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Global temperatures are rising at an unprecedented rate, but environmental
responses are often difficult to recognize and quantify. Long-term obser-
vations of plant phenology, the annually recurring sequence of plant
developmental stages, can provide sensitive measures of climate change
and important information for ecosystem services. Here, we present
419 354 recordings of the first flowering date from 406 plant species in the
UK between 1753 and 2019 CE. Community-wide first flowering advanced
by almost one month on average when comparing all observations before
and after 1986 ( p < 0.0001). The mean first flowering time is 6 days earlier
in southern than northern sites, 5 days earlier under urban than rural set-
tings, and 1 day earlier at lower than higher elevations. Compared to trees
and shrubs, the largest lifeform-specific phenological shift of 32 days is
found in herbs, which are generally characterized by fast turnover rates
and potentially high levels of genetic adaptation. Correlated with January–
April maximum temperatures at −0.81 from 1952–2019 ( p < 0.0001), the
observed trends (5.4 days per decade) and extremes (66 days between the
earliest and latest annual mean) in the UK’s first flowering dataset can
affect the functioning and productivity of ecosystems and agriculture.
1. Introduction
The world’s longest running and best-documented meteorological record, the
Central England Temperature series [1], places the recent anthropogenic warm-
ing trend [2] as unprecedented in the context of natural climate variability of the
past three and a half centuries (electronic supplementary material, figure S1).
While the impact of rising mean temperatures and associated climatic extremes
can be manifest in distinct environmental responses and societal consequences
[3,4], the effects of long-term climate change on the functioning and pro-
ductivity of biological, ecological and agricultural systems are often subtle,
thus difficult to recognize and quantify [5]. This is particularly true in ecological
research where the climatological concept of ‘detection and attribution’ has only
recently been applied [6,7], as well as for farmers, policymakers and the wider
public since statistical significance alone often remains an abstract dimension.

Changes in the timing and intensity of annually recurring patterns in bio-
logical systems, including the growth and development of plants and the
behaviour of animals [8], are closely related to high-frequency climate variabil-
ity [9]. Though global warming has been shown to alter the occurrence of
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important developmental and behavioural events in birds,
insects, amphibians and plants [8], most studies have
involved single or small sets of species at local or regional
scales. The history of observing and recording phenological
events has been useful for informing environmental scien-
tists, conservation agencies and policymakers about
possible extinction risks and the loss of ecosystem services
[10], for adapting agricultural techniques to prolonged grow-
ing seasons [7], and for improving respiratory allergy
prevention and management [11,12]. Our understanding of
the direct and indirect biophysical feedbacks of plant pheno-
logical changes on land surface-atmosphere exchanges is,
however, the hardest to grasp and simultaneously among
the most important to consider [8]. Though ground-based
plant phenological observations and associated laboratory
experiments can be supplemented with similar evidence
from satellite remote-sensing over the past few decades
[13], the continuous update, re-assessment and cross-com-
parison of species-specific, long plant phenological datasets
describe a central task for the emerging, international and
interdisciplinary arena of global change research. The scienti-
fic value of hundreds of thousands of observations of first
flowering dates from a wide range of plant species is related
to the high temperature sensitivity of this phenological event,
the large sample size of citizen science datasets, and the
spatio-temporal precision of the observed intra- and interann-
ual changes (see [8] for an extensive review). However, such
studies spanning longer time scales and larger biogeographic
regions, operating at a community level, and considering a
multitude of climatic variables, are particularly rare.

Here, we present the analysis of 419 354 observations
of the first flowering date (FFD) from 406 plant species in the
UK between 1753 and 2019 CE (figure 1 and table 1). This
version of the UK’s Phenology Network [10] contains daily
resolved and spatially explicit observations from trees
(138 382), shrubs (40 063), herbs (228 093) and climbers
(12 816), which were collected between the Channel Islands
in the south (49°100 N), Shetland in the north (60°500N), North-
ern Ireland in thewest (8°100 W), and Suffolk in the east (1°450 E).
After data homogenization and timeseries investigation of the
FFDs, we usemonthly resolved climate parameters and synoptic
weather indices to quantify the direct and indirect drivers of
plant phenological changes over space and time in the UK
between 1753 and 2019 CE. We then discuss the implications
of trends and extremes in FFDs for the functioning and
productivity of biological, ecological and agricultural systems.
2. Methods
We obtained a total of 435 029 spatio-temporally explicit record-
ings of FFDs from 406 plant species between 1753 and 2019 at
6279 disjunct locations in the UK (figure 1a for the distribution
of observation points), including the Crown dependencies of
Jersey, Guernsey and the Isle of Man, hereafter called UK
purely for brevity. All data were provided by the UK Phenology
Network in the Nature’s Calendar of the Woodland Trust (elec-
tronic supplementary material). We removed or corrected
15 511 phenological observations from the initial dataset because
they were either duplicates (2923 observations), or multiple
observations of species/year/location combinations where we
retained only the earliest date (12 588 observations). The pheno-
logical information from another 35 observations that had
geographical coordinates in the sea was deleted. For a more
general description of the phenological dataset used in this
study and extracted from Nature’s Calendar in July 2020, we
refer to Amano et al. [10] and Collinson & Sparks [14].

Height estimates for adult plants of each species were used
for lifeform classification: trees (greater than 4 m), shrubs
(20 cm to 4 m), herbs (less than 20 cm) and climbers (no self-
supporting plants). The species-specific range of the FFDs was
defined by the first and last observation dates, which may start
as early as the autumn of the previous year and end as late as
December of the current year. The FFDs are therefore expressed
on a scale from −100 DOY to 365 DOY, where 1 DOY corre-
sponds to 1 January. After converting species FFDs to DOY,
five tree species exhibit negative DOYs: Corylus avellana (210
observations), Prunus spinosa (six observations), Salix caprea
(three observations) and Alnus glutinosa and Crataegus monogyna
(one observation each); one shrub species exhibits negative
DOYs: Daphne laureola (three observations); and 37 herb species
exhibit negative DOYs: Helleborus foetidus (679 observations),
Galanthus nivalis (227 observations), Eranthis hyemalis (45 obser-
vations), Primula vulgaris (83 observations), Ficaria verna (69
observations), Mercurialis perennis (12 observations), Tussilago far-
fara (nine observations), Petasites hybridus (seven observations), as
well as another herb 29 species (with only one or two
observations).

The 332 107 phenological observations less than 53.5°N were
classified as ‘southern’ (south) and the 87 247 > 53.5°N were con-
sidered as ‘northern’ (north) based on climatological differences
over the British Isles. As a rule of thumb, the northwest is charac-
terized by mild winters and cool summers, the northeast is
characterized by cold winters and cool summers, the southwest
is characterized by mild winters and warm summers, and the
southeast is characterized by cold winters and warm summers.
While the west has a more maritime climate during winter, the
east is often affected by cold airflow from the European conti-
nent. The latitudinal threshold around Manchester is further
informed by floristic regions and the distribution of species in
our phenological dataset. We also divided all FFDs into 251 315
and 168 039 observations from below and above 82 m sea level,
respectively, which is the elevational mean of the total dataset.
Landcover units from the CORINE version 2018 (https://land.
copernicus.eu/pan-european/corine-land-cover) were assigned
to each observation based on their geographical coordinates
using the R package raster [15] and sp [16]. Each of the 44
CORINE landcover classifications was grouped into five macro
categories: artificial surfaces (239 457 FFDs), agricultural areas
(154 585 FFDs), forest and semi-natural areas (18 979 FFDs),
water bodies (4621 FFDs) and wetlands (1712 FFDs). We further
differentiated the phenological observations into either urban
(232 291) or rural (179 897) sites, excluding a total of 7166 data
points from either indistinguishable or hybrid site type classifi-
cations. Site elevation was extracted from WorldClim version
2.1. (https://www.worldclim.org/data/worldclim21.html),
which is available at 30 s spatial resolution (i.e. at approximately
1 km2). Although the mean, median and mode were separately
considered in each analysis step, only the mean is shown because
in nearly all instances their values are similar. The daily differ-
ence between our FFD subsets was analysed by unpaired
Welch two sample t-tests and statistical significance was defined
as p < 0.05. The UK’s annual mean FFD is the arithmetic mean of
all observations available for each phenological year (i.e. between
−100 DOY and 365 DOY). We used this simple measure in con-
trast to previous attempts [10], because it appears most robust for
the period during which sample size is sufficiently high (i.e. from
1952 onwards). All histograms have 366 bins, and calculations
were performed in R 4.0.2 [17], using the packages dplyr [18]
and data.table [19]. The Central England Temperature series,
obtained from the Met Office Hadley Centre (https://www.
metoffice.gov.uk/hadobs/hadcet/data/download.html), was
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Figure 1. Network of first flowering dates. (a) Spatial distribution of 419 354 observations of daily resolved first flowering dates (FFDs) in 406 species between 1753
and 2019 across the UK. Dot colours refer to different landcover classifications based on the CORINE inventory, and the horizontal line at 53.5°N divides all obser-
vations into ‘North’ and ‘South’ (87 247 and 332 107 FFDs). The histogram shows the intra-annual distribution of all FFDs, with the vertical black line representing
the mean FFD (113 DOY). The inset photo shows the first flowering of a Japanese crab apple (Malus floribunda) on 26 April 2021, in Shudy Camps, South Cam-
bridgeshire. (b) Spatial and intra-annual distribution of all FFD observations of trees, shrubs, herbs and climbers. The green vertical lines represent the lifeform
specific mean FFDs, and the dashed lines are the mean FFD of the remaining data. (Online version in colour.)
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used to assess changes in monthly, seasonal and annual tempera-
ture means since 1659 CE (electronic supplementary material,
figure S1). Monthly resolved, 0.25° × 0.25° gridded minimum,
mean and maximum temperatures, precipitation totals and sea-
level pressure indices, averaged over the British Isles between
50–60°N and 8°W and 2°E, and obtained from E-OBS v. 23.1
[20], were employed for comparison against the phenological
data from 1952–2019, the period across which the UK-wide
FFD dataset is most robust in terms of sample size (electronic
supplementary material, figure S2). Monthly resolved indices
of the North Atlantic Oscillation (NAO) derived from pressure
differences between Gibraltar and Iceland for the years 1952–
2019 [21] were used for additional comparisons. All climate
data have been extracted from the KNMI climate explorer
(http://climexp.knmi.nl/start.cgi?someone@somewhere).
3. Results
The UK’s phenological record is dominated by 334 herb
species, followed by 44 tree and 25 shrub species, whereas
three different climber species account for only 0.7%. The
spatial distribution of all FFDs largely corresponds to the
human population distribution across the UK (figure 1a),
with fewer records in the remote corners of the north and
west. When the phenological observations are corrected for
species-specific extremes in the recorded first flowering
time, the intra-annual distribution of FFDs, expressed as
day of the year (DOY), range from mid-September of the pre-
vious year to the end of December in the current year. The
mean FFD of all observations is 23 April (113 DOY).
Though the geographical coverage of the four lifeforms is
quite similar (figure 1b), their mean FFDs vary from 103 to
266 DOY, with herbs and trees generally flowering first in
mid-April, followed by shrubs a month later, and the few
recorded climbers usually not flowering before September
(table 1). Temporal gaps in the phenological observations
affect the dataset in the years 1766, 1813/14 and 1817 (elec-
tronic supplementary material, figure S2). The number of
FFDs increases from 589 to 3061 in the years between 1891
and 1947, fluctuates from 118 to 893 between the years 1948
and 1998, and rises again since the year 1999 with a maxi-
mum of 30 161 observations in the year 2007. While
temporal changes in the number of sites are closely related
to the number of observations, the number of species is high-
est between the years 1952 and 1998. When dividing the
complete UK’s phenological dataset into two periods of
older and more recent observations less than or equal to
1986 and greater than or equal to 1987 (figure 2), their
respective mean FFDs are 132 and 106 DOY (table 1). This

http://climexp.knmi.nl/start.cgi?someone@somewhere
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difference of 26 days between the older (less than or equal to
1986) and more recent (greater than or equal to 1987) FFD
subsets is highly significant ( p < 0.0001).

The extent of the UK’s phenological network allows the
formation of well-replicated (bio)geographic subsets
(figure 3): northern and southern sites (87 247 and 332 107
FFDs), urban and rural settings (232 291 and 179 897 FFDs)
and lower and higher elevations (251 315 and 168 039 FFDs).
The mean northern and southern FFDs are 118 and 112
DOY. The mean urban and rural FFDs are 111 and 116
DOY. The mean lower and higher elevation FFDs are 113
and 114 DOY. When further splitting the three (bio)geo-
graphic subsets into older and more recent periods (less
than or equal to 1986 and greater than or equal to 1987), the
mean northern FFDs are 139 and 110 DOY, and the mean
southern FFDs are 130 and 105 DOY (figure 3a). The older
and more recent urban mean FFDs are 130 and 105 DOY
(figure 3b), and the older and more recent rural mean FFDs
are 134 and 107 DOY. The older and more recent lower
elevation mean FFDs are 131 and 106 DOY (figure 3c), and
the older and more recent higher elevation mean FFDs are
133 and 106 DOY. The largest lifeform-specific difference of
32 days is found between 72 365 older and 155 728 more
recent FFD observations in herbs (table 1), whereas smaller,
though still significant ( p < 0.001) differences are exhibited
by trees and shrubs. Despite the relatively low sample sizes
associated with further subdividing the UK’s phenological
dataset, a significant ( p < 0.001) difference of 17 days is evi-
dent between 78 068 older and 291 098 more recent FFDs of
those 25 species that have been recorded continuously for at
least 30 years in both split periods less than or equal to 1986
and greater than or equal to 1987 (figure 4a; table 1). Indepen-
dent of temporal changes, we also found a small difference of
two days between 26 091 observations of 55 annual herb
species and 200 341 observations of 351 perennial herb species
(figure 4b), as well as a massive difference of 41 days between
74 wind-pollinated herb species and 235 insect-pollinated
herb species (figure 4c), for which 17 673 and 209 295 obser-
vations exist respectively.
We consider the UK’s mean FFDs most reliable between
1952 and 2019 when the numbers of observations and species
is highest (electronic supplementary material, figure S2).
During this period, our mean FFD record correlates at r =
0.81 ( p < 0.0001) with the first flowering index of Amano
et al. [10]. During the first 34 years from 1952–1985, our
mean FFD is 139 DOY, but drops sharply afterward to 106
DOY (figure 5a). The largest year-to-year mean difference of
more than two months is found between 7 June 1968 and
2 April 2019. Mean FFDs from 1952–2019 have a highly nega-
tive correlation with January–April maximum temperatures
over the British Isles (r =−0.81; p < 0.0001; figure 5b). Almost
identical correlations of −0.78 and −0.73 are obtained between
the mean FFD andmean andminimum temperatures, respect-
ively (electronic supplementary material, figure S3). At the
monthly level, February maximum, mean and minimum
temperatures have the strongest negative association with
FFDs, whereas January, March and April monthly tempera-
tures have weaker correlations with the phenological record.
The phenological observations and temperature measure-
ments jointly exhibit a shift associated with the change from
a generally negative to an overall positive mode of the NAO
in the second half of the 1980s that coincides with a tempera-
ture increase of approximately 1°C (figure 5b). Spatial field
correlations between the UK’s community-wide record of
mean FFDs and gridded global January–April temperatures
are not only highly significant over western Europe ( p <
0.0001), but also over many regions in both hemispheres
that likely experienced similar warming rates since the mid-
twentieth century (figure 5c). The observed year-to-year
covariance between the first-differenced phenological and
temperature data is, however, largely restricted to the British
Isles, as well as parts of France, the Benelux countries and
southern Scandinavia. While interannual and longer-term
changes in the UK’s FFDs are highly sensitive to January–
April temperatures, neither the sufficiently high precipitation
totals in winter and spring over the British Isles, nor daylight
length play an important role in year-to-year changes in first
flowering dates, and thus the onset of the growing season.
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4. Discussion
Our study reveals that the UK’s community-wide mean
FFDs advanced by almost one month from the mid-1980s
compared to all phenological observations of the preceding
years since 1753 CE. Furthermore, we show that many
plants in the UK are flowering almost one week earlier in
the south than in the north, at lower than higher elevations,
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and under urban compared to rural settings. The observed
trend in an earlier first flowering time during the past three
decades is most pronounced in herbs. While phenotypic plas-
ticity is more important for long-lived trees and shrubs,
directional selection and adaptive evolution can be faster in
short-lived plants that exhibit faster turnover rates [22]. How-
ever, we do not know whether adaptive evolution will allow
populations to reach new phenotypic optima rapidly enough
to keep pace with climate change [23]. Interannual differences
in the observed phenophase of all plants in the UK can be
best explained by mean January–April maximum tempera-
tures over the British Isles, because the amount of
precipitation and the timing of snowmelt are not important
for the first flowering at most observational sites. A distinct
shift in both the FFDs and spring warming since the mid-
twentieth century corresponded with an abrupt change of
the NAO mode in the second half of the 1980s. Observational
evidence for a regime shift in the aftermath of the El Chichón
volcanic eruption in 1982 has been reported from different
parts of the world [24], indicating the relevance of such
events to large-scale climate dynamics, rapid environmental
responses and cascading trophic interactions.
Although the geographical (north–south, low–high and
urban–rural) and temporal (before and after 1986) differences
in the UK’s FFDs are highly significant ( p < 0.001), caution is
advised since there are substantial differences in the number
of observations, species and sites over space and time (elec-
tronic supplementary material, figure S2). To avoid
overinterpretation of noisy timeseries behaviour before the
mid-twentieth century when data quality and quantity is
relatively low, we restricted most analyses to the 1952–2019
period during which both the phenological observations
and the climatic measurements are most reliable. In addition
to the record’s temporal heterogeneity, there are fewer obser-
vations in the north than in the south (table 1), at higher than
lower elevations, and for shrubs and climbers compared to
herbs and trees. Further complexity comes from irrevocable
land-use/land-cover changes since the mid-eighteenth cen-
tury, which were particularly extensive in areas of early
industrialization. Ongoing urban sprawl and the associated
impact of heat islands challenge the assessment of temporal
changes in mean FFDs of our urban and rural subsets. Poss-
ible recording errors and different perceptions of individual
observers, spatio-temporal changes in species composition
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and observer location, as well as ontogenetic effects arising
from the long-term monitoring of individual plants, cannot
be disregarded.

Species-specific mean FFDs are widely distributed from
late December of the previous year (H. foetidus; −7.3 DOY) to
late September of the current year (Hedera helix; 266.9 DOY)
(electronic supplementary material, figure S4). On the level of
individual observations, the range of FFDs stretches from
the previous autumn until the end of the current year (from
−100 DOY to 365 DOY), suggesting that photoperiodism (the
ratio between day and night length) has not yet affected our
results. However, if temperatures continue to rise and further
shift the mean FFDs from April into March or even earlier,
then light availability that controls the formation of winter
buds, leaf abscission and freezing resistance [25,26], could
become a critical factor for bud break and first flowering of
many plant species [27]. The photoperiod threshold will be
more important for long-lived, late-successional species that
generally flower early in the year and grow at high latitudes
[28]. Rather than understanding photoperiodism as a con-
straint, it should be considered as a safeguard that protects
plants from frost damage, synchronizes their development
stages, and facilitates trophic interaction between different
organisms [9]. This is important since winter warming has
exceeded the temperature increase of other months [9], with
implications not only for the amplitude of the annual climate
cycle [29] but also for the alignment between biological require-
ments of different ecosystem components [30,31]. Earlier
spring bloom will increase the probability of frost damage in
natural and agricultural systems [7]. A prolonged flowering
period will shift and extend the season of respiratory allergies
associated with plant pollen [11,12]. Though varying between
organisms and habitats, trends and extremes in spring climate
may alter species-specific chilling requirements, the likelihood
of frost injury and demands on energy and water balance [8].
The timing of plant flowering can affect their pollination,
especially when insect pollinators are themselves seasonal,
and determine the timing of seed ripening and dispersal.
Plant flowering also influences animals for which pollen,
nectar, fruits and seeds are important resources, and earlier
flowering implies earlier activity in leaf expansion, root
growth and nutrient uptake, which are important for niche
differentiation among coexisting species. Large changes in
FFDs are therefore expected to disrupt community compo-
sition and interaction [9]. Ecological mismatch can increase
extinction risks and loss of ecosystem services [32,33]. In
addition to temporal shifts in the onset of growing seasons
will their prolongation enhance the capacity to assimilate
carbon dioxide from the atmosphere. Further to mitigating
the effects of greenhouse gases [34,35], growing net primary
productivity will affect carbon cycles and budgets from local
to global scales [8,36,37].
Based on valuable citizen science and exceeding previous
findings at an alarming rate, our study reveals an average
phenological advancement of 5.4 days per decade between
1952 and 2019. The observed maximum range of annual
mean FFDs in this period is more than two months (7 June
1968 versus 2 April 2019). Mean flowering time is one day
earlier at lower than higher elevations, 6 days earlier in the
south than in the north, and 5 days earlier under urban
than rural conditions. From 1952–2019 the phenological
record correlates with January–April maximum temperatures
at r =−0.81 ( p < 0.0001). Both, the phenological and climato-
logical data reflect an abrupt shift from an overall negative
to a more positive mode of the NAO in the second half of
the 1980s. Beneficial aspects of earlier FFDs are likely to
vanish if planet Earth continues to warm and ecological mis-
match kicks in. Notably, our observed phenological trends
and extremes are much greater than those reported by the
UK Spring Index that informs the British government and
is used for public guidance [38]. This record, however, only
includes the first flowering time of two species, hawthorn
(C. monogyna) and horse chestnut (Aesculus hippocastanum),
both of which have a rate of advancement lower, by roughly
15 days, than the community-wide advancement in the UK’s
mean FFDs of our study (electronic supplementary material,
figure S5). Independent of the data used and methods
applied, we conclude that if plants in the UK continue to
flower earlier, and if the frequency, intensity and duration
of climatic extremes increase further, the functioning and pro-
ductivity of biological, ecological and agricultural systems
will be at an unprecedented risk.
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