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SUMMARY

Models describing dengue epidemics are parametrized on disease incidence data and therefore
high-quality data are essential. For Thailand, two different sources of long-term dengue data are
available, the hard copy data from 1980 to 2005, where hospital admission cases were notified,
and the electronic files, from 2003 to the present, where clinically classified forms of disease, i.e.
dengue fever, dengue haemorrhagic fever, and dengue shock syndrome, are notified using
separate files. The official dengue notification data, provided by the Bureau of Epidemiology,
Ministry of Public Health in Thailand, were cross-checked with dengue data used in recent
publications, where an inexact continuous time-series was observed to be consistently used since
2003, affecting considerably the model dynamics and its correct application. In this paper,
numerical analysis and simulation techniques giving insights on predictability are performed to
show the effects of model parametrization by using different datasets.

Key words: Data analysis, dengue fever, multi-strain model, parameter estimation, predictability.

INTRODUCTION

Epidemic models have been important in understand-
ing the spread of infectious diseases and evaluating the
introduction of intervention strategies like vector con-
trol and vaccination. Infectious disease dynamics are
by nature nonlinear and the understanding of such
nonlinear epidemiological processes is vital for any
modern society, from the medical as well as the econ-
omic perspective. However, it is intrinsically math-
ematically difficult, and to make the urgently needed
progress in improving our understanding of the dy-
namics of infectious diseases, concepts from various

fields of mathematics as well the availability of good-
quality datasets for model evaluation are needed.

Dengue fever (DF), a viral mosquito-borne infec-
tion is a major international public health concern
with about 3 billion people at risk of acquiring the in-
fection [1]. It is estimated that every year, there are
70−500 million dengue infections, 36 million cases
of DF and 2·1 million cases of dengue haemorrhagic
fever (DHF)/dengue shock syndrome (DSS), with
more than 20000 deaths per year [1, 2].

Infection by dengue virus causes a wide range of
clinical manifestations and its classification into DF
and DHF/DSS are given according to World Health
Organization (WHO) guidelines. DF is an acute feb-
rile viral disease frequently presenting with headaches,
bone or joint and muscular pains, rash and leukopenia
as symptoms. DHF is characterized by four major
clinical manifestations: high fever, haemorrhagic
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phenomena, often with hepatomegaly and, in severe
cases, signs of circulatory failure. Infected patients
may develop hypovolaemic shock resulting from
plasma leakage. This is designated DSS and can be
fatal [3]. In 2009, the revised WHO case definition
was proposed, classifying the illness into dengue
with and without warning signs, and severe dengue
[4]. The revised scheme is claimed to be more sensitive
to the diagnosis of severe dengue; however, it is con-
sidered by many to be too broad, requiring more
specific definition of warning signs [5].

Dengue fever epidemiology dynamics show large
fluctuations of disease incidence and mathematical
models describing transmission of disease ultimately
aim to be used as predictive tools to evaluate the intro-
duction of intervention strategies. Dengue illness is

popularly known in Thailand as ‘dengue’. The
English translation of the Thai word used to describe
dengue illness refers to ‘fever with blood leakage’ and
the English translation of the Thai language is pro-
nounced kâi lêuat ôk. Both DF and DHF without
shock can be written in the Thai language using the
same combination of letters as depicted in Figure 1
[items (1) and (2)]. If DF cases are often benign or
asymptomatic, DHF cases may evolve towards a
group of symptoms with haemorrhagic fever leading
to shock or DSS, that when written in the Thai lan-
guage, uses a different combination of letters [see
Fig. 1, item (3)] with the following English pronunci-
ation: glùm aa-gaan kâi lêuat ôk chôk. Up to now,
33 years of dengue illness incidence data in Thailand
are available and have been continually used by

(1)

(2)

(3)

Fig. 1. Dengue illness notification diagram and etymology. Items (1), (2) and (3) give disease classification according to
the WHO [3]. We present the Thai written form followed by the English pronunciation (in parentheses) and the Thai
internal classification code for disease notification (for more information, see Appendix A). The Thai words for dengue
fever/dengue haemorrhagic fever and dengue shock syndrome are depicted to complete the etymological study.
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modellers to parametrize mathematical models (see
e.g. [6–10]).

In this paper, a systematic data collection and its
analysis were performed. Our approach consisted of
gathering and analysing the dengue incidence data
provided by the Bureau of Epidemiology (BoE),
Ministry of Public Health (MoPH) in Thailand. The
official data was cross-checked with the data used in
recent publications and an inexact continuous time-
series appeared to have been consistently used since
2003, affecting considerably the model dynamics and
its correct application. Here, the inexact continuous
time-series reflects a time-series on the incidence of
the disease where only part of the official data (from
2003 onwards) has been used to continue the previous
available data (from 1980 to 2002). Two different
datasets, based on the interpretation of the Thai
official documents, generated different model dynam-
ics that could be used as a public health intervention
tool. Numerical analysis and simulation techniques
giving insights on predictability were performed and
the modelling parametrization effects discussed.

METHODS

Data collection

In Thailand, a system for reporting communicable
diseases including DF, DHF and DSS was considered
fully operational in 1974 [11] and the database is
available at the BoE, MoPH, Bangkok, Thailand.
Reasonable data from all provinces exist from the be-
ginning of the 1980s [2, 12, 13].

From 1980 to 2005 the aggregated monthly inci-
dence data have been publicly distributed through
BoE annual epidemiological surveillance reports
[12]. These data are available as a hard copy (HC)
book format and the incidence of all hospital admis-
sions for dengue cases (DF, DHF, DSS), reported to
the national surveillance system, are presented as the
dengue haemorrhagic fever total (DHF-total). From
2003 to the present, the data have been available as
electronic files (EF) where each one of the clinical clas-
sifications of the disease (DF, DHF, DSS) are notified
separately, according to WHO guidelines [3]. The ag-
gregation of all hospital admission cases, gives rise to
the HC-DHF-total incidence data and this has been
available, since 2003, as BOE weekly epidemiological
surveillance reports. These reports explicitly state that
the DHF-total=DF+DHF+DSS (see [13]), and de-
spite this information being publicly available,

consistent underestimation of dengue cases has been
used for modelling purposes, probably due to misin-
terpretation of the official Thai documents. We note
that the HC-DHF-total cases have been overlooked
by the non-Thai mathematical and epidemiological
community, which considers only clinical EF-DHF
cases as the natural continuation of the previously
aggregated data (DF+DHF+DSS).

The official monthly incidence of dengue illness is
presented for Chiang Mai (Fig. 2a–c) and for the
whole of Thailand (Fig. 2e–g). For the epidemiological
years 2003, 2004 and 2005 both sources of data are
available, i.e. the HC-DHF-total and EF for DF,
DHF and DSS notification cases. We listed the given
numbers for HC-DHF-total, EF-DF, EF-DHF and
EF-DSS cases, respectively, and observed that the
number of cases notified as EF-DHF differs consider-
ably from the numbers presented as HC-DHF-total
in [12] and also available publicly in [13]. When taking
into account the numbers of EF (DHF+DSS+DF)
cases it can be seen that the final numbers match the
original data collection of HC-DHF-total cases, confi-
rming the origin of the lower numbers of dengue cases
used in recent publications.

Figure 2(d, h) show histograms for the underestima-
tion of dengue cases, for Chiang Mai and Thailand,
respectively, from 2003 to the present. The underesti-
mation of cases is increasing rapidly and for any mod-
elling interpretation based on long-term empirical
incidence dengue data (from 1980 to the present),
the aggregation of all hospital admissions for dengue
cases (from 2003 to the present) is essential to improve
model development, interpretation and its correct ap-
plication. Such cross-checking of data was performed
for all provinces in Thailand with similar results, lead-
ing to a large underestimation of cases for the whole
of Thailand (see Fig. 2h).

Data used in recent publications

The data used in recent publications [6–9] are from
1982 to 2004. For two years, 2003 and 2004, both
sources of data are available, and as shown by the
blue line in Figure 3, only EF-DHF cases were used
to continue the previous HC-DHF-total data from
1982 to 2002. The source of misinterpretation comes
from the fact that the numbers for EF-DHF cases
are not equal to the numbers for HC-DHF-total
cases (see Fig. 2), generating an inexact continuous
time-series used for model parametrization.
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In Figure 3 we present the time-series compari-
son for Bangkok (Fig. 3a, b) and Chiang Mai
(Fig. 3c, d) provinces, and for the whole of Thailand
(Fig. 3e, f). The blue line indicates data that have
been used in recent publications [6–9] giving results
that could be used by the public health authorities
for disease control. The black line indicates official

HC-DHF-total data, and the red line indicates
EF-DHF-only cases (from 2003 to the present), pro-
vided by the BoE, MoPH. Both trajectories (i.e. red
and black), are approximately the same from 1982
to 2002; however, from 2003 onwards, differences
begin to appear and become larger, leading up to
70% of the underestimation of the real number of
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Fig. 2 [colour online]. Data comparison between hard copy dengue haemorrhagic fever (DHF)-total and electronic files for
dengue fever (DF), DHF and dengue shock syndrome (DSS), respectively, for Chiang Mai province, in (a) 2003, (b) 2004,
(c) 2005; (d) is a histogram for the underestimation of dengue cases, from 2003 to the present. Data comparison between
hard copy for DHF-total and electronic files for DF, DHF and DSS, respectively, for the whole of Thailand, in (e) 2003,
(f) 2004, (g) 2005; (h) is a histogram for the underestimation of dengue cases, from 2003 to the present.
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cases for Chiang Mai (Fig. 2d) and up to 50% of the
underestimation of the real number of cases for the
whole of Thailand (see Fig. 2h).

Compartmental models applied to dengue fever

Almost all mathematical models for infectious dis-
eases start from the same basic premise: that the popu-
lation can be subdivided into a set of distinct classes.
The most commonly used framework for epidemi-
ological systems remains the susceptible-infected-
recovered (SIR) type model, a good and simple
model for many infectious diseases. Multi-strain den-
gue models are modelled by SIR-type models where
the SIR classes are labelled for the hosts that have
seen the individual strains.

The two-strain model

Retrospective dengue data and the possibility of esti-
mating hidden states from the available data by mod-
elling DF epidemiology [9, 14] have been discussed,
especially, primary vs. secondary infections, and
symptomatic vs. asymptomatic cases that can be stud-
ied via the first available models [9, 15, 16].

A comparison between the basic two-strain dengue
model, which already captures differences between
primary and secondary infections, including tempor-
ary cross-immunity, with the four-strain dengue
model, that introduces the idea of competition of
multiple strains in dengue epidemics shows that the
difference between first and secondary infections
drives the rich dynamics more than the detailed
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Fig. 3 [colour online]. Time-series data comparison between recent publications, the hard copy dengue haemorrhagic fever
(HC-DHF)-total data and the electronic file (EF)-DHF data. Blue indicates data that have been used in recent
publications [6–9], black indicates the official data [from 1980 to 2003: HC-DHF-total; from 2003 to present: EF
(DHF+DSS+DF)], provided by the Bureau of Epidemiology, Ministry of Public Health, Thailand, red indicates EF-DHF
cases only, from 2003 to the present for (a, b) Bangkok, (c, d) Chiang Mai, (e, f) Thailand.
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number of strains to be considered in the model struc-
ture [17]. Chaotic dynamics were found to occur in the
same parameter region of interest for the two- and
four-strain models, being able to describe the fluctua-
tions observed in empirical data and showing a quali-
tatively good agreement between empirical data and
model simulation. The predictability of the system
does not change significantly when considering two
or four strains, i.e. both models present a positive
dominant Lyapunov exponent (DLE) giving approxi-
mately the same prediction horizon in time-series.
Since the law of parsimony favours the simplest of
two competing models, the two-strain model is the
better candidate for analysis, as well the best option
for estimating all initial conditions and the few
model parameters based on the available incidence
data.

The seasonal two-strain model with import of in-
fected hosts has shown a qualitatively good result
when comparing empirical dengue data and simu-
lation results, where patterns of the data behaviour
were similarly found to occur in the time-series simu-
lations [9, 16, 17].

The two-strain model is represented in Figure 4
using a state flow diagram. The boxes represent the
disease-related stages for the host and the arrows indi-
cate the transition rates. This is a minimalistic model
for host dynamics and the effects of the vector dynam-
ics are only taken into account by the force of infec-
tion (FOI) parameter [9, 18].

In the two-strain model suggested by Aguiar [19]
the population N is divided into ten classes and the
model dynamics are described as follows. Individuals
susceptible to strains, 1 and 2 (S) can acquire primary
dengue infection with strain 1 (I1) or strain 2 (I2) with
two possible infection rates, dependent upon who is
transmitting the infection. If the host transmitting
the infection is in the first infectious state, the trans-
mission rate is β, but if the host transmitting the
infection is in the secondary infectious state, the trans-
mission rate is ϕβ. Here, the parameter ϕ is motivated
by the antibody-dependent enhancement (ADE) effect
and it is related to the secondary infection trans-
missibility factor, increasing or decreasing the trans-
missibility of secondarily infected individuals. For
more information on the parametrization of ADE
and secondary dengue infections by ϕ, see [19].

The primarily infected hosts recover with a recovery
rate γ and have full and lifelong immunity against the
strain they were exposed to. Individuals become sus-
ceptible again, able to get a second infection with a

different strain, after a short period of temporary
cross-immunity α. A susceptible individual with a pre-
vious infection with strain 1 (S1) or strain 2 (S2) gets
the secondary infection with strain 2 (I12) or strain 1
(I21), respectively, at infection rate β or ϕβ, again
depending on who (an individual with a primary or
secondary infection) is transmitting the infection.
Then, with recovery rate γ, the individuals recover
(R) and become immune against all strains. For sim-
plicity, no epidemiological asymmetry between strains
is assumed, i.e. infections with strain 1 followed by
strain 2 or vice versa contribute in the same way to
the FOI. Significant differences between strains lead
to extinction of one of the strains, hence it is not bio-
logically relevant [20]. Here, the difference concerning
disease transmissibility is that the FOI varies accord-
ing to the number of previous infections that a host
has experienced. First-time infected individuals are
considered asymptomatic or not admitted to a hospi-
tal. A percentage of individuals experiencing second-
ary infection are assumed to be a symptomatic
notified case for DF, DHF or DSS.

Φβ(t )I21 Φβ(t)I12

Φβ(t )I21Φβ(t)I12

β(t)(I1+ρN)

β(t)(I2+ρN)

γ
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α α
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β(t )(I12+ρN)β(t)(I1+ρN )

I1

I12 I21

I2

R1

S1

R

S2

R2

S

µ

µ

Fig. 4 [colour online]. The state flow diagram for the
two-strain model. The boxes represent the disease-related
stages and the arrows indicate the transition rates. The
transition rate μ coming out of class R represents the
death rates of all classes, S, I1, I2, R1, R2, S1, S2, I12, I21,
R, entering class S as a birth rate.
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RESULTS

In this section we discuss numerical analysis and
simulation techniques giving insights on predictability
that were performed to demonstrate the effects of
model parametrization using different datasets. We
take the province of Chiang Mai in Thailand as a
case study and match the empirical dengue data with
90% of secondary infections from the model simula-
tions. The objective is to obtain a parameter set able
to describe fluctuations of dengue dynamics. The two-
strain model is used to mach two different datasets.
Two parameters are estimated based on the empirical
data, the infection rate (β) and ADE ratio (ϕ). The
other parameters are fixed for simplicity and shown
in Table 1.

Time-series parameter inference

Depending on the modelling group’s interpretation
of the official Thai documents, at least two possible
datasets can be generated from the long-term empiri-
cal data which are available for Thailand. The first
dataset, designated ‘dataset 1’, gives the most correct
long-term data, and consists of all hospitalization
case notifications. From 1980 to 2002 the HC-DHF-
total=DF+DHF+DSS data are continued with the
EF(DF+DHF+DSS) data, from 2003 to the present.
The two-strain dengue model suggested by Aguiar
et al. [9, 15], is able to describe dataset 1 [see
Fig. 5(a, b)], when assuming β=2γ and ϕ=0·9.

The second possible dataset, designated ‘dataset 2’,
consists of the HC-DHF-total from 1980 to 2002, and
it is continued from 2003 onwards with the EF-DHF
data only. Note that the EF(DF+DSS) cases are
neglected, leading to considerable underestimation of
dengue cases (see Fig. 2d). The two-strain model of
Aguiar et al. [15] is also able to describe dataset 2,

but with a different infection rate (β=1·5γ) and differ-
ent ADE ratio (ϕ=0·7).

For ChiangMai province in Thailand, Figure 5(a, b)
shows empirical dataset 1, HC-DHF-total=DF+DHF
+DSS (in red) matched with the two-strain model
simulation (in blue). A qualitatively good result is
obtained, where patterns of irregular data occur and
is predicted by the model. In Figure 5(c, d) the empiri-
cal dataset 2, the DHF-total from 1980 to 2002
(in red) continued with the EF-DHF data only (in
green), is matched with the two-strain model simu-
lation (in blue). Here, a qualitatively good match is
observed from 2003 onwards (see Fig. 5d); however,
the dynamics are not able to describe the previous
HC-DHF-total data, where higher outbreaks are
observed (see Fig. 5c).

For each one of the parameter sets, the model dy-
namics are compared and the results presented as
follows.

Model dynamics and predictability

From the time-series simulations obtained by match-
ing datasets 1 and 2 (see Fig. 5), we present the re-
spective state space plots for the number of
susceptibles vs. the logarithm of secondary infections
for the two-strain model (see Fig. 6a, b).

Using the state space plots in terms of the variables
S and the logarithm of the total number of infected
individuals I, given the dataset which is used, fixed
points appear as one dot per parameter value, limit
cycles appear as two dots, double-limit cycles as
four dots, more complicated limit cycles as more
dots, and chaotic attractors as continuously distribu-
ted dots for a single parameter value (see Fig. 6a, b).

The attractor structures from the model dy-
namics, fixed point, limit cycle and more complex

Table 1. Parameter values generated via data matching

Parameter Description
Dataset 1
values

Dataset 2
values Ref.

N Population size (fixed) 1·6×106 1·6×106

μ Birth and death rate (fixed) 1/65y 1/65y [29]
γ Recovery rate (fixed) 52y–1 52y–1 [1]
β0 Infection rate 2γ 1·5γ [9, 15, 17, 26]
η Degree of seasonality (fixed) 0·35 0·35 [9, 17]
ρ Import parameter (fixed) 10–10 10–10 [9, 17]
α Temporary cross-immunity rate (fixed) 2y–1 2y–1 [30, 31]
ϕ Ratio of secondary infections contributing to force of infection

(ADE ratio)
0·9 0·7 [9, 17]
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geometrical objects (e.g. torus) or chaotic attractor
can be quantified by calculating the Lyapunov expo-
nents [21, 22]. Lyapunov exponents are essentially a
generalization of eigenvalues determining stability
vs. instability along trajectories. A negative largest
Lyapunov exponent indicates a stable fixed point as
attractor, a zero largest Lyapunov exponent indicates
a stable limit cycle and a positive largest Lyapunov ex-
ponent indicates a chaotic attractor.

The Lyapunov spectrum for the model dynamics
based on datasets 1 and 2, shown in Figure 6(c, d),
respectively, are compared regarding the prediction
horizon of the monthly peaks. The dynamics gener-
ated by parameter set 1 is chaotic, with a positive
Lyapunov exponent, a system with a short-term pre-
dictability and a long-term unpredictability. Here,
the DLE for ϕ=0·9 is λ=0·118, giving about 8 years
of prediction horizon. For such a scenario, and

knowing that stochasticity would decrease the given
prediction, a long-term control strategy would not
be of practical use. The alternative would be constant
evaluation of the intervention measures combined
with the predictability given the updated real-world
data. However, by using parameter set 2, the system
shows a completely different behaviour, where quasi-
periodicity is observed. Here the DLE is approxi-
mately zero, giving thousands of years of prediction
horizon. For such a scenario, the long-term control
strategy would be effective for disease control.

From the originated model dynamics, intervention
measures are suggested and implemented in order to
control the disease transmissibility and to prepare
the public health authorities for the next dengue sea-
son. Assuming the dynamical scenario generated by
parameter set 1 (the complete dataset showing chaotic
behaviour), any public health decision that was
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Fig. 5 [colour online]. From 1980 to 2012 dengue incidence data for Chiang Mai province in Thailand matched with the
seasonal two-strain model simulations. The birth and death rate, recovery rate, degree of seasonality and the temporary
cross-immunity rate are fixed and given in Table 1. The infection rate and ratio of secondary infections contributing to the
force of infection (FOI) are the parameters that may vary according to the dataset described by the model simulations.
For dataset 1, empirical hard copy data [HC-dengue haemorrhagic fever(DHF)-total=dengue fever (DF)+DHF+dengue
shock syndrome (DSS)] (in red) are matched with model simulation (in blue). (a) From 1980 to the present, (b) from 2003
to the present. Here, the infection rate is β=2γ and the ADE ratio is ϕ=0·9. Dataset 2, where empirical HC-DHF-total
cases (in red) from 1980 to 2002 are continued from 2003 onwards with electronic file (EF)-DHF-only cases (in green), are
matched with model simulation (in blue). (c) From 1980 to 2002, (d) from 2003 to the present. Here, the infection rate is
considerably smaller, β=1·5γ, as is the ADE ratio, ϕ=0·7.
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suggested would be restricted to being applied only
during a short period of time where the prediction is
reliable. For parameter set 2, where the incorrect in-
terpretation of the data is used, the system shows
a periodic behaviour where dengue incidence for the
next seasons could be anticipated and long-term
control strategies would be of practical use. Here,
the long-term control strategies would probably be
inefficient for dengue fever control in Thailand,
where the incidence of the disease resembles chaotic
behaviour where long-term unpredictability is known
to occur.

DISCUSSION AND CONCLUSION

In this paper a systematic data collection and its ana-
lysis were performed. By cross-checking and

analysing the overlapping epidemiological years of
dengue data in Thailand, a considerable underestima-
tion of cases was observed to be consistently used for
modelling purposes, and from 2003 onwards, only
part of the official data have been used to continue
the HC-DHF-total data. As the time-series is updated,
the underestimation of cases increases.

For Bangkok, as shown in Figure 3b, the underesti-
mation appears to be mild, with about 14% of cases
being neglected in 2003 and 2004, and only 8% in
2005. Studying the numbers for 2010, for example,
the neglected cases increase considerably, up to 30%
underestimation. For Chiang Mai, as shown in
Figure 3d, and for Thailand, as shown in Figure 3f,
the underestimation is even greater, with variation
from 31% in 2003 up to 65·5% in 2010 and from
29·5% up to 48% in 2010, respectively.
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Fig. 6 [colour online]. Model dynamics and predictability based on the data collection used for model parametrization.
Dataset 1: (a) the state space plot where a chaotic attractor is shown, (b) the Lyapunov spectrum, a fingerprint (positive
DLE) for the chaotic dynamics generated by the model. Dataset 2: (c) the state space plot where a torus attractor is
shown, resembling a quasi-periodicity behaviour, (d) the Lyapunov spectrum, where only periodic behaviour is confirmed
to occur.
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The time-series parameter inference shows dif-
ferent dynamical behaviours, depending on the data
collection to be described via the modelling ap-
proaches. Dynamically, the two-strain model was
able to describe the correct dataset (dataset 1),
where all the admission case notifications are con-
sidered. A chaotic behaviour was found, where short-
term predictability is characteristic, and for the design
of any health-related interventions the particularity of
this dynamical behaviour has to be considered. Here,
for each recovered individual two new infections are
observed (β=2γ), and individuals in the secondary in-
fectious stage transmit the disease 10% less (ϕ=0·9
due to hospitalization) than individuals in the first in-
fectious stage.

For dataset 2, where dengue cases are under-
estimated, the model dynamics resembles quasi-
periodicity and the HC-DHF-total data, showing
high outbreaks in irregular periods, can not be de-
scribed by this system, promoting an ineffective control
strategy to be used by the public health authorities,
where up to 25% of new infections are missed and indi-
viduals with secondary infections are assumed to
transmit the disease 30% less (ϕ=0·7 due to hospitali-
zation) than individuals in the first infectious stage.

These findings have important implications for
the effectiveness of intervention measures that will
be provided to public health authorities for dengue
control. This study provides support for the import-
ance of different modelling groups working with
the same long-term empirical incidence dengue data
in Thailand, e.g. [6–10], and concludes that for any
model interpretation based on Thai incidence data,
dengue hospital admission cases should be aggre-
gated (DF+DHF+DSS) to continue the previous
HC-DHF-total data. This is essential to improve
model development, interpretation and its correct
application.

APPENDIX A

De-codifying dengue in Thailand: data interpretation

Much of the dengue data available to theoretical epi-
demiologists consists of time-series tracking of the
evolution of a subset of state variables of an underly-
ing dynamical system through a surveillance system.
In Thailand, a system for reporting communicable
diseases including DF, DHF and DSS was considered
fully operational in 1974 [11] and the database is
available at the BoE, MoPH, Bangkok, Thailand.

Reasonable data from all provinces exist from the be-
ginning of the 1980s.

The surveillance system in Thailand reports hospi-
tal admissions of dengue cases, which includes all
forms of dengue fever illness manifestations, hence
all three possible clinical classifications according the
WHO [3], i.e. DF, DHF without shock, and DSS.

From 1980 to 2005 the aggregated data at the
provincial level have been publicly distributed through
BoE annual epidemiological surveillance reports [12].
These data are available as a hard copy (HC) book
format, where the number of cases is presented as
DHF-total. From 2003 to the present the data have
been available in electronic format (EF), using separ-
ate files for each one of the clinical classifications of
the disease (DF, DHF, DSS). The sum of all classifi-
cations gives rise to the DHF-total monthly incidence
data per province, available since 2003 in BoE weekly
epidemiological surveillance reports [13]. Those
reports explicitly state the DHF-total (DF+DHF+
DSS); however, the English translation of the Thai
documents still causes confusion when interpreting
the data, underestimating the real number of dengue
cases in Thailand.

In the Thai language, both the DF and DHF dis-
ease classifications are pronounced as kâi lêuat ôk,
according to Thai phonetic pronunciation and DSS
as glúm aa-gaan kâi lêuat ôk chôk. For the etymology
of Thai words see Figure 1. Classically, the Thai word
referring to a fever with blood leakage (kâi lêuat ôk),
was used to describe a haemorrhagic viral disease
(viral haemorrhagic fever; VHF), which was later
associated with a specific group of viruses, the so-
called dengue viruses. Nowadays ‘fever with blood
leakage’ is occasionally specified as ‘fever with blood
leakage caused by a dengue virus’, to distinguish
it from ‘fever with blood leakage’ caused by other
pathogens, but not in official documents, where only
‘fever with blood leakage’ is used. The abbreviation
DHF-total includes all forms of hospitalized dengue
fever cases, hence all three classes of the WHO classi-
fication.

The diagram presented in Figure 7 represents the
separation of VHFs (shown in red) which can be
caused by a dengue virus (shown in yellow, represent-
ing clinical DHF cases) and eventually a more severe
case (shown in blue, representing clinical DSS cases
which are DHF cases with signs of shock). Classi-
cal dengue cases without haemorrhagic symptoms
(shown in green) are represented externally to the
VHF class, but should be included with the class of
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‘disease caused by a dengue virus’ in order to give the
real overview of the number of dengue cases.

Most Thai words expressing kinship have no direct
translations and require additional words. There are
no Thai equivalents for most daily English kinship
terms, as English terms leave out much information
that is natural to Thai. The Thai word used to de-
scribe dengue illness refers to haemorrhagic fever in
general and its English translation can cause con-
fusion when interpreting the data which are available
for Thailand. Up to now, 33 years of dengue incidence
data are available and have been continually used to
parametrize mathematical models. Based on system-
atic data collection and its analysis, we observed a
considerable underestimation of cases, where from
2003 onwards only clinical classification of ‘DHF’
cases have been considered for modelling purposes.
The correct data is given by the aggregation of all
admitted cases of ‘DF+DHF+DSS’ and for any in-
terpretation based on the long-term empirical data,
aggregation is essential to improve model interpret-
ation and correct application. In the overlapping
years, 2003–2005 inclusive, where both sources of
data exist, the continuation of ‘HC-DHF-total’ was
performed by using ‘EF-DHF’ only, leading to
severely lower cases of dengue than the real number
produced by ‘HC-DHF-total’. It should be noted
that the official sources of the BoE emphasize that

‘DHF-total’ always refers to DF+DHF+DSS [13],
but this is often overlooked by the non-Thai math-
ematical and epidemiological community [6–10].

APPENDIX B

The two-strain model framework

Multi-strain dynamics are generally modelled with
SIR-type models and have demonstrated critical
fluctuations with power-law distributions of disease
cases, exemplified in meningitis and dengue epidemi-
ology [23–25]. Dengue models including multi-strain
interactions via ADE but without a temporary cross-
immunity period, e.g. [26–28], have shown deter-
ministic chaos when strong infectivity on secondary
infection was assumed. The addition of a temporary
cross-immunity period in such models shows a new
chaotic attractor in an unexpected parameter region of
reduced infectivity on secondary infection [9, 15, 17],
i.e. deterministic chaos was found in wider parameter
regions. This indicates that deterministic chaos is
much more important in multi-strain models than pre-
viously thought, and opens new ways of data analysis
for existing dengue time-series, as is shown below.
It offers a promising perspective on parameter-value
inference from dengue case notifications.

The seasonal multi-strain model is represented in
Figure 4 by using a state flow diagram, dividing the
population into ten classes: susceptible to both strains
1 and 2 (S), primarily infected with strain 1 (I1) or
strain 2 (I2), recovered from the first infection with
strain 1 (R1) or strain 2 (R2), susceptible with a pre-
vious infection with strain 1 (S1) or strain 2 (S2), sec-
ondarily infected with strain 1 when the first infection
was caused by strain 2 (I21) or for being infected a
second time with strain 2 when the first infection
was caused by strain 1 (I12). It should be noted that in-
fection by one serotype confers lifelong immunity
to that serotype. Finally, we have the recovered indivi-
duals from secondary infection (R). To give more re-
ality to the dynamics of the disease, we also add a
low import factor of infected individuals into the
system.

To capture differences in primary infection by one
strain and secondary infection by another strain
we consider a basic two-strain SIR-type model for
the host population, which is only slightly refined
as opposed to previously suggested models for dengue
fever [26–28].

The complete system of ordinary differential equa-
tions for the seasonal multi-strain epidemiological

Fig. 7 [colour online]. Diagram representing the separation
of viral haemorrhagic fever, in red (VHFs=1+2+4) into
dengue haemorrhagic fever cases (DHF=2, in yellow),
dengue shock syndrome cases (DSS=4, in blue, which are
DHF cases with signs of shock) and non-dengue VHF
(1, in red). External to VHF cases are the DF cases (3, in
green).
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model is shown in equation (B1), and the dynamics
are described as follows. Individuals susceptible to
both strains can get the first infection with strains
1 or 2 with FOI βI/N, when the infection is acquired
from an individual with his first infection, or ϕβI/N
when the infection is acquired from an individual
with his second infection (for more information on
the parametrization of ADE and secondary dengue in-
fection by ϕ, see [15, 26]). Individuals recover form the
first infection at a recovery rate γ, conferring full and
lifelong immunity against the strain they were exposed
to, and also have a short period of temporary cross-
immunity α against the other strain, becoming suscep-
tible to a second infection with a different strain.
A susceptible individual with a previous infection
gets a secondary infection with FOI βI/N or ϕβI/N
depending on who (individual with primary or sec-
ondary infection) is transmitting the infection. Then,
with recovery rate γ, individuals recover and become
immune against all strains. We assumed no epidemio-
logical asymmetry between strains (β1=β2=β, ϕ1=
ϕ2=ϕ), i.e. infections with strains 1 or 2 contribute
in the same way to the FOI. Here, the only relevant
difference concerning disease transmissibility is that
the FOI varies according to the number of previous
infections the host has experienced. In a primary infec-
tion, individuals transmit the disease with a FOI βI/N
whereas in a secondary infection the transmission is
given with a FOI ϕβI/N, where ϕ can be larger or
smaller than the unit, i.e. increasing or decreasing
the transmission rate.

Ṡ = − β(t)
N

S(I1 + ρ ·N + ϕI21)

− β(t)
N

S(I2 + ρ ·N + ϕI21) + μ(N − S),

İ 1 = β(t)
N

S(I1 + ρ ·N + ϕI21) − (γ+ μ)I1,

İ 2 = β(t)
N

S(I2 + ρ ·N + ϕI12) − (γ+ μ)I2,
Ṙ1 = γI1 − (α+ μ)R1,

Ṙ2 = γI2 − (α+ μ)R2,

Ṡ1 = − β(t)
N

S1(I2 + ρ ·N + ϕI12) + αR1 − μS1,

Ṡ2 = − β(t)
N

S2(I1 + ρ ·N + ϕI21) + αR2 − μS2,

İ12 = β(t)
N

S1(I2 + ρ ·N + ϕI12) − (γ+ μ)I12,

İ21 = β(t)
N

S2(I1 + ρ ·N + ϕI21) − (γ+ μ)I21,
Ṙ = γ(I12 + I21) − μR. (B1)

The parameter β takes seasonal forcing into account
as a cosine function and is given explicitly by

β(t) = β0 · (1+ η · cos((ω · (t+ φ))))( )
, (B2)

where β0 is the infection rate, η is the degree of season-
ality and ϕ the phase which becomes important only
when considering empirical time-series. In this
model, a susceptible individual can also become
infected by contact with an infected individual from
an external population (hence (β/N · S · I) goes to
(β/N · S · (I+ρ · N)) contributing to the FOI with an
import parameter ρ. The parameter ϕ in our model
is the ratio of secondary infection contribution to
the FOI. For instance, we study the region of par-
ameter ϕ<1, which acts to decrease the infectivity of
secondary dengue infection, where hospitalization is
more likely due to the ADE effect associated with
the severity of disease. Individuals with a secondary
infection do not contribute to the FOI as much as
people with a primary infection.

The deterministic model formulation is based on
the large number assumption. As a consequence, the
number of individuals can be used to scale all state
variables of the model. The constant population N=
100 is used for clarity so that all epidemiological com-
ponents (susceptible, infected, recovered) are given as
a percentage. The demography rate is denoted by μ
and the parameter values are given in Table 1.

The two-strain model in its simplicity is a good
model for analysis, giving the expected complex be-
haviour to explain the fluctuations observed in empiri-
cal data. It is minimalistic in the sense that it can
capture the essential differences of primary vs. second-
ary infection without needing to restrict the ADE ef-
fect to one or another region in parameter space.
For future parameter estimation only the two-strain
model could attempt to estimate all initial conditions
as well as the few model parameters. The two-strain
model showed a qualitatively good result when com-
paring empirical dengue data and model simulations,
giving insights into the relevant parameter values
purely on topological information of the dynamics,
and these relevant parameter values can be used for
further refinement in formal parameter estimation
based on the available data, which already needs rela-
tively good initial guesses of parameters to even begin.
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