNAc
is already well known as a ubiquitous structural component at the cell surface that forms part
of bacterial cell wall peptidoglycan, cell wall chitin in fungi and parasites, and extracellular
matrix glycosaminoglycans of animal cells. Chitin and peptidoglycan have been previously
linked to cell signaling as they can stimulate responses in plant and animal host cells [1–3].
Recent studies now indicate that GlcNAc released from these polymers can also activate cell
signaling via several different mechanisms [4–6]. The role of these new GlcNAc signaling path-
ways in the regulation of virulence factors will be the focus of this review.

GlcNAc Induces Morphogenesis and Virulence Pathways in Fungi
GlcNAc first attracted attention as a signaling molecule for fungi over 40 years ago, when it
was discovered to induce a remarkable switch from budding to hyphal growth in the human
pathogen Candida albicans (Fig 1A) [7]. GlcNAc was subsequently shown to induce filamen-
tous growth in a diverse group of fungi [5]. Switching to filamentous hyphal morphology con-
tributes to invasive growth of C. albicans in the host and influences the interaction with
leukocytes [8]. GlcNAc also stimulates the expression of virulence genes, such as the adhesins
that promote adherence to host cells and biofilm formation [5,8]. Although it is not clear
whether GlcNAc plays a role in systemic candidiasis, it has been implicated in commensal
growth in the mucosa of the GI tract [9]. Consistent with this, GlcNAc promotes an epigenetic
switch in morphology from the “White Phase” to the “Opaque Phase,” which is better adapted
to mucosal growth [10].

Identification of a GlcNAc transporter (Ngt1) in the C. albicans plasma membrane helped
to resolve earlier controversies as to whether GlcNAc had to be imported into the cell to induce
signaling [11]. An ngt1Δmutant was defective in inducing hyphae, indicating that intracellular
GlcNAc activates signaling. Since Ngt1 was the first eukaryotic GlcNAc transporter to be iden-
tified, its discovery has also helped to define the role of GlcNAc transport in other species. An
interesting example of this is that Ngt1 orthologs were shown to mediate the ability of GlcNAc
to induce hyphal growth in the dimorphic fungal pathogen Histoplasma capsulatum [12].

The ability of intracellular GlcNAc to transduce a signal raised the question of whether it
had to be metabolized to induce signaling. Analysis of a C. albicansmutant lacking all three
enzymes needed for GlcNAc catabolism (hxk1Δ nag1Δ dac1Δ) showed that the breakdown of
this sugar was not needed for it to promote hyphal growth [13]. Furthermore, analysis of this
mutant also indicated that GlcNAc did not have to be converted to the important building
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block UDP-GlcNAc. The hxk1Δmutation blocks conversion of GlcNAc to GlcNAc-6-PO4,
which is required for it to be subsequently processed into UDP-GlcNAc. These results indicate
C. albicans uses a novel GlcNAc pathway (red arrow in Fig 1B) that is distinct from the major
known signaling pathway in mammalian cells that requires conversion of GlcNAc into
UDP-GlcNAc for use in O-GlcNAc modification of intracellular proteins (green arrow) [14].
The search for components in C. albicans that transduce the GlcNAc signal indicates that mul-
tiple pathways are activated. For example, the cAMP pathway is needed for GlcNAc to induce
hyphal morphogenesis and virulence genes, but is not needed to induce the genes needed to
catabolize GlcNAc [15].

Catabolism of GlcNAc Raises the Ambient pH: Synergy between
GlcNAc and pH
Although GlcNAc catabolism is not required to induce hyphae, it can indirectly stimulate
responses in C. albicans by raising the pH of the extracellular medium (blue arrow in Fig 1B)
[16]. In contrast to acidification of the environment that occurs for cells grown in glucose,
growth in GlcNAc raises the pH since cells export excess nitrogen as ammonia [17]. Studies
with a mutant that lacks the GlcNAc metabolic genes (hxk1Δ nag1Δ dac1Δ) revealed an inter-
esting synergy between GlcNAc and pH [16] as the mutant cells were able to induce hyphal
morphology without the induction of hyphal-specific genes at low pH. However, the mutant
cells could induce hyphal-specific genes when buffered to a higher pH (>5) that mimicked the
effects of GlcNAc catabolism. Although alkaline pH can induce hyphal responses [8], the
observed effects occurred at pH levels that were well below the levels required to induce
hyphae, indicating that there is synergy between these pathways. These results are significant
because they indicate that GlcNAc can stimulate hyphal morphogenesis independently of the

Fig 1. GlcNAc signaling pathways. (A) C. albicans grown in dextrose form budding cells (top) whereas growth in GlcNAc induces them to switch to the
filamentous hyphal form (bottom). (B) Summary of three types of GlcNAc-regulated pathways. GlcNAc itself can transduce a signal to induce hyphal growth
inC. albicans (red arrow). Catabolism of GlcNAc releases excess ammonia whose export alkalinizes the extracellular pH and can synergize with GlcNAc to
induce hyphal growth and gene expression (blue arrow). In mammals and somemicrobes conversion of GlcNAc to the building block UDP-GlcNAc promotes
changes in O-GlcNAc modification of intracellular proteins and N-linked glycosylation of cell surface proteins (green arrow).

doi:10.1371/journal.ppat.1004947.g001
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induction of hyphal-specific genes, which had been linked to promoting the transition to fila-
mentous growth [8]. This type of synergy between GlcNAc and pH likely occurs with other
species, as cells from bacteria to humans export excess nitrogen as ammonia [18]. Thus, future
studies must take care to distinguish between a direct role of GlcNAc in cell signaling and an
indirect effect on the ambient pH.

GlcNAc Regulation of Virulence Factors in Bacteria
An important source of GlcNAc for cell signaling in many environments is due to release of
this sugar during bacterial growth due to remodeling of cell wall peptidoglycan, which consists
of alternating GlcNAc and N-acetylmuramic acid residues [19]. Approximately 50% of the
sidewall peptidoglycan is broken down during each generation to accommodate the stepwise
enlargement of the cell wall [19]. The presence of exogenous GlcNAc can therefore signal that
cells nearby are dividing. One metabolic decision regulated by exogenous GlcNAc is to deter-
mine whether cells synthesize new GlcNAc, recycle exogenous GlcNAc back into peptidogly-
can, or catabolize it for nutrition. Escherichia coli has streamlined this decision by placing the
genes needed for GlcNAc synthesis and catabolism on opposite sides of a divergent operon
that is regulated by the NagC transcription factor that responds to GlcNAc-6-PO4 [20]. Proper
regulation of GlcNAc metabolism genes is significant, as it is important for colonization of the
host by E. coli [21] and Vibrio cholera [22], and for production of virulence factors and biofilms
by the cariogenic bacterium Streptococcus mutans [23].

GlcNAc has diverse effects in different bacteria by up-regulating or down-regulating viru-
lence factors. In soil bacteria, it stimulates antibiotic production [24]. In polymicrobial infec-
tions, GlcNAc released from Gram-positive bacteria makes the infection more severe by
stimulating Pseudomonas aeruginosa to produce toxins and virulence factors [6,25]. In con-
trast, GlcNAc down-regulates two extracellular adhesion factors in E. coli. GlcNAc inhibits
production of type 1 fimbrial adhesins that promote urinary tract infections by mediating
attachment to host cells [4]. GlcNAc also diminishes the production of the extracellular Curli
fibers that play a role in biofilm formation, adhesion, and the internalization of E. coli by epi-
thelial cells [26]. It has been suggested that rising GlcNAc levels during inflammation could
signal to bacteria that host defenses are activated [4]. Inhibiting the expression of fimbriae and
Curli fibers would therefore have two advantages for the bacteria: it would decrease the levels
of these pro-inflammatory surface structures and the decreased levels of these adhesins would
promote dissemination within the host. In this regard, it is interesting that many bacteria
adhere via biofilms formed with extracellular poly-β,1–6 GlcNAc (distinct from β,1–4 linked
chitin). Degradation of poly-β,1–6 GlcNAc disperses cells from biofilms and would also
likely activate GlcNAc signaling that could affect adhesin production to further promote
dissemination.

GlcNAc has additional roles in bacterial pathogenesis that depend on its metabolism and
conversion to UDP-GlcNAc. For example, O-GlcNAc modification of proteins regulates cell
motility in the pathogen Listeria monocytogenes [27]. In addition, exported toxins in other bac-
teria promote an unusual O-GlcNAc modification on arginine residues in cell death receptors
and tyrosine residues in Rho that inactivates these host functions [28,29].

How Do Cells Distinguish Exogenous Versus Endogenous
GlcNAc?
A key question is how do cells sense exogenous GlcNAc when they actively synthesize high lev-
els of this sugar to create UDP-GlcNAc, a building block for glycosylation, GPI anchors, and
the cell wall. Fungi and bacteria appear to distinguish exogenous GlcNAc because its
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phosphorylation status is distinct from endogenously synthesized GlcNAc [5]. For example,
fungi take up unmodified GlcNAc, whereas they synthesize a phosphorylated form (GlcNAc-
6-PO4) [30]. A variation of this occurs in bacteria that take up GlcNAc using a phosphotrans-
ferase system that converts it to GlcNAc-6-PO4, a form that is not synthesized in bacteria.
Bacteria differ from fungi in that they avoid making GlcNAc-6-PO4 because the precursor
sugar, glucosamine-6-PO4, is converted directly to GlcNAc-1-PO4, which is then further modi-
fied to create UDP-GlcNAc [30].

GlcNAc Signaling in Mammalian Cells
GlcNAc is known to induce responses in mammalian cells following its conversion to UDP-
GlcNAc (green arrow in Fig 1B). Elevated UDP-GlcNAc increases O-GlcNAc modification of
proteins and also increases N-GlcNAc branching on cell surface proteins, which changes cell
signaling properties by altering the stability of receptors on the cell surface [14,31]. It is not
clear whether GlcNAc itself can induce signaling in mammals. However, it is noteworthy that
after infection with the fungus Cryptococcus neoformans, Th2 cell induction depended on
cleavage of chitin by the mammalian chitinase, chitotriosidase, indicating that chitin fragments
and perhaps GlcNAc are involved [32]. Although GlcNAc has also been reported to inhibit
Th1 and Th17 cells, which play key roles in antifungal defense [33], further studies will be
needed to determine how GlcNAc influences the immune system.

Concluding Comments
Emerging data indicate that the ubiquitous sugar GlcNAc is sensed by a broad range of organ-
isms as a way to detect growth of neighboring cells or pathogenic attack. The ability of fungal
and bacterial pathogens to regulate virulence functions in response to GlcNAc suggests that
parasites will too, a possibility supported by the important role for GlcNAc metabolism in
Leishmania [34]. The widespread presence of GlcNAc also suggests that is well suited to medi-
ate interspecies communication with the host or between microorganisms to promote either
symbiotic relationships or pathogenic interactions. In this way, GlcNAc is similar to many dif-
ferent chemical messengers, including quorum sensing factors, that are also used to communi-
cate both intra- and interspecies [35]. Thus, it will be important to define the roles for GlcNAc
signaling in complex environments, such as the human gut or in polymicrobial infections that
contain a diverse array of bacteria, fungi, and human cells [36].
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