Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

8-Methoxy-3,3,5-trimethyl-3,11-dihydropyrano[3,2-a]carbazole

C. Uvarani,^a P. Ramesh,^b K. Ravichandran,^b P. S. Mohan^a and M. N. Ponnuswamy^b*

^aDepartment of Chemistry, School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, India, and ^bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 17 May 2010; accepted 31 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.137; data-to-parameter ratio = 18.4.

In the title compound, $C_{19}H_{19}NO_2$, commonly called koenimbine, the pyran ring adopts a sofa conformation. The carbazole ring system is planar [r.m.s. deviation = 0.063 (1) Å]. A *C*(10) zigzag chain running along the *b* axis is formed through intermolecular $C-H\cdots O$ hydrogen bonds. The chains are linked *via* weak $C-H\cdots \pi$ and $N-H\cdots \pi$ interactions.

Related literature

For bond-length data, see: Allen *et al.* (1987). For the biological activity of carbazole derivatives, see: Kong *et al.* (1986); Ito (2000); Ramsewak *et al.* (1999); Chowdhury *et al.* (2001); Fiebi *et al.* (1985). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{19}NO_2\\ M_r = 293.35\\ Monoclinic, P2_1/c\\ a = 8.290 \; (5) \ \text{\AA}\\ b = 8.693 \; (5) \ \text{\AA}\\ c = 21.326 \; (5) \ \text{\AA}\\ \beta = 90.742 \; (5)^\circ \end{array}$

 $V = 1536.7 (13) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.17 \times 0.16 \text{ mm}$ Data collection

```
Bruker SMART APEXII area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
T_{min} = 0.984, T_{max} = 0.987
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	
$wR(F^2) = 0.137$	
S = 1.05	
3803 reflections	
207 parameters	

14325 measured reflections 3803 independent reflections 3050 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.24\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.22\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C2/C7/C8/C16 ring and Cg4 is the centroid of the C8–C11/C15/C16 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots O1^{i}$ $N1-H1\cdots Cg4^{ii}$ $C17-H17C\cdots Cg1^{iii}$ $C17-H17C\cdots Cg4^{iii}$	0.93 0.872 (18) 0.96 0.96	2.54 2.744 (17) 3.08 3.00	3.333 (2) 3.528 (2) 3.489 (3) 3.514 (3)	143 149.7 (14) 107 115
Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}.$	$-x+2, y+\frac{1}{2},$	$-z + \frac{3}{2};$ (ii)	$-x+2, y-\frac{1}{2}, -$	$-z + \frac{1}{2};$ (iii)

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors wish to thank the TBI Consultancy, University of Madras, Chennai, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5011).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chowdhury, B. K., Jha, S., Bhattacharya, P. & Mukherjee, J. (2001). *Indian J. Chem. Sect. B*, **40**, 490–494.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fiebi, M., Pezzuto, J. M., Soejarto, D. D. & Kinghorn, A. D. (1985). *Phytochemistry*, 24, 3041–3043.

Ito, C. (2000). Nat. Med. 54, 117-122.

- Kong, Y. C., Ng, K. H., But, P. P. H., li, Q., Yu, S. X., Zhang, H. T., Cheng, K. F., Soejarto, D. D., Kan, W. S. & Waterman, P. G. (1986). *J. Ethanopharmacol.* 15,195–200.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWirr, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o1581 [doi:10.1107/S160053681002074X]

8-Methoxy-3,3,5-trimethyl-3,11-dihydropyrano[3,2-a]carbazole

C. Uvarani, P. Ramesh, K. Ravichandran, P. S. Mohan and M. N. Ponnuswamy

Comment

Murraya koenigii (L.) Spreng (Family of Rutaceae), commonly known as the Indian curry leaf plant, is cultivated for the aromatic and appetizing nature of its leaves. The leaves are used for flavouring southern Asian dishes. Various parts of the plant have been used in traditional or folk medicine for the treatment of head-, tooth-, and stomach aches, influenza, rheumatism, traumatic injury, insect and snake bites, and also as an antidysentric as well as an astringent (Kong *et al.*, 1986). Recently, several biological activities have been reported for carbazole alkaloids. Bioactive coumarins, acridone alkaloids and carbazole alkaloids from the family of Rutaceae were reviewed (Ito, 2000). Mahanimbine, murrayanol, and mahanine compounds isolated from *M. koenigii* exhibit antioxidant, mosquitocidal and antimicrobial activities (Ramsewak *et al..*, 1999). Activities of carbazoles from *M. koenigii* against Gram-positive and Gram-negative bacteria and fungi were reported (Chowdhury *et al.*, 2001). The ethanol extract of *M. koenigii* displayed cytotoxic activity against cultured KB cells (Fiebi *et al.*, 1985). Against this background and to ascertain the structure and molecular conformation, the X-ray structure determination of the title compound has been carried out.

An ORTEP plot of the molecule is shown in Fig. 1. The carbazole ring system is planar (r.m.s. deviation 0.016 Å). The pyran ring in the molecule adopts sofa conformation with the puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983): $q_2 = 0.287 (1) \text{ Å}$, $q_3 = -0.126 (1) \text{ Å}$, $\varphi_2 = 136.6 (3)^\circ$ and $\Delta_s(C12 \& C15) = 10.9 (2)^\circ$. The N—C bond lengths, namely N1—C2 and N1—C16 [1.386 (2) & 1.383 (2) Å] deviate slightly from the mean value reported in the literature 1.370 (12) Å (Allen *et al.*, 1987). The sum of the bond angles around N1 [359.3°] is in accordance with sp^2 hybridization. The methoxy group substituted at C5 deviates slightly from the plane of the attached carbazole ring system [C6—C5—O2—C17 = 19.3 (2)°].

The crystal packing of the molecules is controlled by C–H···O and C—H··· π types of intermolecular interactions. Atom C8 of the molecule at (x, y, z) donates a proton to atom O1 of the molecule at (-x+2, y+1/2, -z+1/2+1), which form a one dimensional zigzag C(10) chain (Bernstein *et al.*, 1995) running along the *b*–axis, Fig. 2. The packing of the molecules is further influenced by C—H··· π contacts and an N1—H1···Cg4 interaction of Table 1; Cg4 is the centroid of the C8/C9/C10/C11/C15/C16 benzene ring.

Experimental

The air dried fruit pulps of *M. koenigii* were extracted with n-hexane in a Soxhlet apparatus. The total extract was concentrated and kept at room temperature. A dirty white solid separated out. This was dissolved in chloroform and chromatographed using a silica gel column and eluted successively with n-hexane and n-hexane- chloroform mixture. The fraction obtained with 7% chloroform in hexane afforded a white crystalline solid. Which on repeated crystallization with methanol:chloroform (3:1) as solvent afforded white crystalline solid koenimbine (3,11-Dihydro-8-methoxy-3,3,5- trimethylpyrano[3,2-a]carbazole).

Refinement

The N-bound H atom was located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93-0.96 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C)$ for other H atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

8-Methoxy-3,3,5-trimethyl-3,11-dihydropyrano[3,2-a]carbazole

Crystal data

C₁₉H₁₉NO₂ $M_r = 293.35$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.290 (5) Å b = 8.693 (5) Å c = 21.326 (5) Å $\beta = 90.742$ (5)° V = 1536.7 (13) Å³ Z = 4

F(000) = 624 $D_x = 1.268 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 1546 reflections $\theta = 1.9-28.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.20 \times 0.17 \times 0.16 \text{ mm}$

Data collection

Bruker SMART APEXII area-detector diffractometer	3803 independent reflections
Radiation source: fine-focus sealed tube	3050 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ω and ϕ scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008)	$h = -9 \rightarrow 11$
$T_{\min} = 0.984, \ T_{\max} = 0.987$	$k = -9 \rightarrow 11$
14325 measured reflections	$l = -28 \rightarrow 28$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.137$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0713P)^{2} + 0.2629P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3803 reflections	$(\Delta/\sigma)_{\rm max} = 0.004$
207 parameters	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	1.12605 (11)	0.25969 (10)	0.57699 (4)	0.0444 (2)
O2	0.32475 (14)	0.26609 (14)	0.86787 (5)	0.0676 (3)
N1	0.93165 (14)	0.40700 (14)	0.78439 (5)	0.0436 (3)
C2	0.78388 (15)	0.37981 (14)	0.81195 (6)	0.0396 (3)
C3	0.72718 (17)	0.42649 (16)	0.87003 (6)	0.0468 (3)
Н3	0.7911	0.4851	0.8971	0.056*
C4	0.57398 (18)	0.38336 (16)	0.88612 (6)	0.0487 (3)
H4	0.5338	0.4134	0.9248	0.058*
C5	0.47677 (16)	0.29541 (15)	0.84589 (6)	0.0451 (3)
C6	0.53268 (16)	0.24753 (14)	0.78823 (6)	0.0407 (3)
H6	0.4684	0.1883	0.7616	0.049*
C7	0.68785 (15)	0.29046 (14)	0.77121 (5)	0.0368 (3)
C8	0.78297 (14)	0.26342 (13)	0.71591 (5)	0.0360 (3)

C9	0.75455 (14)	0.18608 (15)	0.65939 (6)	0.0381 (3)
Н9	0.6579	0.1337	0.6532	0.046*
C10	0.86873 (15)	0.18656 (14)	0.61251 (5)	0.0381 (3)
C11	1.01461 (15)	0.26595 (13)	0.62376 (6)	0.0364 (3)
C12	1.25668 (16)	0.37274 (16)	0.57659 (7)	0.0472 (3)
C13	1.31224 (18)	0.40802 (18)	0.64208 (8)	0.0561 (4)
H13	1.4190	0.4368	0.6492	0.067*
C14	1.21332 (16)	0.39936 (17)	0.69017 (7)	0.0493 (3)
H14	1.2471	0.4319	0.7298	0.059*
C15	1.05153 (14)	0.33853 (14)	0.68064 (6)	0.0377 (3)
C16	0.93148 (14)	0.33859 (14)	0.72584 (5)	0.0369 (3)
C17	0.23594 (19)	0.1452 (2)	0.84007 (8)	0.0625 (4)
H17A	0.2161	0.1681	0.7966	0.094*
H17B	0.1350	0.1338	0.8611	0.094*
H17C	0.2963	0.0512	0.8435	0.094*
C18	0.83971 (18)	0.10395 (18)	0.55133 (6)	0.0512 (3)
H18A	0.8971	0.0081	0.5517	0.077*
H18B	0.8771	0.1665	0.5174	0.077*
H18C	0.7264	0.0846	0.5459	0.077*
C19	1.38727 (19)	0.2969 (2)	0.53819 (8)	0.0624 (4)
H19A	1.4205	0.2029	0.5582	0.094*
H19B	1.4780	0.3650	0.5352	0.094*
H19C	1.3459	0.2747	0.4969	0.094*
C20	1.1956 (2)	0.5186 (2)	0.54519 (9)	0.0694 (5)
H20A	1.1633	0.4962	0.5028	0.104*
H20B	1.2800	0.5943	0.5452	0.104*
H20C	1.1049	0.5577	0.5678	0.104*
H1	1.005 (2)	0.469 (2)	0.7994 (8)	0.063 (5)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0402 (5)	0.0453 (5)	0.0480 (5)	-0.0053 (4)	0.0115 (4)	-0.0031 (4)
O2	0.0550 (7)	0.0727 (8)	0.0759 (7)	-0.0199 (5)	0.0296 (6)	-0.0240 (6)
N1	0.0379 (6)	0.0484 (6)	0.0446 (6)	-0.0083 (5)	0.0010 (4)	-0.0095 (5)
C2	0.0392 (7)	0.0376 (6)	0.0421 (6)	-0.0015 (5)	0.0011 (5)	-0.0026 (5)
C3	0.0519 (8)	0.0456 (7)	0.0431 (6)	-0.0064 (6)	0.0028 (5)	-0.0091 (5)
C4	0.0566 (8)	0.0456 (7)	0.0443 (6)	-0.0036 (6)	0.0118 (6)	-0.0081 (5)
C5	0.0427 (7)	0.0412 (7)	0.0516 (7)	-0.0026 (5)	0.0115 (6)	-0.0022 (5)
C6	0.0379 (7)	0.0389 (6)	0.0454 (6)	-0.0027 (5)	0.0032 (5)	-0.0035 (5)
C7	0.0363 (6)	0.0348 (6)	0.0392 (6)	0.0008 (5)	0.0012 (5)	-0.0017 (5)
C8	0.0325 (6)	0.0352 (6)	0.0402 (6)	-0.0010 (4)	0.0010 (4)	0.0000 (4)
C9	0.0320 (6)	0.0406 (6)	0.0419 (6)	-0.0044 (5)	0.0003 (5)	-0.0033 (5)
C10	0.0371 (6)	0.0372 (6)	0.0400 (6)	-0.0011 (5)	0.0007 (5)	-0.0031 (5)
C11	0.0335 (6)	0.0343 (6)	0.0416 (6)	0.0012 (4)	0.0049 (5)	0.0017 (5)
C12	0.0375 (7)	0.0454 (7)	0.0589 (8)	-0.0043 (5)	0.0118 (6)	0.0042 (6)
C13	0.0379 (7)	0.0620 (9)	0.0686 (9)	-0.0139 (6)	0.0062 (6)	-0.0086 (7)
C14	0.0383 (7)	0.0537 (8)	0.0558 (7)	-0.0093 (6)	0.0009 (6)	-0.0077 (6)

C15	0.0331 (6)	0.0359 (6)	0.0443 (6)	-0.0015 (5)	0.0004 (5)	-0.0009 (5)
C16	0.0343 (6)	0.0356 (6)	0.0409 (6)	-0.0012 (4)	-0.0012 (5)	-0.0016 (5)
C17	0.0472 (9)	0.0626 (10)	0.0781 (11)	-0.0123 (7)	0.0114 (7)	-0.0048 (8)
C18	0.0496 (8)	0.0590 (9)	0.0450 (7)	-0.0091 (6)	0.0049 (6)	-0.0127 (6)
C19	0.0458 (8)	0.0706 (10)	0.0714 (10)	0.0002 (7)	0.0205 (7)	0.0012 (8)
C20	0.0619 (10)	0.0536 (9)	0.0931 (12)	-0.0001 (8)	0.0121 (9)	0.0182 (9)
Geometric paran	neters (Å, °)					
O1—C11		1.3693 (15)	C10-	—C18	1.505	59 (17)
O1—C12		1.4625 (17)	C11-	C15	1.397	77 (17)
O2—C5		1.3741 (18)	C12-	—C13	1.497	7 (2)
O2—C17		1.410 (2)	C12-	C19	1.517	7 (2)
N1-C16		1.3830 (16)	C12-	C20	1.518	3 (2)
N1—C2		1.3859 (18)	C13-	C14	1.323	3 (2)
N1—H1		0.872 (18)	C13-	—H13	0.930	00
C2—C3		1.3911 (18)	C14-	C15	1.453	35 (19)
C2—C7		1.4050 (17)	C14-	—H14	0.930	00
C3—C4		1.372 (2)	C15-	C16	1.394	15 (18)
С3—Н3		0.9300	C17-	—H17A	0.960	00
C4—C5		1.397 (2)	C17-	—H17B	0.960	00
C4—H4		0.9300	C17-	—H17C	0.960	00
C5—C6		1.3838 (18)	C18-	—H18A	0.960	00
C6—C7		1.3920 (19)	C18-	—H18B	0.960	00
С6—Н6		0.9300	C18-	—H18C	0.960	00
С7—С8		1.4463 (17)	C19-	—H19A	0.960	00
С8—С9		1.3975 (16)	C19-	—H19B	0.960	00
C8—C16		1.4075 (18)	C19-	—H19C	0.960	00
C9—C10		1.3856 (17)	C20-	—H20A	0.960	00
С9—Н9		0.9300	C20-	—H20B	0.960	00
C10-C11		1.4102 (18)	C20-	—H20C	0.960	00
C11—O1—C12		118.95 (10)	C13-	C12C20	109.7	71 (14)
C5—O2—C17		118.11 (12)	C19-	C12C20	111.1	8 (13)
C16—N1—C2		108.60 (10)	C14-		121.6	68 (13)
C16—N1—H1		126.3 (11)	C14-	—С13—Н13	119.2	2
C2—N1—H1		124.4 (11)	C12-	—С13—Н13	119.2	2
N1—C2—C3		129.69 (12)	C13-	C14C15	119.4	8 (13)
N1—C2—C7		109.20 (11)	C13-	—С14—Н14	120.3	3
C3—C2—C7		121.11 (12)	C15-		120.3	3
C4—C3—C2		117.87 (12)	C16-		116.7	'3 (11)
С4—С3—Н3		121.1	C16-	C15C14	124.6	66 (12)
С2—С3—Н3		121.1	C11-	C15C14	118.4	9 (11)
C3—C4—C5		121.62 (12)	N1-	-C16-C15	129.1	9 (11)
C3—C4—H4		119.2	N1-	-C16C8	109.0	03 (11)
С5—С4—Н4		119.2	C15-	C16C8	121.7	78 (11)
O2—C5—C6		124.51 (13)	O2–	-C17-H17A	109.5	5
O2—C5—C4		114.60 (12)	O2—	-C17-H17B	109.5	5
C6—C5—C4		120.87 (13)	H17.	А—С17—Н17В	109.5	5
C5—C6—C7		118.19 (12)	O2–	-С17—Н17С	109.5	5

С5—С6—Н6	120.9	H17A—C17—H17C	109.5
С7—С6—Н6	120.9	H17B—C17—H17C	109.5
C6—C7—C2	120.34 (12)	C10-C18-H18A	109.5
C6—C7—C8	133.19 (11)	C10-C18-H18B	109.5
C2—C7—C8	106.47 (11)	H18A—C18—H18B	109.5
C9—C8—C16	119.37 (11)	C10-C18-H18C	109.5
C9—C8—C7	133.94 (11)	H18A—C18—H18C	109.5
C16—C8—C7	106.68 (10)	H18B—C18—H18C	109.5
C10—C9—C8	120.78 (11)	С12—С19—Н19А	109.5
С10—С9—Н9	119.6	С12—С19—Н19В	109.5
С8—С9—Н9	119.6	H19A—C19—H19B	109.5
C9—C10—C11	118.11 (11)	С12—С19—Н19С	109.5
C9—C10—C18	121.38 (11)	H19A—C19—H19C	109.5
C11—C10—C18	120.51 (11)	H19B—C19—H19C	109.5
01	120.52 (11)	C12—C20—H20A	109.5
01	116.22 (11)	C12—C20—H20B	109.5
$C_{15} - C_{11} - C_{10}$	123 10 (11)	$H_{20A} - C_{20} - H_{20B}$	109.5
01-012-013	110 56 (11)	$C_{12} - C_{20} - H_{20}C$	109.5
01 - C12 - C19	104 16 (12)	H_{20}^{-} $H_{$	109.5
C_{13} C_{12} C_{19}	112 32 (13)	$H_{20R} = C_{20} = H_{20C}$	109.5
01 - C12 - C20	108 74 (12)	11201 020 11200	109.5
C_{16} N1 C_{2} C_{20}	-170.25(12)	<u>C0</u> <u>C10</u> <u>C11</u> <u>O1</u>	179 11 (11)
$C_{10} = N_1 = C_2 = C_3$	1/9.55(15)	$C_{2} = C_{10} = C_{11} = C_{11}$	-1.30(17)
10 - 10 - 10 - 2 - 27	1.02(13)	$C_{10} = C_{10} = C_{11} = C_{15}$	1.39(17)
$R_{1} = C_{2} = C_{3} = C_{4}$	1/9.97(14)	$C_{1}^{10} = C_{1}^{10} = C_{1}^{11} = C_{1}^{15}$	2.00(19)
$C_{1} = C_{2} = C_{3} = C_{4}$	-0.4(2)	$C_{18} - C_{10} - C_{11} - C_{13}$	-1/0.90(12)
$C_2 = C_3 = C_4 = C_3$	0.0(2)	$C_{11} = 01 = C_{12} = C_{13}$	30.80(10)
C17 = 02 = C5 = C4	19.5 (2)	$C_{11} = O_{11} = C_{12} = C_{19}$	137.72(12)
C1/-02-C3-C4	-102.32(14)	C11 = 01 = C12 = C20	-83.65 (15)
$C_{3} = C_{4} = C_{5} = C_{2}$	-1//.91(13)	01 - 012 - 013 - 014	-29.5 (2)
$C_{3} - C_{4} - C_{5} - C_{6}$	0.5(2)	C19 - C12 - C13 - C14	-145.39 (16)
02 - 05 - 06 - 07	1//./2(13)	$C_{20} - C_{12} - C_{13} - C_{14}$	90.42 (18)
C4 - C5 - C6 - C7	-0.5(2)	C12 - C13 - C14 - C15	6.7(2)
$C_{5} = C_{6} = C_{7} = C_{2}$	0.09 (19)		-1/9.54 (10)
$C_{5} = C_{6} = C_{7} = C_{8}$	-1/9.29(13)		-4.22 (18)
N1 - C2 - C7 - C6	-1/9.94 (11)	01 - 011 - 015 - 014	-3.3/(18)
$C_{3} = C_{2} = C_{1} = C_{6}$	0.4 (2)	C10-C11-C15-C14	1/1.96 (12)
N1 - C2 - C7 - C8	-0.40(14)	C13 - C14 - C15 - C16	-1/2.9/(14)
C3—C2—C7—C8	1/9.92 (12)		11.2 (2)
C6-C/-C8-C9	0.6 (2)	C2—N1—C16—C15	178.26 (13)
C2_C/_C8_C9	-178.84 (13)	C2—N1—C16—C8	-1.24 (14)
C6-C/-C8-C16	179.10 (13)	C11-C15-C16-N1	-176.68 (12)
C2—C7—C8—C16	-0.34 (13)	C14—C15—C16—N1	7.4 (2)
C16—C8—C9—C10	-1.93 (18)	C11—C15—C16—C8	2.77 (18)
C'/C8C9C10	176.42 (12)	C14—C15—C16—C8	-173.14 (12)
C8—C9—C10—C11	0.59 (18)	C9—C8—C16—N1	179.73 (11)
C8—C9—C10—C18	-179.91 (12)	C'/C8C16N1	0.97 (14)
C12—O1—C11—C15	-22.17 (17)	C9—C8—C16—C15	0.18 (18)
C12-O1-C11-C10	162.20 (11)	C7—C8—C16—C15	-178.58 (11)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C2/C7/C8/C16 ring and Cg4 is the centroid of the C8–C11/C15/C16 ring.					
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
C3—H3…O1 ⁱ	0.93	2.54	3.333 (2)	143.	
N1—H1…Cg4 ⁱⁱ	0.872 (18)	2.744 (17)	3.528 (2)	149.7 (14)	
C17—H17C···Cg1 ⁱⁱⁱ	0.96	3.08	3.489 (3)	107.	
C17—H17C···Cg4 ⁱⁱⁱ	0.96	3.00	3.514 (3)	115.	
Symmetry codes: (i) $-x+2$, $y+1/2$, $-z+3/2$; (ii) $-x+2$, $y-1/2$, $-z+1/2$; (iii) $-x+1$, $y+1/2$, $-z+1/2$.					

Fig. 2