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Immune response following
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Pathophysiology and therapies
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Traumatic spinal cord injury (SCI) is a devastating condition that is often

associated with significant loss of function and/or permanent disability. The

pathophysiology of SCI is complex and occurs in two phases. First, the

mechanical damage from the trauma causes immediate acute cell dysfunction

and cell death. Then, secondary mechanisms of injury further propagate the cell

dysfunction and cell death over the course of days, weeks, or even months.

Among the secondary injury mechanisms, inflammation has been shown to be a

key determinant of the secondary injury severity and significantly worsens cell

death and functional outcomes. Thus, in addition to surgical management of SCI,

selectively targeting the immune response following SCI could substantially

decrease the progression of secondary injury and improve patient outcomes.

In order to develop such therapies, a detailed molecular understanding of the

timing of the immune response following SCI is necessary. Recently, several

studies have mapped the cytokine/chemokine and cell proliferation patterns

following SCI. In this review, we examine the immune response underlying the

pathophysiology of SCI and assess both current and future therapies including

pharmaceutical therapies, stem cell therapy, and the exciting potential of

extracellular vesicle therapy.

KEYWORDS
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1 Introduction
Traumatic spinal cord injury (SCI) is severely debilitating and is associated with

substantial financial and emotional costs (1–3). In the United States, >12,000 patients

annually suffer from SCI, with approximately 270,000 SCI patients across North America

(1, 3, 4). The pathophysiology of SCI is complex with the initial trauma (primary injury)

causing acute cell dysfunction/death that is further propagated by secondary injury

cascades (5, 6). Among the secondary injury mechanisms, overactivation of the systemic

immune response and neuroinflammation are key determinants of the extent of injury (6,

7). More specifically, the inflammatory cascade following SCI is complex and involves
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both the adaptive and innate immune responses, several cell

types, and many inflammatory cytokines including interleukin-

1b (IL-1b), interleukin-6 (IL-6), and tumor necrosis factor alpha

(TNFa) (8, 9). Although the immune response following SCI

also has many beneficial effects, it is thought that the large-scale

inflammatory response is a key factor in causing neural

degeneration (8, 9). Management of traumatic spinal cord

injury (tSCI) patients has mainly focused on the timing of

surgical decompression in which recent studies have

demonstrated that early surgical decompression of SCI

patients within 8-12 hours following SCI is associated with

improved neurological outcomes based on American Spinal

Injury Impairment Scale (AIS) improvements (10, 11). Given

the pivotal role the immune response plays in dictating the

extent of secondary injury and neural degeneration, selectively

targeting the immune response to SCI to promote neural

regeneration instead of degeneration is a premier therapeutic

target to improve functional outcomes (12). In order to develop

neuro-immunological therapies for SCI, however, a detailed

characterization of the immune response following SCI is

necessary. Over the last two decades several studies have

characterized the complex cytokine/chemokine cascades and

cell infiltration patterns (7). In this review, we examine the

immune response including the cytokine/chemokine cascades as

well as the cell proliferation patterns underlying SCI and

evaluate current and future therapies including pharmaceutical

therapies, stem cell therapy, and extracellular vesicle therapy.
2 Pathophysiology of SCI

2.1 Primary versus secondary phases
of injury

The pathophysiology underlying SCI occurs in two phases,

the primary and secondary phases of injury. The primary injury

phase is caused by the initial mechanical forces delivered to the

spinal cord at the time of injury (5, 6). These mechanical forces

cause direct structural damage to the surrounding neuronal

tissue and vasculature tissue resulting in acute cell dysfunction

and cell death (5, 6, 13). Broadly, four types of primary injury

mechanisms have been described: (a) impact plus persistent

compression; (b) impact alone; (c) distraction; and (d)

laceration/transection (5, 6). Among the four mechanisms of

primary injury, impact plus persistent compression is most

common and frequently occurs via burst fractures (5, 6). In

contrast to the primary phase of injury which occurs within a

short window of time, studies have shown that the secondary

phase of injury continues for days to weeks or even months after

SCI (12–14). The secondary phase of injury propagates the acute
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cell dysfunction and cell death initially caused by the primary

injury. Several secondary injury mechanisms (Figure 1) have

been shown to contribute to propagation of acute cell

dysfunction and cell death including neuroinflammation,

ischemia, free radical formation, lipid peroxidation, blood CNS

barrier break down, edema, release of proteases, and

excitotoxicity (12–14). Importantly, the immune response

plays a profound role in the propagation of secondary injury

after SCI.

Following SCI, three zones that differ in tissue quality form

including: (1) Zone 1, which is mainly a product of the initial

trauma and is defined by regions of necrosis, inflammation, and

cysts; (2) Zone 2, is characterized by regions of incomplete injury

that are still accompanied by immune cell infiltration, axonal

swelling, and Wallerian degeneration; and (3) Zone 3, which are

histologically intact areas (15, 16). Among the zones, Zone 1 is the

region that has the highest level of damage with the lowest chance

of neuron survival/recovery (12, 15, 16). Neuroinflammation has

been shown to be a critical secondary injury mechanism that

directly alters the progression of lesions and cell function across all

three zones (12). Although surgical decompression is the first line

therapy for spinal cord compression following SCI, studies have

shown that the severity of injury is dependent on the extent of

secondary damage (10, 12, 17). Therefore, therapeutic strategies

have focused on strategies to modulate the immune response after

SCI in order to promote neuro-regeneration and neuroprotection.

This review will focus on examining the immune response

underlying the pathophysiology of SCI and assesses both

current and future neuro-immunological therapies.
2.2 SCI induced immune depression
versus autoimmunity

After SCI, both immune depression and autoimmunity

commonly co-occur (18, 19). The CNS exerts control over the

immune system through several pathways including the

hardwired fibers of the autonomic nervous system (19, 20).

Throughout the body, both central and peripheral autonomic

nervous system sensors function to relay information about the

status of the body’s immune system (19, 20). Due to SCI,

the CNS interaction with the immune system is disrupted

resulting in a significant systemic decrease in immune

function with reports of several different functional alterations

in macrophages, T and B cells, and natural killer (NK) cells (20,

21). This systemic decrease in immune function after SCI is

termed spinal cord injury-induced immune deficiency syndrome

(SCI-IDS) (12, 21). Although the precise mechanism(s) causing

SCI-IDS are not completely clear, patients with SCI-IDS are at a
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significantly higher risk of developing complications such as

infections, pneumonia, and urinary tract infections (12, 21).

One recent study suggested that the mechanism underlying

post-SCI immune suppression may be due to the fact that after

SCI, significant plasticity develops below the injury site within

the autonomic spinal circuitry resulting in a sympathetic anti-

inflammatory reflex (22). Furthermore, the authors showed that

chemogenetic silencing of this reflex prevents post-SCI immune

suppression and could be a promising therapeutic approach in

the future (22). Although there are several negative effects of

SCI-IDS, immunosuppression following SCI may actually be

advantageous and serve a protective function (12, 23). SCI

damages the blood-spinal cord barrier and spine parenchyma,

which exposes cells of the adaptive immune system including B

and T lymphocytes to CNS antigens (12, 23). Exposure of the

adaptive immune system to CNS antigens can then trigger

autoimmune responses and the production of autoantibodies

that have been shown to worsen pathology within the spinal

cord (12, 23). Notably, studies in mice suggest that SCI especially

impairs the production of new antibody responses but preserves

existing immunity (18, 24). Thus, autoantibodies identified after

SCI may have existed prior to the injury (18). This hypothesis

was supported by a study that demonstrated a set of naturally

occurring auto-antibodies expanded following SCI (18).

Although it is clear that trauma induced autoimmunity has the
Frontiers in Immunology 03
potential to contribute pathologically, the triggering

mechanisms and molecular signatures will require further

investigation in the future.
2.3 Inflammatory cascade after SCI

Following CNS injury, neuroinflammation is a result of innate

immune system activation that is mediated by cytokines and

chemokines released by astrocytes, resident microglia, endothelial

cells, and peripherally derived immune cells (14). Several studies

have clearly demonstrated that within hours of CNS injury, the

inflammatory cytokines IL-1, IL-6, and TNF are all upregulated

(7, 25). Upregulation of these potent inflammatory cytokines

subsequently triggers substantial infiltration of macrophages,

microglia, and neutrophils (7). Furthermore, these infiltrating

immune cells continue to produce and secrete additional

chemokines and cytokines that modulate the immune response.

The size of the primary insult is a critical factor in determining the

magnitude of neuroinflammation (26). In the case of SCI,

additional cell death is often caused by overactivation of the

immune response. Therefore, in order to develop therapies that

can selectively dampen the overactive immune response, the

immune response following SCI must be thoroughly

characterized. In this review, we briefly review the literature on
FIGURE 1

Mechanisms of secondary injury following traumatic spinal cord injury. Several key secondary mechanisms of injury that have been shown to
contribute to the propagation of acute cell dysfunction and cell death including ischemia/hypoxia, neuroinflammation, vascular disruption/
edema, lipid peroxidation, oxidative stress, cell death, ionic imbalance, formation of a glial scar, glial activation, and matrix remodeling are
depicted. Following SCI, three zones that differ in tissue quality form including: (1) Zone 1, which is mainly a product of the initial trauma and is
defined by regions of necrosis, inflammation, and cysts; (2) Zone 2, is characterized by regions of incomplete injury that are still accompanied
by immune cell infiltration, axonal swelling, and Wallerian degeneration; and (3) Zone 3, which are histologically intact areas (15, 16).
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the systemically upregulated cytokines derived from the blood/

cerebrospinal fluid (CSF), which may have clinical utility as

biomarkers and focus on the timeline of the local cytokine/

chemokine cascade and cell infiltration patterns (Figure 2) (32).
2.4 Cytokine patterns from serum and
CSF as biomarkers

Overall, the patterns of cytokine and chemokine

upregulation following SCI are generally similar in the serum

and CSF compared to the patterns within the injured tissue itself.

Understanding the tempo and the major players of the immune

response in SCI could allow for the identification of biomarkers

from patient’s serum and CSF that could guide management of

SCI. Within 6 hours after SCI, a rat model showed that CSF

levels of IL-1, IL-10, IL-17a, IFN-g, and TNFa were all

significantly elevated (7, 33). Furthermore, the serum levels of

IL-1b, IL-6, and TNFa, remained elevated throughout the first

week after SCI in rats (7, 34, 35). A clinical study examining

changes in serum biomarkers found that within 24 hours after

SCI, there were significant elevations in structural proteins

including tau, S100b, and GFAP as well as elevations in the

cytokines IL-6, IL-8, and MCP-1 (7, 36). One study reported

decreased serum levels of IL-1b and IL-10 after 14 days following
SCI while another study found persistently elevated IL-1b and

no change in IL-10 28 days after SCI (7, 36). Notably, this study

(36) also reported persistent serum elevations in TNFa 28 days

after SCI and downregulation of IL-4 at 28 days. Importantly,

clinical studies have revealed that lower levels of serum and CSF
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IL-6, IL-8, tau, S100b, GFAP, and MCP-1, are associated with

significantly higher AIS grade improvement and neurological

recovery compared to patients that did not improve (37, 38). In

these studies, the most severely injured patients typically had the

highest levels of NSE tau, S100b, and GFAP (37, 38). In the

future, additional clinical studies will be needed to further

validate these proteins as true biomarkers that could enhance

clinical decision-making.

Below, we discuss the timeline of the inflammatory cascade

following SCI including cytokine/chemokine regulation and cell

infiltration patterns (Figure 2).
3 Timeline of the
cytokine/chemokine
cascade and cell infiltration

Within the first 24 hours following tSCI, proinflammatory

cytokines including TNFa, IL-1b, and IL-6 appear to be

upregulated and are likely the key mediators of injury (25, 33,

39–45). Studies have also suggested that other cytokines

including IL-7, growth-related oncogene (GRO), macrophage

inflammatory protein 1-alpha (MIP-1a), and monocyte

chemoattractant protein 1 (MCP-1) are upregulated while IL-

4, IL-10, IL-13, and TGF- b1 remain at baseline levels within the

first 24 hours after tSCI (33, 43, 46). Here, we provide an in-

depth review of the patterns of cytokine/chemokine regulation

and cell infiltration patterns within the first 24 hours and

examine the inflammatory cascade over the course of the first

two weeks following tSCI.
3.1 1 Hour after SCI

Within minutes after the primary SCI, secondary injury

mechanisms begin to cause significant damage (7, 47, 48). More

specifically, edema, oxidative damage, cell permeabilization,

excitotoxicity (glutamate), ischemic injury due to microvascular

supply destruction, and proapoptotic signaling among other

factors all contribute to substantial cell dysfunction and cell

death (7, 47, 48). Dysregulation in intracellular calcium also

causes injury and further cell death as dysregulated intracellular

calcium results in calpain activation causing mitochondrial

dysfunction (7, 48–50).

Although in the early phases of injury the resident immune

cells of the CNS, microglia, respond in a protective manner,

quickly microglia morph into proinflammatory cells that secrete

cytokines that trigger peripheral immune cell infiltration (27,

51–53). For example, one study showed that microglia and

astrocytes start expressing TNFa mRNA and IL-1b within a

half hour following SCI (25). Notably, the number of TNFa
positive cells peaked 1 hour following SCI (25).
FIGURE 2

Patterns of immune cell infiltration following spinal cord injury.
The order and timing (7, 27–31) of various immune cell infiltrates is
depicted (32). The level of neutrophils peak at approximately 24
hours after SCI and decrease over the course of the next 7-10
days. Comparatively, lymphocytes peak much later and at lower
levels compared to neutrophils. The resident macrophages,
microglia, are early responders after SCI. Eventually, microglia
become indistinguishable from the peripherally derived
macrophages from a morphological standpoint.
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3.2 1-3 Hours after SCI

Within 1-3 hours following tSCI, TNFa, IL-1b, and IL-6 are

believed to be the key mediators. mRNA colocalization studies

have demonstrated that microglia, neurons, and astrocytes

synthesize TNFa, IL-1b, and IL-6 during the early hours after

SCI in a mouse model (7, 25). In five other studies, the levels of

TNFa in the early hours after SCI were also substantially

increased (39–41, 54, 55). Three of these studies showed a

significantly elevated level of IL-1b during the early hours of

SCI; however, two studies using enzyme-linked immunosorbent

assays (ELISAs) reported that there was not an increase in IL-1b
during the early hours of injury (34, 39–41, 54). Hellebrand et al.

(7) suggested that this inconsistency may be due to the time

necessary to synthesize the full protein product as well as the

time required for caspase 1 to proteolytically process it to its

active form. Studies assessing IL-6 upregulation observed similar

results to the IL-1b pattern (39–41, 54).
3.3 3-6 hours after SCI

Although there appear to be a few differences in the adaptive

immune system among rodents, a majority of literature has

shown a significant increase in proinflammatory cytokines (7,

25, 40, 56–59). More specifically, within the window of 3-6 hours

after SCI, several studies have shown that TNFa, IL-1b, and IL-6
are the primary cytokines significantly elevated (7, 25, 40, 56–

59). In addition, most studies agree that within the 3-6 hours

window there is a slight lag in upregulation of IL-1b and IL-6

relative to TNFa and IL-1a (7, 25, 40, 41, 57–59). The increase in

cytokine production in microglia and astrocytes also results in

increased peripheral immune cell invasion. For instance,

neutrophils start to arrive within 4-6 hours after SCI and

function to prepare the region for repair through the

production of proteolytic and oxidative enzymes (28, 29). The

overwhelming number of neutrophils, however, can cause

significant tissue damage (28, 29).

At 3 hours following SCI, the number of cells expressing

TNFa mRNA within the center of the injury is significantly

increased relative to control cells; however, the number of cells

expressing TNFamRNA was 66% lower compared to the 1 hour

time point (25). Additional evidence suggests that TNFa levels

return closer to baseline following rapid onset as two studies

reported no significant increase at 4 hours following SCI (40, 54).

Even though anti-inflammatory cytokines could decrease the

levels of proinflammatory cytokines, studies suggest that

following SCI, the levels of anti-inflammatory cytokines are

either low or absent (7). Theoretically, IL-10 is an anti-

inflammatory cytokine that could reduce pro-inflammatory

cytokine levels and IL-4/IL-13 are anti-inflammatory cytokines
Frontiers in Immunology 05
that can trigger alternative macrophage activation (7, 60, 61).

Studies using rodent models have shown that IL-13 was

increased at 4 hours following SCI in rats but not in mice, and

IL-10 was increased in mice but not in rats (40, 57, 58, 60–64).

Finally, Xiong et al (65) reported increases in 4-hydroxynonenal

(4-HNE), which is formed during lipid peroxidation, starting at

3 hours following SCI (7, 65).
3.4 6-12 after SCI

Within the 6-12 hour time period, the proinflammatory

environment continues facilitating increased microglia

proliferation/recruitment and increased peripheral immune cell

invasion (7). Studies agree that from 6-12 hours after SCI, TNFa,
IL-1b, and IL-6 continue to be upregulated while IL-4, IL-10, and

IL-13 remain at baseline levels (25, 33, 39–45). In addition, other

immunemediators that are significantly increased during the 6-12

hour window include macrophage inflammatory protein 1-alpha

(MIP-1a), monocyte chemoattractant protein 1 (MCP-1), C–X–C

motif chemokine ligand 1 (CXCL1), growth-related oncogene

(GRO), and RANTES (Regulated upon Activation, Normal T

Cell Expressed and Presumably Secreted) (33, 43, 46).

Initially, neutrophils are the most common infiltrating cell

type (30). Overactivation of neutrophils can be quite destructive

to tissue as these cells release substantial amounts of neurotoxic

substances including chemokines, enzymes, reactive oxygen

species (ROS), and reactive nitrogen species (RNS) (9, 29, 66,

67). At approximately 8 hours after SCI, apoptosis from the

inflammatory response peaks in neuronal cells (68, 69).
3.5 12-24 hours after SCI

During the 12-24 hour window a majority of studies show:

(a) upregulated levels of the proinflammatory cytokines TNFa,
IL-1b, and IL-6; (b) elevated levels of IL-7, GRO, MIP-1a, and
MCP-1; and (c) baseline levels of TGF-b1, IL-4, IL-10, and IL-13
(39, 45, 46, 56, 70–72). At 24 hours following SCI, the level of

neutrophils peak (Figure 2) (31). Neutrophils infiltrating the site

of injury function to clear debris, proteases release reactive

oxygen species, and neutrophils secrete myeloperoxidase,

elastase, and proteases (31). In glial cells, apoptosis peaks at 24

hours following SCI (68, 69).

One study in rats showed that lymphocytes start to collect

near blood vessels within gray matter as early as 6 hours after

SCI (52). Lymphocytes that infiltrate the site of injury produce

IL-1b, IL-6, TNFa, and LIF at 12 hours post injury (25). The

levels of the neurotoxic 4-HNE peak at 24 hours and for two

weeks remained elevated (65).
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3.6 24 hours-7 days after SCI

In a rat model of SCI, flow cytometry showed that the initial

phase of cellular inflammation at 1 day after SCI consisted of an

early neutrophil peak; at 7 days after SCI a peak of macrophages/

microglia; and at 9 days after SCI a peak of T-cells (73). In mice,

although neutrophils enter the site of injury at 6 hours after SCI,

levels do not peak until 14 days after injury and remain for up to

two weeks (27). At day 5 after SCI, phagocytic macrophages are

most commonly localized in areas of necrosis while microglia are

mainly at the margins (7, 74). Microglia are highly dynamic and

during the first week after SCI have been shown to proliferate

extensively (7, 74). Furthermore, at the border of the site of

injury between infiltrating peripherally-derived macrophages

and astrocytes, microglia form a dense cellular interface (7,

74). Due to the initial injury, axons start to retract at day 2

and macrophages also trigger a late phase of axon retraction

(75–77).

After 2 days following SCI, co-localization studies showed

that TNFa mRNA levels had returned to a level that was not

significantly different from the level of mice that had received

control laminectomies (7, 25). The average number of cells

expressing IL-6 mRNA decreased from 24 hours-4 days after

SCI to an almost zero cells 7 days after injury (7, 25). Similarly,

the number of IL-1b positive cells decreased at 2, 4, and 7 days

following SCI (7, 25). Notably, although the number of cells

expressing the above transcripts decreased, several studies in

both rats and mice have reported increased levels of TNFa, IL-
1b, and IL-6 at 1, 3, and 7 days following SCI (7). In addition,

GRO has been reported to be significantly increased at 1, 3, and 7

days following SCI (46, 71, 78).

During the first week of injury, studies have shown that there

is a significant increase in production of chemokines that recruit

T-cells, monocytes, and dendritic cells to the lesion (7). Previous

studies have shown upregulation of MIP-1a at 1 and 3 days

following SCI, CXCL1 expression is increased at 3 and 7 days

following SCI, and RANTES is significantly upregulated at 3

days following SCI (43, 71, 78–81). While there have been some

conflicting results, a majority of studies show that MCP-1

mRNA is increased in mice 1 day after SCI with return to

baseline 7 days following SCI (82, 83). Among rats and mice, it is

important to note that there have been some contrasting

behaviors (7). Cytokines that have been reported to have at

least somewhat contrasting behaviors among rats versus mice

include IL-2, IL-4, IL-5, IL-13, and IFN-g (7, 70, 80, 81, 84). A
majority of studies have suggested that IL-10 is not significantly

increased until 3 days following SCI although some reports have

not observed changes in IL-10 levels after SCI in both mice and

rats (40, 42, 79). Finally, TGF-b1 was reported to be upregulated

at 3 and 7 days following SCI (7, 39).
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3.7 7-14 days after SCI and beyond

Macrophages and peripherally derived macrophages peak at

7 days following SCI and persist for months after the injury in

mice, rats, and humans (15, 60, 73, 74, 85). At 14 days following

SCI injury, Mukhumedshina et al. (78) found that IL-1a, IL-2,

MIP-1a, and GRO were significantly increased in rats while IL-2,

IL-5, IL-13, IL-17a, IL-18, and GM-CSF were significantly

decreased (78). In mice on the other hand, IL-1a, IL-4, IL-7,

IL-12, IL-15, MIP-1a, MCP-1, and RANTES were significantly

upregulated (79, 84, 86). Mice also were found to have a second

surge of cells expressing IL-1b and TNFa at 14 days after SCI

(25). Rats, however, did not undergo a second surge at 14 days

after SCI (78, 87). Future studies examining the cytokines

profiles after 14 days in SCI are necessary as there is less data

compared to other time frames.
3.8 Cellular reactions and cytokine
signaling at 14 days after SCI and beyond

Astrocytes are a subtype of CNS glial cells that function to

maintain neurons and the blood spinal cord barrier (7, 88).

Initially, reactive astrocytes flock to the injury site to aid in tissue

repair but eventually become scar forming astrocytes (7, 88).

These scar forming astrocytes form a glial scar surrounding the

injury site. The layer of astrocytes around the lesion are defined

by increased expression of glial fibrillary acidic protein (GFAP)/

intermediate filaments, cellular hypertrophy, and process

extension (7, 88). Overall, the glial scar has immune cells in

the center with macrophages interacting with pericytes, which

are the main scar connective tissue source around the edges and

astrocytes that surround the periphery (74, 89).

The question of whether T cells mediate wound healing or

result in secondary degeneration is controversial (7, 15, 90–92). T

cells mediate adaptive immunity and appear to infiltrate into the

spinal cord at somewhat different times depending on the species

of animal (7). Studies have shown that chemokines CXCL10 and

RANTES are critical for the proliferation and cytokine production

of T cells (7, 93). Recent evidence suggests that T cells appear to

play more of a destructive role after SCI as Gonzalez et al. (93)

demonstrated that tissue preservation and functional recovery

were improved when T cell infiltration was decreased by

neutralizing the chemoattractant CXCL10. In a rat model,

cytotoxic T-cells were predominant compared to regulatory T

cells (>90% versus 10%, respectively) further suggesting a negative

role of T cells (94). In addition, secondary injury was aggravated

after SCI by T cell perforin as perforin destroyed the blood spinal

cord barrier triggering infiltration of inflammatory cytokines (95).
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4 Current and future therapies
for SCI

4.1 Pharmacological therapies

To date, we do not fully understand the clinical utility and

efficacy of several immunotherapies and pharmacological agents

following tSCI. These immunotherapies have the potential to

improve outcomes in tSCI patients by modulating the immune

response to injury and promoting regeneration, however, further

preclinical and clinical studies are needed. Although our current

understanding of the precise immunological mechanisms by

which some of these therapies may potentially improve

functional outcomes is limited, here we provide the state of

the field and future directions of pharmacological therapies

in tSCI.
4.2 Corticosteroids

The clinical utility of methylprednisolone in the treatment of

traumatic SCI is controversial (48, 96–98). Theoretically,

corticosteroids could prevent secondary damage after SCI and

be beneficial by preserving the ultrastructure of the spinal cord

by decreasing the injury induced, decreasing free radical

catalyzed lipid peroxidation, enhancing impulse conduction

and neuronal excitability, improving blood flow, reducing

oxidative stress, and modulating the immune response (99,

100). Three landmark multicenter, double-blinded,

randomized controlled trials, National Spinal Cord Injury

Study I (NASCIS-I), NASCIS-II, and NASCIS-III were

performed in 1984, 1990, and 1997 (96, 101, 102). NASCIS-I

sought to assess the methylprednisolone dosage following SCI,

but there was no placebo group in this trial due to the belief that

methylprednisolone was beneficial, and it would be unethical to

withhold methylprednisolone therapy (101). Significant debate

has been centered around the results of the NASCIS-II which

randomized 487 patients with acute traumatic SCI to receive an

initial bolus of 30 mg/kg of methylprednisolone followed by an

infusion of 5.4 mg/kg per hour for 23 hours or treatment with

placebo or naloxone (48, 96–98). Although there was no

significant benefit in the neurological outcomes among the

162 patients receiving methylprednisolone within 12 hours,

analysis of a group of 65 of these patients that received

methylprednisolone within 8 hours after SCI significantly

showed improved neurological function at 6 months (96, 103).

Therefore, the authors concluded that treatment with

methylprednisolone within 8 hours improved recovery of

neurological function after SCI (96). Advocates of this study

tend to highlight the lack of high-quality evidence currently

available within the literature while critics point to the potential

arbitrary 8-hour time point, the magnitude of treatment effects,
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and the potent issues with losses to follow-up (98, 103–108).

A prospective randomized clinical trial demonstrated

no neurological benefits (109). Several class III medical

evidence studies have demonstrated the beneficial effects of

methylprednisolone therapy in SCI (96, 101, 102, 110, 111).

Critics of these studies, however, suggest that these studies are

limited by small sample sizes derived retrospectively from larger

study populations and/or incomplete data sets (112–115).

Another potential concern of using methylprednisolone in the

treatment of acute SCI is the potential for harmful side effects

(96, 101, 102, 110, 111, 116). More specifically, three Class I

studies reported wound infection, hyperglycemia requiring

insulin administration, and GI hemorrhage as statistically

significant side effects (96, 101, 102, 110, 111, 117, 118).

Although the clinical utility of these trials remains

controversial, the methylprednisolone treatment protocols

outlined in NASCIS II and III are still used today (96, 102).

Early critics of the NASCIS advocated that methylprednisolone

therapy be considered “a treatment option” rather than

“standard of care” (96, 97, 101, 102). In 2013, the routine

administration of methylprednisolone in the management of

acute traumatic SCI was not recommended by “Guidelines for

the Management of Acute Cervical Spine and Spinal Cord

Injuries” (97, 119–121). The use of methylprednisolone among

surgeons has decreased based on studies surveying the practice

habits of surgeons, a 2018 study suggested that a majority of

surgeons worldwide (52.9%) still use methylprednisolone in the

treatment of acute SCI (122–127). In the future, further studies

assessing the effect of steroid therapy on the neurological

outcomes of SCI patients will be necessary in order to

determine its clinical utility.
4.3 Cyclooxygenase inhibitors

The use of non-steroidal anti-inflammatory drugs (NSAIDs)

following acute SCI injury appears promising as NSAIDs have

been suggested to decrease spinal cord inflammation and edema,

improve motor function with minimal side effects, and increase

axonal sprouting (128). The effectiveness of NSAIDs in acute

SCI is likely due to their ability to inhibit Rho-A (128). In animal

models after traumatic SCI, two non-steroidal anti-

inflammatory drugs that can be utilized in order to maintain

spinal cord blood flow are ibuprofen and meclofenamate (129,

130). Similar results have been reported with the use of both a

prostacyclin analogue and a thromboxane inhibitor (131, 132).

Other studies have suggested that COX-2 expression is

significantly increased within the damaged rat spinal cord

tissue after contusion injury, and inhibition of COX-2

enhances functional outcomes (129, 133). Small sample size

and heterogeneity creates problems with studies, and the

therapeutic effects seen in animals may not be the same in

patients (128, 131). Given the potential for improved outcomes
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and the low risk for adverse side effects, well-designed

prospective studies evaluating ibuprofen and indomethacin are

needed in the future.
4.4 Minocycline

Minocycline is a chemically modified second generation

tetracycline antibiotic that has the ability to penetrate the

blood brain barrier (134, 135). Minocycline has been shown to

provide neuroprotective effects and has been shown to have anti-

inflammatory, antioxidant, and anti-apoptotic properties (131,

134, 136). In animal models of SCI, TBI, and cerebral ischemia,

minocycline has been shown to protect white matter structures,

motor neurons, and oligodendrocytes (137, 138). Studies suggest

that minocycline following SCI had significant anti-

inflammatory and anti-apoptotic effects by preventing the

activation of TNFa, IL-1b, COX-2, and MMPs decreasing

caspase-1 and caspase-3 levels (131, 139, 140). Minocycline

has also been reported to alleviate excitotoxicity and has been

suggested to inhibit the p38 mitogen activated protein kinase

pathway in microglial cells (137, 141, 142).

Tissue sparing, reduction of the lesion, inhibiting

oligodendroglia and neuronal apoptosis, reducing inflammation,

and enhancing neurological and histological outcomes could

possibly be achieved with minocycline treatment (131, 143).

Studies in mice have suggested that minocycline therapy is

associated with substantial improvements in long term

functional outcomes in which administration of minocycline

over a 4 week recovery time course increased Beattie, Basso, and

Bresnahan scores at 20 days following injury (144). A 2008 study

in rats is not in agreement with other preclinical and clinical

studies such as Pinzon et al. (143, 145) which found that

minocycline therapy did not generate tissue sparing or

improved behavioral outcomes (131, 143). In clinical studies,

minocycline treatment improves outcomes in acute incomplete

cervical SCI patients (131, 135). A randomized, double bind,

placebo-controlled, single center phase II clinical trial examined

treatment with IV minocycline (n=27) for 7 days versus placebo

(n=25) treatment in patients with SCI. This study showed that

minocycline therapy was safe and feasible. In addition, there was a

trend toward improvements in motor scores especially in

tetraplegic patients. Currently, a multicenter phase III

randomized controlled trial (NCT01828203) is assessing the

impact minocycline therapy versus placebo therapy on acute

(<12 hours) SCI patient recovery at 3 months and one year

after injury. Minocycline therapy, therefore, appears to be

promising for SCI, as it works via several mechanisms; however,

more well-designed trials are necessary to definitively conclude

the role of minocycline in SCI management.
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4.5 Chondroitinase ABC enzyme

The axons of patients with SCI do not regenerate

appropriately (74, 89, 131, 146). Glial reaction occurs at the

site of injury, resulting in formation of a glial scar (74, 89, 131,

146). Furthermore, microglia, oligodendrocytes, and their

precursors (which include astrocytes, meningeal cells, and

myelin fragments) are recruited due to the glial reaction (14,

69, 89, 131, 146). Many of these cells release factors that halt

axonal regeneration (74, 89, 131, 146). Chondroitin sulfate

proteoglycans (CSPG) are one major class of axonal growth

inhibitors that may play a key role in regeneration failure (131,

146–148). Importantly, chondroitinase ABC (ChABC) is an

enzyme that could be critical in overcoming CSPG mediated

inbition as ChABC digests glycosaminoglycans on CSPGs

(146–149).

Animal studies have demonstrated that treatment with

ChABC after SCI can dramatically improve functional

recovery and regeneration of both sensory axons and the

corticospinal cord (131, 150, 151). Mechanistically, ChABC

most likely results in growth promoting effects through

causing increased germination of spare axons, formation of

new synaptic connections beneath the sites of injury, and

removing perineuronal nets (152). In addition to these

mechanisms, ChABC also has been shown to have

immunoregulatory activity (153). More specifically, Didangelos

et al. showed that ChABC increased expression of the anti-

inflammatory cytokine IL-10 and reduced expression of the pro-

inflammatory cytokine IL-12B (153).

In rat models, administration of ChABC promoted both

improved recovery of proprioceptive and locomotor behaviors

(151). In addition, below the lesion treatment with ChABC

resulted in restoration of postsynaptic activity following

electrical stimulation of corticospinal neurons (151). The

benefits of ChABC for SCI have been clearly demonstrated in

rodent models of: (a) SCI, (b) stroke, and (c) nigrostriatal injury

as well as in cats with SCI (131, 154–156). A recent study in dogs

with severe chronic SCI strongly supported a beneficial effect of

intraspinal injection of chABC (157). Importantly, there was no

evidence of long-term adverse effects with this therapy (157).

Given the impressive improvements of functional outcomes with

ChABC treatment and the lack of reported harmful effects,

human SCI ChABC trials should be conducted in the future.
4.6 Monosialotetrahexosylganglioside
(GM-1)

Glycosphingolipids exert several critical functions in cellular

differentiation, interaction and immune response (158).

Theoretically, the benefit of glycosphingolipid GM-1 stems
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from the ability of GM-1 to stimulate tyrosine kinase receptors,

resulting in improved regeneration and enhanced neuronal

plasticity (100, 131). A randomized, double blind, prospective

phase II trial demonstrated significant improvement of 1-year

ASIA motor scores in patients that were treated with daily GM-1

ganglioside for 18-32 days following SCI (135, 159). A

randomized, double-blind, sequential multicenter phase III

clinical trial examined the effect of two doses of Sygen

(monosialotetrahexosylganglioside GM1 sodium salt)

compared to placebo in 797 patients with acute SCI (160).

Although there appeared to be accelerated bladder, bowel, and

motor recovery following Sygen treatment within the first three

months, ultimately there was no significant effects after the study

ended (135, 160). The time of administration of GM-1

ganglioside has been postulated to be a key factor in the

observed variation among the two trials (135). Furthermore, a

Cochrane Database Systematic Review described significant

weaknesses in data collection and presentation methodologies

in these trials (135, 161). This review concluded that there is no

available evidence to support treatment with gangliosides to

reduce the death rate or improve the quality of life in SCI and to

date no follow-up studies have been performed (161).
4.7 Neuroimmunophilin ligands

Neuroimmunophilin ligands are a class of compounds that

have great potential for the treatment for SCI. To date, however,

the results of neuroimmunophilin ligand therapy for SCI have

been conflicting. Cyclosporin A and FK-506, which act as

neuroimmunophilin ligands, have shown protective properties

in ischemia, neurodegenerative disorders, and in trauma (131,

162, 163). In neuronal tissues, NIL-A, which is currently in

Phase II clinical trials for SCI, binds with FK506 binding protein

(FKBP)-12 (131, 164). Neurophilin ligand V10367 binds to FK-

506 binding protein and was investigated in a preclinical model

(131, 165). V10367 resulted in increased neuroregeneration in

the CNS and peripheral nervous system (165). Tacrolimus in

addition to its immunosuppressive effects also has neurotrophic

activity and has been shown to enhance nerve regeneration in

peripheral nerve injury (166, 167). Due to the potential of

neuroimmunophilin ligands in the treatment of nerve injury,

further preclinical studies are needed to clarify their potential

role in the treatment of tSCI.
4.8 Anti-Nogo-A antibodies (ATI-355)

Nogo-A is neuritite growth inhibitory myelin protein which

plays a key role in inhibition of neurite outgrowth and limits

neurological recovery (146, 168–170). Treatment with anti-

Nogo-A antibody after SCI in rat models has been shown to

significantly improve recovery of locomotor training and results
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in superior spinal cord reorganization and regeneration (171,

172). A macaque model showed similar results (131, 173).

Another study examined the therapeutic outcomes of anti-

Nogo-A antibody therapy on the corticospinal tract after

acute, 1 week, or 2 week delayed intrathecal anti-Nogo-A

antibody infusions (131, 174). In this study, Gonzenbach et al.

(174) find that treatment of SCI with anti-Nogo antibodies in

rodents is limited to less than 2 weeks. A multicenter Phase I

open-label cohort study assessed intrathecal administration of

the human anti-Nogo-A antibody ATI355 in acute, complete

traumatic paraplegia and tetraplegia (175). Administration of

anti-Nogo antibodies was well tolerated and in 7 of 19 patients

with tetraplegia conversion from complete to incomplete SCI

injury occurred (175).
4.9 VX-210 (Cethrin)

The Rho signaling pathway plays a key role in neuronal

growth inhibition as well as regulating the cytoskeleton and

motility (176). C3 transferase, an enzyme from Clostridium

botulinum, inhibits Rho signaling by locking RhoA in an

inactive state (176). In animal models of SCI, local application

of C3 transferase induced long distance cortico-spinal

regeneration and improved functional outcomes (176, 177). C3

transferase therapy with wild-type C3 transferse was limited,

however, by its very low levels of cell penetration (177, 178).

Thus, a recombinant version that readily crosses the dura was

developed BA-210 (Cethrin) (177). In addition to promoting

axonal regeneration and neuroprotection, Cethrin also appears

to modify the adverse immune reaction following SCI (177–

179). A multicenter phase I/IIa clinical trial involving cervical

and thoracic SCI patients taking 0.3 mg to 9 mg BA-210 (later

VX-210) showed that BA-210 treatment significantly improved

motor recovery (178, 179). More specifically, the largest changes

in motor recovery were observed in cervical injury patients

taking 3 mg BA-210 in which 31% of cervical injury patients,

66% of patients taking 3mg BA-210,and 6% of thoracic injury

patients converted from ASIA A to AISA C or D (178, 179). A

phase Iib/III study assessing whether application of VX-210 to

the overlying dura would improve motor outcomes following

cervical SCI was stopped prematurely as the primary efficacy

end-point was not met (180).
4.10 Anti-CD11d Antibodies

The CD11/CD18 family of integrins are localized on the

surface of leukocytes and have been shown to bind both human

intercellular adhesion molecule-3 (ICAM-3) and human/rat

vascular cell adhesion molecule-1 (VCAM-1) (181–184).

Following injury, damaged endothelial cells upregulate

VCAM-1 and ICAM-3 which facilitates leukocyte binding and
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migration to the site of injury (184, 185). Preclinical studies have

demonstrated the promising potential of a monoclonal antibody,

217L, which binds to the CD11d subunit of the CD11/CD18

integrins (184). Initial preclinical studies in rats demonstrated

that anti-CD11d therapy significantly decreased number of both

neutrophils and macrophages within the cord following SCI

(186, 187). Furthermore, anti-CD11d therapy substantially

decreased secondary damage and resulted in superior

autonomic and locomotor recovery as well as decreased

neuropathic pain (188–191). Similarly, other studies have also

suggested that decreasing the number of neutrophils is

neuroprotective (29, 46, 85, 192–194). A CD11d monoclonal

antibody study in mice, however, reported that depletion of

neutrophils after SCI through the use of Ly-6G (RB6-8C5) mAb

impeded rather than enhanced functional recovery (195). A

follow-up study examining the therapeutic effectiveness of

anti-CD11d treatment in mice demonstrated that neutrophil

infiltration was reduced by 61% at 72 hours after SCI and

significantly improved functional outcomes and decreased

secondary damage (184).

In addition to the role of anti-CD11d therapy in decreasing

the infiltration of neutrophils, studies have suggested that anti-

CD11d therapy improves neurological outcomes, provides

neuroprotective effects decreases pain, significantly reduces

histopathological damage, and improves intraspinal

serotonergic innervation patterns (190, 196). A recent study

also suggested that anti-CD11d therapy decreases secondary

damage by significantly reducing free radical formation (197).

Given the promising results from preclinical studies, future

clinical trials assessing the efficacy of anti-CD11d in humans

are needed. Importantly, the mechanism of injury and injury

severity may be key determinants of the efficacy of anti-CD11d

therapy following SCI (198). More specifically, using a rat model

Geremia et al. (198) suggested that anti-CD11d therapy is most

efficacious in cases of modest injury severity with minimal non-

penetrating injury and frank hemorrhage into the spinal cord

(198). Thus, clinical studies assessing efficacy of anti-CD11d

therapy with careful consideration of the injury severity and

mechanism of injury are necessary in the future.
4.11 B-Cell depletion therapies

Following SCI, a robust B cell response results in the

production of pathogenic antibodies that impedes neurological

recovery (199, 200). The role of B cells in the pathogenesis of SCI

is further supported by the fact that functional outcomes are

improved in B cell deficient RAG knockout mice following SCI

(201). Based on this principle, selective B-cell depletion may be

neuroprotective following SCI (201, 202). Casili et al. (202)

assessed the effects of antibody mediated B cell depletion in

mice using a glycoengineered anti-muCD20 antibody (18B12).

Casili et al. (202) demonstrated that antibody mediated B cell
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depletion in mice improved functional recovery, slowed

neuronal death and hindlimb motor dysfunction, and

substantially inhibited the NFkB-dependent production of pro-

inflammatory molecules. In the future, clinical studies are

necessary in order to assess efficacy of anti-CD20 antibodies

including rituximab or obinutuzumab after SCI (202, 203).
4.12 Targeting T-cells: trafficking,
infiltration, and depletion

After SCI, T cells can directly or indirectly effect neurons,

glia, or other CNS cells through the production of tumor

necrosis factor (TNF)-a, interleukins (ILs), or other

proinflammatory cytokines that play key roles in cytotoxic cell

damage (92, 202, 204). Studies have demonstrated that

therapeutic strategies targeting T cell infiltration and

trafficking are neuroprotective (205). More specifically,

antagonism or neutralizing antibodies against CXCL10, a

known T cell recruiter, has been shown to improve functional

outcomes, decrease T cell infiltration, decrease neuronal death,

and significantly increase regeneration of axons (8, 206, 207).

Another promising immunosuppressive therapy following

SCI, involves the use of fingolimod, which targets sphingosine

1-phosphate receptor (S1P1), induces internalization of

S1P1, decreases the number of circulating lymphocytes,

and prevents trafficking of lymphocytes into tissues by

sequestering lymphocytes within lymph nodes (208, 209).

Locally administered fingolimod has been shown to result in

superior functional recovery, decreases reactive gliosis, and

prevents neuronal cell death (203, 210). Systemic treatment of

fingol imod af ter SCI has been shown to prevent

neuroinflammation and significantly improve both bladder

and motor function (211, 212). Given the promising results of

T cell targeting therapies, further clinical studies are necessary in

order to assess the efficacy of CXCL10 antagonisms and

fingolimod after SCI.
4.13 Macrophage transplantation

Previously, it has been shown that the macrophage immune

response to injury was both delayed and blunted in the CNS of

mature rodents compared to the more regenerative peripheral

nervous system (213–215). Rapalino et al. (216) showed that

local injection of homologous macrophages activated ex vivo

through incubation with homologous peripheral nerves

triggered partial motor recovery in rats with complete spinal

cord transection (216, 217). Incubation of macrophages with

autologous skin has been shown to result in equivalent effects

and is thought to produce an “alternatively activated wound-

healing phenotype” (213, 218). More specifically, in rats with a

contused spinal cord, injection of macrophages activated with
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skin resulted in decreased spinal cyst formation and enhanced

motor recovery (213, 218). This study also demonstrated that the

skin activated macrophages had increased levels of cell surface

markers that are characteristic of antigen presenting cells and

macrophage secretion of brain-derived neurotrophic factor and

interleukin-1b (213, 218). Autologous macrophage therapy has

exciting potential due to the key functions macrophages play

including clearing tissue debris from the site of injury, ability to

modulate the immune system and influence spinal cord neurons,

glial cells, and immune cells (217, 218). Safety studies in animals

reported no short-or long-term adverse effects or toxicity in

animals treated with macrophages to the Food and Drug

Administration under Investigational New drug application

No. 8427 (217).

Based on preclinical studies, an open-label phase I clinical

trial assessing the safety and tolerability of treatment with

incubated autologous macrophages in acute complete SCI

patients was conducted (217). In this trial 3 of 8 subjects

demonstrated conversion from AIS A to AIS C and overall the

therapy was well tolerated (217). A single-blinded primary

outcome randomized controlled trial involving six treatment

centers in the United States and Israel, however, did not

demonstrate a significant difference in the primary outcome

among the autologous incubated macrophage treatment group

(n=26) and the control group (n=16) (213). In the future,

additional studies and further protocol optimization will be

necessary to assess the efficacy of treatment of SCI with

autologous incubated macrophages.
4.14 Hepatocyte growth factor

Hepatocyte growth factor (HGF) binds to c-Met and plays

key roles in protection, regeneration, homeostasis, and exerts

anti-inflammatory effects in several organs (219). Studies in

rodent models have suggested that treatment with HGF results

in the neuroprotective effects, enhanced angiogenesis, reduction

of the lesion size, improved neuronal survival, and a decrease in

production of oligodendrocytes (131, 220, 221). Furthermore,

injection of HGF expression vector into rat spinal cords resulted

in higher rates of survival, regeneration of axons and

oligodendrocytes, and increased angiogenesis (131, 222). In a

primate model of cervical SCI, significant improvements in hand

dexterity were seen after HGF treatment (221, 223). Another

study showed that exogenous treatment of HGF decreased

astrocyte activation, decreased glial scar formation, decreased

leukocyte infiltration, and produced anti-inflammatory effects

(222). A recent double blind, randomized phase I/II clinical trial

demonstrated the safety of treatment with recombinant human

HGF and a larger phase III trial is necessary in the future in

order to assess efficacy (224).
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4.15 Neurotrophic factors

Neurotrophic factors are molecules that control the growth,

survival, proliferation, and differentiation of neurons (225). In

addition, neurotrophic factors play key roles in modulating

immune responses and autoimmunity (226). Neurotrophic

factors are often delivered with the use of collagenases (152).

Delivering neurotrophic factors via collagenases has been

reported to be more effective compared to delivery via direct

injection, growth factor-saturated gel, or continuous injection

(131, 152, 227). Ex vivo therapy can also be used when a patient’s

cells are removed, genetically modified to synthesize specific

neurotrophic factors, expanded in culture, and retransplanted

into the patient (131, 152). The benefit of this route is that it

provides localized, high-dose growth factors on delivery;

however, initial studies suggest that ex vivo therapy is not ideal

at stimulating distal axonal growth following initial axon

growth (227).
4.16 Fibroblast growth factors

Fibroblast growth factors are a family of growth factors that

are present in both the central and peripheral nervous system

that play key roles in determining cell fate, differentiation,

migration, and display neuroprotective effects (228–230). In

addition to their neuroprotective effects, FGFs also may have

some immunomodulatory effects as one approach utilizing

acidic FGF (aFGF) combined with peripheral nerve grafts in

rats following transection SCI increased levels of IL-4, IL-10, and

IL-13 (9, 231). Other studies have shown FGFs protect against

excitotoxicity and prevent the production of free radicals (131,

232). Treatment with FGF1 and FGF2 has been shown to

significantly increase the growth and survival of various types

of neurons including dopaminergic, cerebellar, hippocampal,

and isolated sensory neuronal cells (143, 228, 233–235).

Furthermore, both keratinocyte growth factor and basic FGF

treatments appears to provide neuroprotection following SCI

(131, 236). A prospective, open label uncontrolled clinical study

demonstrated the safety, feasibility, modest improvements in

functional outcomes in chronic SCI patients at 48 months that

were treated with survival nerve grafts with fibrin glue

containing acidic FGF (aFGF) (131, 237). Another clinical trial

involving nine patients with cervical SCI treated with direct

implantation of fibrin glue with aFGF for over six months

showed significantly improved ASIA motor and sensory scale

scores between the preoperative and follow-up (6-months

postoperative) (131, 238). In addition, a prospective, open-

label, uncontrolled clinical trial with 60 recruited patients with

SCI demonstrated substantial improvement in AISA motor and

sensory scale scores after 24 months following FGF
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therapy (239).
4.17 Granulocyte
colony-stimulating factor

Granulocyte colony-stimulating factor (G-CSF) is a cytokine

that in addition to its role in inducing proliferation, survival, and

development of granulocyte lineage cells has been shown to play

key roles in functional recovery following neuronal injury (240,

241). More specifically, studies have shown that G-CSF decreases

both neuron and oligodendrocyte apoptosis, suppresses

inflammatory cytokines (reduces TNFa and IL-1b in the

spinal cord lesion), inhibits glutamate excitotoxicity, enhances

angiogenesis, and promotes proliferation/mobilization of

neuronal cells (131, 242–245). Based on these studies, phase I/

IIa clinical trials were conducted and confirmed both the

feasibility and safety of G-CSF therapy following SCI (246–

248). The sentence should now read: "A phase II multicenter,

prospective, non-blinded, nonrandomized clinical trial assessing

patients with acute cervical SCI (within 48 hours after injury)

receiving G-CSF therapy versus control therapy showed

significant improvement (P<0.01) of motor paralysis and ASIA

scores even at 1 year after injury in patients receiving G-CSF

therapy compared to patients receiving control therapy (249). A

recent phase 3 prospective, randomized, double-blind, and

placebo controlled comparative trial was conducted and failed

to show significant changes in ASIA motor scores from

baseline to three months after G-CSF therapy (245).

Additional randomized controlled trials will be needed in the

future in order to determine the therapeutic benefits of SCI.

Immunological pharmaceutical clinical studies are summarized

in Table 1.
5 Stem cell therapy for SCI: Recent
developments, limitations, and
future directions

Stem cell therapy has potential to be revolutionary in the

management of SCI as stem cell therapy can possibly regenerate

neurological networks, modulate neuroinflammation, and

ameliorate damage. Although many transplanted stem cell

clinical trials for traumatic SCI patients are in the early stages

(phase 1/2), there recently have been some promising results

(250). Several studies have demonstrated safety and early

evidence of potential efficacy of transplanted mesenchymal

stem cells (MSCs), human neural stem/progenitor cells

(hNSPC) autologous human Schwann cell (ahSCs), human

umbilical cord-derived Wharton jelly mesenchymal stromal

cells (WJ-MSCs), and autologous bone marrow derived

mononuclear cells administered through multiple different
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routes (251–273). Transplanted stems cells exert their effects

via three distinct mechanisms including: (1) cell replacement

(274–276), characterized by the differentiation of stem cells into

neuronal or vascular cells to compensate for the decreased

function due to injury; (2) stem cell regeneration (31, 277,

278), in which transplantation of stem cells triggers the

regeneration of the patient’s neuronal stem cells; and (3)

functional multipotency (279), in which transplanted stem

cells secrete a multitude of trophic factors which ameliorate

damage to the nervous system or assists in the regeneration of

new neuronal circuits. Interestingly, Kishk et al. suggested a

potential contraindication of autologous MSCs in patients with a

past medical history of myelitis (280).

Currently, the majority of clinical trials have focused on stem

cell transplant in severely injured SCI patients (ASIA A) that are >6

months after SCI (chronic stage) (250). To date, there is minimal

hope for spontaneous recovery, and there are no effective treatments

for chronic stage (>6 months following injury) ASIA A patients,

which makes the potential benefits of stem cell transplantation an

attractive option (250). The results of trials of stem cell

transplantation in chronic stage SCI patients have varied with

some trials demonstrating recovery rates as high as 100% while

other trials have shown no improvement based on ASIA

impairment scale (256, 281, 282). Within the studies that

suggested no improvement based on AISA impairment scale,

patients did show some improvement on somatosensory evoked

potential (SEP) and motor-evoked potential (MEP) testing

suggesting some benefit in these patients (250, 281, 282). Other

studies have suggested higher rates of SCI recovery after receiving

stem cell therapy in matched-control patients (283, 284). In a group

of 70 patients randomly divided, 34% of patients that were treated

with intrathecal bone-marrow-derived mesenchymal stromal cell

therapy demonstrated improvement in AISA grade compared to

0% of patients in the control group (250, 285). Similarly, in a group

of 34 ASIA A SCI that were randomly divided into a control group,

rehabilitation group, and a cell transplantation group, only patients

that received cell transplantation showed significant motor, sensory,

and urinary recovery compared to their status prior to treatment

(250, 286).

Although a majority of preclinical animal studies have

focused on delivering stem cell therapy within the acute phase

after SCI (within the first 24 hours), there are relatively few

clinical trials that examine stem cell therapy within the first 24

hours after SCI (287). Due to the unforeseen requirement for

stem cells such as human umbilical cord mesenchymal stromal

cells (MSCs) for stem cell therapy following traumatic SCI, it is

unfortunately not feasible to use autologous material as the cells

would first need to be expanded ex vivo (288). Thus, stem cell

therapy during the acute phase of traumatic SCI requires the use

of allogenic material. Two complete injury ASIA A patients that

were treated with allogenic human umbilical cord mesenchymal

stromal cells that were transplanted using a collagen scaffold

showed functional recovery to an incomplete injury (ASIA C)
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1084101
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sterner and Sterner 10.3389/fimmu.2022.1084101
TABLE 1 Immunological pharmaceutical clinical studies summary table.

Year First author Study Type Conclusion Treatment

1984 Bracken Multicenter double-blind
randomized trial

No difference in neurological recovery of motor function or pinprick and light touch
sensation was observed between the two treatment groups six weeks and six months
after injury.

Corticosteroids

1990 Bracken Multicenter randomized,
double-blind, placebo-
controlled trial

In patients with acute spinal-cord injury, treatment with methylprednisolone in the
dose used in this study improved neurologic recovery when the medication was given
in the first eight hours.

Corticosteroids

1993 Galandiuk Prospective and
retrospective

These data do not permit a judgment to be made whether neurologic status was
improved by S administration. It is known that vital immune responses were adversely
affected, that pneumonia was somewhat more prevalent, and that hospitalization was
prolonged and costs therefore increased by an average of $51,504 per admission.

Corticosteroids

1993 Kiwerski Prospective, controlled Greater improvement when treated with dexamethasone, increased risk gastrointestinal
bleeding and delayed wound healing.

Corticosteroids

1994 Shepard Multicenter, randomized No evidence of compromised liver function from this steroid protocol. Corticosteroids

1997 Bracken Double-blind, randomized
clinical trial

Patients treated with tirilazad for 48 hours showed motor recovery rates equivalent to
patients who received methylprednisolone for 24 hours.

Corticosteroids

1997 Gerndt Retrospective review with
historical control

Although the NASCIS-2 protocol may promote early infectious complications, it had
no adverse impact on long-term outcome in patients with ASCIs.

Corticosteroids

1998 Petitjean Prospective, randomized
clinical trial

No neurologic benefit from treatment was observed. Corticosteroids

1998 Wing Prospective cohort study The true incidence of AVN among the methylprednisolone treated group is less than
5% and therefore they continue to recommend short term (24 h) methylprednisolone
therapy.

Corticosteroids

2001 Matsumoto Prospective, randomized,
and double-blind study

Aged patients with cervical spinal injury may be more likely to have pulmonary side
effects (P = 0.029) after high-dose therapy with MPSS.

Corticosteroids

2003 Pollard Retrospective study In traumatic, incomplete, cervical spinal cord injuries, neurologic recovery was not
related to high-dose methylprednisolone administration.

Corticosteroids

2006 Tsutsumi Retrospective, single
center

Improved motor scores with MPSS treatment in those with incomplete paralysis at
admission but not with those with complete paralysis.

Corticosteroids

2007 Lee Retrospective In patients with cervical spinal injury secondary to blunt injuries,
treatment with MP improves motor/sensory function, but harmful side effects limit its
functional efficacy in patients with complete ASCI.

Corticosteroids

2015 Evaniew Propensity score-matched
cohort study from a
Canadian multi-center
spinal cord injury registry

Methylprednisolone did not improve motor recovery in acute TSCIs, and there was a
higher rate of total complications in the methylprednisolone group.

Corticosteroids

2012 Casha Phase II In acute spinal cord injury, minocycline treatment is feasible, safe, and associated with a
tendency towards improvement.

Minocycline

1991 Geisler Prospective, randomized,
placebo-controlled,
double-blind trial

GM-1 enhanced the recovery of neurologic function after one year. GM-1

2001 Geisler Randomized, double-
blind, sequential,
multicenter clinical trial of
two doses of
Sygen®versus placebo

Primary efficacy analysis showed a trend but did not reach significance. GM-1

2018 Kucher Phase I ATI335 was well tolerated in humans; efficacy trials using intrathecal antibody
administration may be considered in acute SCI.

Anti-Nogo-A

2011 Fehlings Phase I/IIa The observed motor recovery suggested that BA-210 may increase neurological recovery
after complete SCI.

VX-210
(Cethrin)

(Continued)
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(289). More trials in the future will be necessary to assess the

potential benefits of acute phase stem cell transplant in traumatic

SCI patients. One potential confounder to consider in the acute

phase when assessing the efficacy of stem cell therapy is that

within the acute phase, spontaneous recover is possible (250).

Finally, some trials and studies have assessed stem cell

therapy administered between 2 days and 6 months following

SCI, which has been defined as the sub-acute phase (250). The

results of stem cell therapy trials within the sub-acute period of

SCI have produced variable results with some trials

demonstrating significant improvement and another group of

trials suggesting no significant recovery (264, 281, 290, 291). One

study examined the effectiveness of intra-spinal bone-marrow-

derived mononuclear cells in patients with complete SCI (292).

This study showed that when treated within 8 weeks following

SCI, 30% of patients had significant functional recovery

compared to 0% when stem cell transplantation was

performed at >8 weeks and 7.6% AISA improvement in
Frontiers in Immunology 14
matched control patients (250, 292). A different study reported

that significant improvement within the stem cell therapy group

compared to the control group in which 46% of AISA A patients

improved to ASIA C following injection of intrathecal bone-

marrow-derived mesenchymal stromal cells (BMSC) versus 15%

in the control group (290).
5.1 Future of stem cell therapy in SCI

Clinical trials, preclinical studies, and meta-analyses have

shown that although the efficacy of stem cell therapy is

promising, many challenges remain which will require further

optimization and innovative solutions (293). One of the biggest

and most concerning challenges of stem cell therapy for spinal

cord injury moving forward is the potential for adverse effects.

Although many clinical trials have been reported as safe without

mortalities or severe morbidity, tumorigenicity, immunogenicity,
TABLE 1 Continued

Year First author Study Type Conclusion Treatment

2013 McKerracher Phase I/IIa Time to recruitment was examined, and it was found that the extent of motor and
sensory recovery could not be explained by early surgery, and the Cethrin-treated
patients showed favorable trends compared with the Surgical Timing in Acute SCI data.

VX-210
(Cethrin)

2021 Fehlings Phase IIb/III The primary efficacy end-point was not met, with no statistically significant difference
in change from baseline in upper-extremity motor score at 6 months after treatment
between the VX-210 (9-mg) and placebo groups.

VX-210
(Cethrin)

2005 Knoller Phase I Incubated autologous macrophage cell therapy is well tolerated in patients with acute
SCI.

Macrophage
Transplant

2012 Lammertse Phase II The analysis failed to show a significant difference in primary outcome between the two
groups. The study results did not support treatment of acute complete SCI with
autologous incubated macrophage therapy as specified in the protocol.

Macrophage
Transplant

2020 Nagoshi Phase I/II Subjects did not show any serious adverse events caused by KP-100. KP-100 has the
potential to be useful and beneficial for SCI patients during the acute phase.

HGF

2008 Wu Phase I Modest nerve regeneration occurred in all 9 patients after procedure without any
observed adverse effects.

FGF

2011 Wu open-label, prospective,
uncontrolled human
clinical trial

FGF safe/feasible; improvement in motor/sensory scores, ASIA impairment scales,
neurological levels, and functional independence.

FGF

2018 Ko Phase III aFGF was safe, feasible, and could yield modest functional improvement in chronic SCI
patients.

FGF

2012 Takahashi Phase I/IIa G-CSF is safe and some neurological recovery may occur in most patients. G-CSF

2014 Inada Phase I/IIa G-CSF has beneficial effects on neurological recovery in patients with acute SCI. G-CSF

2014 Saberi Phase I/II G-CSF administration in motor-incomplete SCIs was associated with significantly
higher motor improvement, and also the higher the initial ASIA Impairment Scale
(AIS) grade, the less would be the final AIS change.

G-CSF

2015 Kamiya Phase I/IIa G-CSF administration is safe and effective. G-CSF

2018 Derakhshanrad Phase III Administration of G-CSF for incomplete chronic spinal cord injuries was associated
with significant motor, sensory, and functional improvement.

G-CSF

2021 Koda Phase III Failed to show a significant effect of G-CSF in primary end point but sub-analyses
suggested potential G-CSF benefits for a specific population.

G-CSF
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and cell therapy-related immunotoxicity are potentially serious

consequences of stem cell therapy (294). More specifically, to date

there have been at least 28 kinds of adverse effects reported (293).

Some side effects reported are likely secondary to the delivery

procedures rather than the cells (294). Side effects secondary to the

delivery procedure itself likely include subarachnoid hemorrhage,

cerebrospinal fluid leaks, and transient deterioration in

sensorimotor symptoms (25, 217, 280, 294–297). Moving

forward, innovative delivery strategies will need to be

investigated and employed to reduce side effects and further

improve efficacy. In addition, side effects not associated with the

transplanted cells and/or procedures were reported and include

but are not limited to vomiting, pulmonary thromboembolism,

fever, body aches, urinary tract infection (217, 262, 273, 291, 292,

294, 296, 298). Unfortunately, comprehensive assessment of safety

and efficacy of stem cell therapy has been challenging for SCI

patients as clinical trials in the past have been limited by relatively

low sample sizes and insufficient control groups (299). In the

future, large preclinical studies and early clinical studies are

necessary in order to assess the safety of transplantation of

human stem cells. Without rigorous assessment of the safety

and potential adverse effects, the widespread adaptation of stem

cell therapy will continue to be hampered.

Next, the properties and characteristics of the stem cells

themselves must be rigorously assessed in order to continue to

improve efficacy. Arguably the most critical factor in response to

stem cell therapy is the origin of the stem cells used in the

therapy (269, 300, 301). In addition to the studies examining

MSCs, studies have also suggested potential feasibility and safety

of human neural stem cell transplantation, but the clinical

efficacy of such therapies requires further study. Similarly,

studies examining autologous human Schwann cell

transplantation have demonstrated feasibility, although

currently they show unclear benefit (296, 302). Multiple

studies have also demonstrated safety and feasibility of

olfactory mucosa autografts (297, 303). To date, factors such

as cell survival and integration are hurdles that potentially

explain some of the heterogenous results among clinical trials

must be improved through more carefully standardizing

experimental designs.

The dose of stem cells also appears to be an especially critical

factor and has varied significantly among trials from 106 to 1010

cells (250, 304). The route of administration of stem cells also

appears to have a significant impact on therapy as intraspinal

approaches result in the highest level of cell engraftment but is

highly invasive compared to intravenous approaches which have

been suggested to result in the lowest number of cells within the

damaged lesion (250, 264). Furthermore, the optimal timing of

stem cell transplantation in SCI remains to be determined. One

pitfall to stem cell therapy moving forward is that a majority of

clinical trials are single-centered investigator-oriented trials and

therefore, further standardization including standardization

between agencies will be necessary moving forward (250).
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Stem cell clinical studies are summarized in Table 2. In the

future, clear and standardized transplantation strategies, cell

numbers, treatment times, storage protocols, and consistent

generation protocols which produce genetically stable and

consistent therapeutic cells will be critical to unlock the

potential efficacy of stem cell therapy for spinal cord injury

Importantly, recent evidence suggests that the biological and

therapeutic effects of stem cell therapy including MSCs are

contained within extracellular vesicles and secreted factors

(305–307). Next, we review the exciting potential of EV therapy.
6 Extracellular vesicle therapy for
SCI: An exciting new direction

Extracellular vesicles (EVs) are cell derived, nanosized sacs

that are encapsulated with a lipid bilayer and enriched for

nucleic acids, lipids, and proteins (308, 309). EVs are most

commonly classified based on their route of biogenesis and size

in which exosomes (40-150 nm) are produced via the

endolysosomal pathway, microvesicles (150-1000 nm) are

blebbed from the cell membrane, and apoptotic bodies (1,000-

5,000 nm) are released as a part of programmed cell death from

the plasma membrane (14). EVs have been shown to be released

from almost all cells and have been isolated from almost all body

fluids (310–313). Importantly, exosomes play a crucial role in

intercellular communication in diverse cellular processes

including immune response (314, 315). The initiation signal

for the peripheral immune response following traumatic SCI is

unclear (14, 316). Both neuronal and humoral hypotheses have

been investigated; however, to date no consistent molecular

candidates have been identified that fully account for initiation

of the peripheral immune response (14, 316–318). Recent

evidence suggests that EVs may be the missing link as they

mediate communicate between distant organs (14, 319).

Furthermore, EVs are attractive for therapeutic purposes

because accumulating evidence suggests that the potential

therapeutic benefit of MSC stem cell therapy is primarily due

to the secreted factors including EVs and is not due to the direct

cell-cell interactions within the injured tissues (305–307). EVs

also have exciting therapeutic potential due to their ability to

target specific cell types and their inherently biocompatibility

(319, 320). Below, we review the recent developments and

outline the future directions necessary in order to apply this

potentially revolutionary therapy to SCI patients.

Reports have suggested that traumatic SCI induces a

significant increase in plasma-derived EVs during the acute

phase of injury (14). To date, however, studies characterizing

EVs after SCI are lacking compared to the number of studies

investigating EVs following traumatic brain injury (TBI) (14,

319). It is important to emphasize that although TBI data may

provide some insight into the role of EV signaling following SCI
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TABLE 2 Stem cells clinical studies summary table.

Year First
Author

Study
Type

Conclusion Treatment

2005 Feron Phase I Transplantation of autologous olfactory ensheathing cells into the injured spinal cord is feasible and is
safe.

Stem Cell

2006 Lima Prospective,
case series

Olfactory mucosa autograft transplantation into the human injured spinal cord was feasible, relatively
safe, and potentially beneficial.

Stem Cell

2006 Moviglia Prospective,
case series

Minimally invasive administration of AT-NSC showed minor adverse events, and was effective for the
repair of chronic spinal cord lesions.

Stem Cell

2006 Sykova Phase I/II Autologous bone marrow cells appears to be safe Stem Cell

2007 Chernykh Prospective,
controlled

Transplantation of autologous bone marrow cells can be a novel safe strategy for the treatment of
patients in the late period after spinal trauma.

Stem Cell

2007 Yoon Phase I/II BMC transplantation and GM-CSF administration were not associated with any serious adverse clinical
events increasing morbidities. The AIS grade increased in 30.4% of the acute and subacute treated
patients (AIS A to B or C), whereas no significant improvement was observed in the chronic treatment
group.

Stem Cell

2008 Deda Prospective,
case series

BM-derived autologous stem cell therapy was effective and safe for the treatment of chronic SCI. Stem Cell

2008 Geffner Pilot clinical
study,
prospective

These studies demonstrate that BMSCs administration via multiple routes was feasible, safe, and may
improve the quality of life for patients living with SCI.

Stem Cell

2008 Mackay-Sim Phase I/IIa Transplantation of autologous olfactory ensheathing cells into the injured spinal cord was feasible and
safe up to 3 years of post-implantation.

Stem Cell

2008 Saberi Prospective,
case series

Autologous Schwann cell transplantation was generally safe for the selected number of SCI patients, but
it did not prove beneficial.

Stem Cell

2009 Cristante Prospective Peripheral blood stem cells were safe and improved SSEPs in patients with complete SCI. Stem Cell

2009 Kumar Phase I/II Transplant of autologous human bone marrow derived mononuclear cells through a lumbar puncture
was safe, and one-third of spinal cord injury patients showed perceptible improvements in the
neurologic status.

Stem Cell

2009 Pal Pilot clinical
study,
prospective

Safety was observed with no serious adverse events following transplantation of BM MSCs in SCI
patients.

Stem Cell

2010 Kishk Case control
series

Autologus MSCs may have side effects and may be contraindicated in patients with a history of myelitis. Stem Cell

2010 Lima Phase I/II OMA was feasible, relatively safe, and possibly beneficial in people with chronic SCI when combined
with postoperative rehabilitation.

Stem Cell

2011 Bhanot Pilot clinical
study,
prospective

Though the administration of allogenic human mesenchymal stem cells was safe in patients with SCI, it
may not be efficacious; especially in patients with chronic SCI.

Stem Cell

2011 Ra Phase I The systemic transplantation of hAdMSCs appeared to be safe and did not induce tumor development. Stem Cell

2012 Frolov Prospective,
sex/age
matched
control

The local effects of autologous hematopoietic stem cell treatment at the cervical level were evaluated by
median SEP and wrist muscle MEP demonstrated the ability of stem cells to spread within the spinal
cord at least from lumbar to the cervical level, home there, and participate in the neuro-restoration
processes.

Stem Cell

2012 Karamouzian Phase I/II Transplantation of autologous BMC via LP was a feasible and safe technique. Stem Cell

2012 Park Prospective,
case series

Three of the 10 patients with SCI who were directly injected with autologous MSCs showed
improvement in the motor power of the upper extremities and in activities of daily living, as well as
significant magnetic resonance imaging and electrophysiological changes during long-term follow-up.

Stem Cell

2012 Sharma Prospective,
case series

The results showed that intrathecally and intramuscularly administered autologous bone marrow-
derived mononuclear cell was safe, efficacious, and also improved the quality of life of children with
incurable neurological disorders and injury.

Stem Cell

(Continued)
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TABLE 2 Continued

Year First
Author

Study
Type

Conclusion Treatment

2013 Dai Prospective,
randomized,
control

BMMSCs transplantation improved neurological function in patients with complete and chronic cervical
SCI.

Stem Cell

2014 Al-Zoubi Prospective,
case series

This study presents a safe method for transplanting specific populations of purified autologous SCs that
can be used to treat SCIs in a clinical setting.

Stem Cell

2014 Cheng Prospective,
randomized,
control

UCMSC transplantation effectively improved neurological functional recovery after spinal cord injury,
and its efficacy was superior to that of rehabilitation therapy and self-healing.

Stem Cell

2014 El-Kheir Phase I/II When combined with physical therapy, autologous adherent bone marrow cell therapy appeared to be a
safe and promising therapy for patients with chronic SCI of traumatic origin.

Stem Cell

2014 Mendonca Phase I Intralesional transplantation of autologous mesenchymal stem cells in subjects with chronic, complete
spinal cord injury was safe, feasible, and may promote neurological improvements.

Stem Cell

2015 Shin Phase I/IIa Transplantation of hNSPCs into cervical SCI was safe and well-tolerated and was of modest neurological
benefit up to 1 year after transplants.

Stem Cell

2016 Hur Pilot clinical
study,
prospective

Intrathecal transplantation of autologous ADMSCs for SCI was free of serious adverse events, and
several patients showed mild improvements in neurological function.

Stem Cell

2016 Oh Phase III Single MSCs application to intramedullary and intradural space was safe, but had a very weak
therapeutic effect compared with multiple MSCs injection.

Stem Cell

2016 Satti Phase I Autologous MSCs were safely administered through intrathecal injection in spinal cord injury patients. Stem Cell

2016 Vaquero Phase I/II Personalized cell therapy with MSCs was safe and led to clear improvements in clinical aspects and
quality of life for patients with complete and chronically established paraplegia.

Stem Cell

2017 Anderson Phase I It was feasible to identify eligible candidates, appropriately obtain informed consent, perform a
peripheral nerve harvest to obtain SCs within 5–30 days of injury, and perform an intra-spinal
transplantation of highly purified autologous SCs within 4–7 weeks of injury.

Stem Cell

2017 Vaquero Phase II Administration of repeated doses of MSCs by subarachnoid route was a well-tolerated procedure that
was able to achieve progressive and significant improvement in the quality of life of patients suffering
incomplete SCI.

Stem Cell

2018 Curtis Phase I The results support the safety of NSI-566 transplantation into the SCI site and early signs of potential
efficacy in three of the subjects warrant further exploration of NSI-566 cells in dose escalation studies.

Stem Cell

2018 Levi Phase II Interim analysis of Cohorts I and II demonstrated a trend toward Upper Extremity Motor Score
(UEMS) and Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP) motor
gains in the treated participants but at a magnitude below the required clinical efficacy threshold set by
the sponsor to support further development resulting in early study termination.

Stem Cell

2018 Levi Phase I/II A total cell dose of 20 M cells via 4 and up to 40 M cells via 8 perilesional intramedullary injections
after thoracic and cervical SCI respectively proved safe and feasible using a manual injection technique.

Stem Cell

2018 Vaquero Phase II Autologous MSCs for SCI was safe and showed efficacy in patients with SCI, mainly in recovery of
sphincter dysfunction, neuropathic pain, and sensitivity.

Stem Cell

2018 Vaquero Phase II MSCs could be considered as a new alternative to the treatment of post-traumatic syringomyelia,
achieving reduction of syrinx and clinical improvements in individual patients.

Stem Cell

2018 Xiao Prospective,
case series

Supraspinal control of movements below the injury was regained by functional scaffolds implantation in
the two patients who were judged as the complete injury with combined criteria, it suggested that
functional scaffolds transplantation could serve as an effective treatment for acute complete SCI patients.

Stem Cell

2019 Levi Phase II There was a trend toward Upper Extremity Motor Score (UEMS) and Graded Redefined Assessment of
Strength, Sensibility, and Prehension (GRASSP) motor gains in the treated participants, but at a
magnitude below the required clinical efficacy threshold set by the sponsor to support further
development resulting in early study termination

Stem Cell

(Continued)
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injury, the impact of EVs on lesion progression and the overall

impact on the acute phase response likely differ in traumatic SCI

compared to TBI due to factors such as: (a) anatomical

differences in the distribution of gray and white matter; (b) the

phenotype and distribution of microglia in the spine compared

to the brain; (c) increased local CXC chemokine expression and

neutrophil recruitment to the spinal cord compared to the brain;

and (d) greater breakdown of the blood spinal cord barrier

compared to the blood brain barrier (14, 321). One study showed

that EVs isolated from deceased SCI patients had a

proinflammatory phenotype as EVs were enriched for

inflammasome associated proteins including caspase-1,

NLRP1, and ASC (322). In 2020, two studies reported EV-

associated RNA-sequencing data from the serum of rats at 1 and

7 days postinjury (323, 324). Another study showed dynamic

alterations in EVs in a mouse model following a thoracic

contusion SCI (325). In this study, Khan et al. (325) found

that there was a robust increase in plasma tetraspanin CD81+

extracellular vesicles after SCI and an overall decrease in total

plasma EV. A significant decrease in CD81 surface expression on

astrocytes was also observed by Khan et al. (325) at the site of

injury suggesting that these cells may release CD81 positive EVs

into the blood.

Astrocytes had previously been suggested to regulate the

acute phase response (APR) (326). Based on this evidence,

plasma EVs from mice with SCI or from uninjured control

mice were intracerebroventricularly injected into healthy mice to

assess the role of circulating EVs in promoting inflammation in

recipient target organs (319, 325). Injection of EVs from SCI

mice into healthy mice resulted in increased expression of

several key inflammatory genes including astrocyte reactivity

markers within 24 hours after injection of SCI EVs compared to

injected EVs from uninjured mice (319, 325, 327). In addition,

flow cytometry showed increased intracellular IL-1b and IL-1a
levels in brain astrocytes from injected SCI Evs compared to EVs

from uninjured mice (319, 325, 327). Therefore, this recent data

suggests that astrocytes may play a key role in the production of

EVs and regulating the APR following SCI (319, 325). In order to

design and optimize EV therapies for traumatic SCI, it will be
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imperative for future studies to focus on characterizing the

circulating population of EVs in SCI and to characterize the

pathophysiological functions of EVs in SCI as there may be key

differences in the role of EVs in SCI versus TBI.

To date, most studies have employed EVs from mesenchymal

stem cells and have consistently shown improved recovery of

function and behavior deficits in SCI and TBI models (306, 328,

329). For example, Jia et al. reported that injecting sonic hedgehog

(Shh)-overexpressing bone mesenchymal stem cell derived

exosomes was an effective therapy in a rat SCI model as there

was an improvement in hind limbmotor function based on Basso-

Beattie-Bresnahan scores relative to both untreated and control

bone mesenchymal stem cell derived exosome treatment groups

(330). In addition, Li et al. (331) reported significant nerve

recovery through attenuation of inflammation and oxidation in

a rat transection SCI model receiving human mesenchymal stem

cell derived exosomes immobilized in an adhesive hydrogel.

Interestingly, Guo et al. (332) reported that intranasal

administration of mesenchymal stem cell derived exosomes

could cross the blood brain barrier, travel to area of the SCI,

and when loaded with phosphatase and tensin homolog small

interfering RNA, these exosomes decreased astrogliosis,

decreased microgliosis, improved axonal growth, and

increased neovascularization.

In addition to the consistently improved recovery of function

in SCI models administered EVs, EVs are attractive compared to

cell-based therapies as they mitigate concerns of uncontrolled

proliferation or differentiation of cellular transplants and

immunogenicity (319, 320). Excitingly, EV therapy compared

to administration of their parental cells appears to result in

superior outcomes as a recent study demonstrated that

intravenous administration of human umbilical cord

mesenchymal stromal cell (hUC-MSC) derived extracellular

vesicles resulted in more effective modulation of the systemic

immune response and more efficiently reduced scarring and

inflammation compared to administration of parental MSCs

(333). Other studies have also reported markedly reduced

inflammation and improved functional outcomes with MSC-

derived EV administration following traumatic SCI (334–336).
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Year First
Author

Study
Type

Conclusion Treatment

2020 Albu Phase 1/IIa Intrathecal transplantation of human umbilical cord-derived WJ-MSCs was safe. A single intrathecal
infusion of WJ-MSCs in patients with chronic complete SCI induced sensory improvement in the
segments adjacent to the injury site.

Stem Cell

2021 Gant Phase I Feasibility and safety were shown for ahSC transplantation combined with a multi-modal rehabilitation
protocol for participants with chronic SCI.

Stem Cell

2021 Honmou Phase II Feasibility, safety, and functional improvements with infused MSCs into patients with SCI was observed. Stem Cell
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In addition to the role of EVs modulating the systemic immune

response, the potential of a higher local concentration and more

rapid contact with the tissue lesion may also facilitate improved

outcomes compared to cell therapies although more studies are

needed (288, 333). Interestingly, reduction of circulating

neutrophils and retention of monocytes within the spleen have

been suggested to result in improvement in locomotor function

in a SCI model administered MSC-EVs (306). Previous studies

have shown that MSC-EVs localize to the spleen, and

splenectomies have been associated with improved

neurological outcomes in SCI models (14, 306, 337, 338).

Future studies to assess whether the benefit of MSC EVs

would remain in SCI models that had undergone splenectomy

are needed (14).
6.1 Principles of design, limitations, and
future directions of EV therapy

Arguably the cell source of the EVs is the most critical factor

in manufacturing EVs for therapeutic purposes as the phenotype

of EVs including the cell-surface proteins, cytosolic proteins, and

composition of the nucleic acids that are available to be packaged

into EVs are at least partly dictated by the cell source (339–342).

For instance, the EV content of one critical class of small

ncRNAs and miRNAs is significantly different among cell

sources suggesting the importance of cell source as an EV

design criterion (343, 344).

The cell culture conditions and microenvironment are also

critical in order to tune the therapeutic bioactivity of EVs (319).

Parameters including cell density seeding, cell age/passage, and

the collection frequency of EVs have been reported to result in

significant changes in production rates and the therapeutic

activities in several different cell types (319, 345). For instance,

EVs isolated from stressed astrocytes that were oxygen and

glucose deprived resulted in neuroprotection in vitro most likely

due to an increase in EV associated miR-92b-3p content

compared to astrocytes that were not oxygen and glucose

deprived (346, 347). The microenvironment cells are grown in

also appears to be a critical factor as neural progenitor cells grown

in proinflammatory conditions caused significant changes in RNA

and protein levels with one study demonstrating enrichment of

membrane bound IFN-g and IFN-g receptor 1 (IFNGR1)

complexes that can induce key regulators of neuroinflammation

and cell proliferation such as IFNGR1 and STAT1 (348). The

employment of 3D printing could also be critical as 3D printing

biomaterials will facilitate construction of complex precisely

controlled microenvironments that could optimize EV

production (319, 349, 350).

EVs are advantageous for therapeutic purposes as they

protect nucleic acids and other bioactive components from
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degradation over long distances while also ensuring delivery to

the cytosol of the target cell without triggering an auto-immune

response (319). Although EVs hold great promise for

transporting small interfering RNAs (siRNAs), miRNAs,

mRNAs, and antisense oligonucleotides, in the case of some

critical ncRNAs, the loading can be relatively low with as few as

one bioactive copy of a given miRNA per EV (319, 351–353).

Thus, it may be necessary to use high or repeated EV doses or

employ cargo loading control strategies in situations where the

dose of bioactive cargo is insufficient to adequately modulate

gene expression (319, 351–353). Multiple studies have reported

methods to load CNS-specific miRNA cargo into non-resident

CNS cell types using genetic modification and subsequent over

expression (14, 319). Other studies have used sonication,

coincubation of EVs with desired cargo, and lipid or

cholesterol functionalization (354–356).

One of the most important limitations of EVs to address for

therapeutic purposes is the isolation protocols and scalability.

Currently, several EV isolation strategies, each with their own

advantages, have been utilized including differential

centrifugation, ultrafiltration, precipitation, size exclusion

chromatography, immunoisolation, and density gradient

separation (357, 358). Ideally, an EV isolation protocol would

be readily scalable to produce EVs with high purity for

therapeutic purposes. The issue is that methods that result in a

high purity can often have a relatively low yield and protocols

with relatively high yields often co-isolate various protein

aggregates, lipoproteins, and other impurities (357, 358).

Therefore, the isolation protocol must always be optimized for

yield and purity when manufacturing EVs for therapeutic

purposes. Currently in the field, most groups are isolating EVs

by differential centrifugation followed by ultracentrifugation

(359). In situations where high purity is needed, further

density-based purification using a sucrose or iodixanol

centrifugation gradient can be used (360).

Finally, the route of administration appears to be a critical

factor in EV therapy. More specifically, a 2021 study

demonstrated that intralesional injection of EVs in a SCI rat

model resulted in a more robust improvement of BBB score and

sub-score compared to EVs delivered intravenously (288).

Although intravenous injection is less invasive, delivering EVs

intravenously will require higher doses of EVs as EVs can

accumulate at off-target sites including the liver, spleen, and

lungs, and systemic delivery of EVs intravenously results in

delayed delivery of therapeutic EVs to the site of injury (288, 319,

333). The half-life of EVs is also an important to consider as a

study observed a half-life of approximately 30 minutes in vivo in

EVs loaded with dye after intravenous delivery (358). Therefore,

intralesional injection could facilitate improved outcomes by

more rapidly delivering a higher dose of therapeutic EVs to the

lesion while minimizing off target accumulation and systemic
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degradation (7, 47, 48).
7 Discussion

SCI is a devasting event that has a complex pathophysiology.

Following the primary mechanical injury, several secondary

mechanisms of injury propagate cell dysfunction/cell death

resulting in worse SCI patient outcomes. Among the many

mechanisms of secondary injury, the systemic inflammatory

response and neuroinflammation play pivotal roles in

determining the severity of injury and patient outcomes.

Following tSCI, the immune response likely exerts both

beneficial and harmful roles and as previously discussed both

the innate and adaptive immune systems have been implicated

in secondary injury progression in tSCI. Thus, selectively

targeting the immune response is a premier therapeutic

approach as developing immunotherapeutics for SCI that shift

the inflammatory cascade towards wound healing and away

from secondary injury progression could drastically improve

functional outcomes.

Recently, as discussed in this review, several studies have

characterized the cytokine/chemokine cascades and the patterns

of immune cell infiltration after SCI. Although there are some

differences among humans, rats, and mice and further

characterization is necessary, this work will facilitate therapeutic

design and identification of potential biomarkers. Overall, TNFa,
IL-1b, and IL-6 have been shown to be key mitigators of the

immune response in the early hours/days following SCI. Although

progress over the past two decades has significantly improved our

understanding of the cytokine/chemokine cascades following tSCI,

further characterization which identifies the timing of

inflammatory cascades and the transit process of both innate

and adaptive immune responses is necessary. More specifically,

preclinical and clinical studies are needed that further characterize

these inflammatory cascades and transit processes in the context of

“beneficial” versus “harmful” responses to injury. A detailed

molecular understanding of the inflammatory cascades

underlying maladaptive injury responses versus wound healing

responses would then allow for the design of novel

immunotherapeutics or the repurposing of existing agents to

shift maladaptive immune responses towards wound healing and

thus potentially drastically improve outcomes. Over the next few

decades, it is likely that immunomodulatory pharmaceuticals will

be involved in managing SCI patients given the potential benefits.

Due to the complex pathophysiology of SCI, however, multiple and

synergistic immunotherapies may be required to promote recovery

and halt maladaptive immune responses that promote secondary

injury. In addition, clinical research and methods to improve
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targeted delivery to specific organs or cell types in a safe and

stable manner will need to be developed and investigated.

Currently, there are multiple promising potential

pharmaceutical agents and preclinical/clinical studies have

reported no harmful effects and have suggested impressive

benefits with NSAID/cyclooxygenase inhibitor, ChABC, and G-

CSF therapy after SCI. Given these impressive improvements in

functional results with no apparent harmful effects, we suggest a

pressing need for clinical trials examining the role of these therapies

in SCI. Two other pharmaceuticals, methylprednisolone and GM-1,

appear to have minimal or questionable benefit in multiple studies

and based off these studies should likely not routinely be used

in SCI.

Furthermore, development of reliable SCI biomarkers that

could predict outcomes and aid both medical management as

well the surgical management of SCI patients is crucial. Due to

the complicated pathophysiology underling SCI with likely both

beneficial and detrimental immune responses following SCI,

development of reliable predictive biomarkers has been

challenging. Although recent studies have identified several

proteins that appear to correlate with disease severity and

patient outcomes including CSF IL-6, IL-8, tau, S100b, GFAP,

and MCP-1, further studies are necessary in order to validate

these proteins as true biomarkers that will guide clinical

decision making.

Finally, given the complexity of SCI pathophysiology it is

likely that these patients could benefit from not only

immunotherapeutic agents but also combining other

synergistic therapies including stem cell therapies/extracellular

vesicle therapies and neuromodulation, spinal stimulation, and

prosthetic devices which are beyond the scope of this review. In

order to best apply combinations of these potentially synergistic

therapies, further clinical and preclinical research investigating

the efficacy, adverse effects, and biomarkers or parameters for

reliable patient selection will be critical moving forward. In the

case of stem cell transplantation, clinical trials have shown some

promising results; however, overall, the results appear

he te rogenous . Fur the r s t andard i za t ion inc lud ing

standardization between agencies will be necessary in the

future. In addition, recent accumulating evidence suggests that

the biological and therapeutic effects of stem cell therapy maybe

due to secreted factors including EVs. Recent studies also suggest

that EV therapy results in superior outcomes and is

advantageous in that EV therapy mitigates concerns of

immunogenicity and uncontrolled proliferation/differentiation

that are associated with cellular transplants. Although the EV

therapy has the potential to be revolutionary, several challenges

as described in this review need to be addressed before it

becomes a mainstream therapy. While challenges in
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developing pharmaceutical, stem cell, and EV therapies for SCI

remain, new strategies and potential solutions continue to evolve

which may provide a path forward to better the outcomes of

SCI patients.
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264. Syková E, Homola A, Mazanec R, Lachmann H, Konrádová SL, Kobylka P,
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