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Simple Summary: In recent years, immunotherapy has emerged as a pillar in the fight against cancer.
However, the heterogeneity within the tumor microenvironment poses challenges to the efficacy of
immunotherapy treatment strategies and may contribute to treatment resistance, progression and
relapse. Hence, researchers have used transcriptional spatial profiling techniques to uncover the
complex cancer immune profile while retaining critical spatial information of different cell types.
This would help identify the source of tumor heterogeneity and uncover pathogenic mechanisms,
potential drug targets and novel biomarkers. In this review, we discuss various approaches for
transcriptional spatial profiling of cancer tissues such as in situ hybridization, digital spatial profiling
and an emerging technology known as Visium Spatial Gene Expression Solution. We highlight the
strengths and limitations of the different technologies and the potential and promise they hold in the
advancement of cancer immunotherapy.

Abstract: Intratumoral heterogeneity poses a major challenge to making an accurate diagnosis and
establishing personalized treatment strategies for cancer patients. Moreover, this heterogeneity
might underlie treatment resistance, disease progression, and cancer relapse. For example,
while immunotherapies can confer a high success rate, selective pressures coupled with dynamic
evolution within a tumour can drive the emergence of drug-resistant clones that allow tumours
to persist in certain patients. To improve immunotherapy efficacy, researchers have used
transcriptional spatial profiling techniques to identify and subsequently block the source of
tumour heterogeneity. In this review, we describe and assess the different technologies available
for such profiling within a cancer tissue. We first outline two well-known approaches, in situ
hybridization and digital spatial profiling. Then, we highlight the features of an emerging
technology known as Visium Spatial Gene Expression Solution. Visium generates quantitative
gene expression data and maps them to the tissue architecture. By retaining spatial information,
we are well positioned to identify novel biomarkers and perform computational analyses that
might inform on novel combinatorial immunotherapies.

Keywords: heterogeneity; clonal diversity; transcriptomics; in situ hybridization; digital spatial
profiling; cancer; biomarkers; immunotherapy
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1. Introduction

Immunotherapy has emerged as a promising and powerful pillar in the fight against cancer:
These therapeutics activate the patient’s immune system to kill cancer cells. Current immunotherapeutic
strategies are based on cancer vaccines, cytokines (such as interleukin-2), adoptive cell transfer (ACT),
and immune checkpoint inhibition [1,2]. These treatments have shown great promise, and immune
checkpoint inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1
(PD-1/PD-L1) pathway in particular, have now been approved as first- or second-line treatments for
melanoma, lymphoma, and other malignancies [3]. However, only a minority of patients positively
respond to treatment [4]; some patients ultimately develop resistance [5] and/or even suffer adverse
reactions [6] and autoimmune toxicity [7] as a result of the treatment. The reason for this poor result in
a subset of patients is partly attributed to the composition of the dynamic tumour microenvironment
(TME) [8–10]. Here, a complex interplay between tumour cells, infiltrating immune cells, and the
stroma as well as the location and density of immune cell populations affects disease progression
and responses to therapy [11,12]. This paradigm has spurred the development of technologies that
can characterize the cancer immune profile while retaining spatial information of the various cell
types. Spatial information is critical, as visualizing the interplay between the tumour and various cell
groups that mediate immune surveillance will improve our understanding of pathogenic mechanisms
and potential drug targets. Spatial context, including cell–cell distances and feature heterogeneity,
can also be correlated with clinical outcomes to identify predictive biomarkers for responses to
immunotherapy [13]. Meanwhile, analysing how current immunotherapeutic strategies alter the TME
architecture and immune context can help guide future treatment approaches [14]. Together, we are
better able to identify novel biomarkers, potential drug targets and pathogenic mechanisms.

Multiplex immunohistochemistry/immunofluorescence (mIHC/IF) is one commonly used tool
that enables the simultaneous detection of up to 40 markers of interest in a single tissue sample [15,16].
This approach was better able to predict the cellular response to PD-1/PD-L1 therapy compared to
analyses of the tumour mutational burden (TMB) or gene expression profile (GEP) alone [17]. This is
because mIHC/IF has a spatial component that provides information on the TME architecture and
co-expression of multiple cellular markers, unlike TMB analyses, which only provide quantitative
measurements of mutations in tumour cells [18], and GEP, which only measures mRNA transcript levels
of immune-related genes or signatures. [19] However, despite these promising findings, multiplexed
spatial analyses are limited by the number of markers that can be detected at any one time, compared
to genomic techniques, which can provide a holistic view of the entire genome or transcriptome [20].
As a result, we tend to bias our selection of markers and thus have limited capacity for spatial analyses
that follow a hypothesis-driven rather than an unbiased data-driven approach. Next-generation
sequencing (NGS) has circumvented this limitation of mIHC/IF and enabled higher throughput
whole-genome or whole-transcriptome sequencing compared to conventional mIHC/IF techniques [21,
22]. However, such sequencing performed on bulk tissues or single cells after enzymatic dissociation
comes at the sacrifice of critical spatial information [23,24].

Given these limitations, researchers and developers have focused efforts on finding a one-stop
solution that offers both the breadth and depth of sequencing coverage of biomarkers as well as
adequate resolution and spatial information. Spatial transcriptomics (ST) holds great promise in this
area, providing researchers with the ability to identify novel biomarkers and insight into the dynamic
interplay between tumour cells, adipose tissue, vessels, tertiary lymphoid structures, and the stroma in
the TME [25]. In this review, we outline the features of the various technologies that are available for
such transcriptional spatial profiling in cancer tissues and the potential and promise they hold in the
advancement of cancer immunotherapy.

2. In Situ Hybridization

In situ hybridization (ISH) is a molecular technique to visualize specific DNA or RNA molecules in
cells or tissues. ISH is based on the complementary nature of DNA/DNA or DNA/RNA double strands
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and the hybridization of a labelled nucleic acid probe onto the target in situ. In this way, we can obtain
useful spatial information. Traditionally, nucleic acid probes are attached to a radioactive label [26–28];
however, this approach has been largely replaced by a fluorochrome. The result is fluorescence in situ
hybridization or FISH. FISH itself has been further developed into techniques known as multiplexed
single-molecule FISH (smFISH), which is able to simultaneously detect approximately 10,000 genes
and around 70,000–100,000 RNA molecules per cell at a single-molecule resolution. The basics of each
technique are outlined below.

2.1. Fluorescence In Situ Hybridization

FISH is a useful clinical tool for detecting microorganisms, diagnosing solid and haematological
cancers, and guiding cancer treatments. For example, FISH has been conventionally used to detect
the BCR-ABL1 t(9;22) translocation in chronic myeloid leukaemia and many fusion genes in various
cancers [29,30]. FISH has also been used to confirm human epidermal growth factor receptor 2 (HER2)
gene amplification in breast cancer and thus to identify patients that are most likely to benefit from
trastuzumab, a monoclonal antibody treatment against HER2 [31]. Another important example is the
detection of the echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase
(EML4-ALK) fusion gene in non-small cell lung cancer; this is now a routine clinical test, the results of
which indicate the use of a targeted therapy known as crizotinib [32,33].

As more immunotherapies are developed and approved, researchers have sought to use FISH
to predict responsiveness to immunotherapy in cancer. Not surprisingly, PD-L1 status is commonly
investigated but its predictive and prognostic value are variable [34–36]. In addition, FISH might
be useful for predicting responsiveness to intravesical bacillus Calmette–Guerin immunotherapy in
bladder cancer [37,38]. To extend the effectiveness of FISH, we can combine FISH with IHC [39,40]
or IF [41,42] to detect RNA and protein simultaneously in different cell types to better characterize
TME. Despite these promising results and uses of FISH, conventional FISH largely detects cytogenetic
aberrations at the DNA level; it fails to address the complexity of the TME and intra-tumour
heterogeneity arising from differential mRNA and protein expression. High-throughput methods are
still needed to study individual tumours on a larger scale.

2.2. Single-Molecule FISH and RNAscope

In an attempt to address the limitations of conventional FISH, research efforts have shifted from
studies of DNA to studies of single-molecule RNA, using high-throughput methods. The resulting
technique, known as single-molecule FISH (smFISH), allows researchers to visualize and quantify
individual mRNA molecules and characterize the spatial pattern of endogenous gene expression [43–46].
By targeting cellular mRNA instead of DNA molecules, smFISH has become a robust tool to assess
intra-tumour transcriptional heterogeneity [47–49].

RNAscope (Advanced Cell Diagnostics, Hayward, CA, USA) is a commercialized ISH-based
technology that uses branched DNA and signal amplification to achieve better sensitivity and specificity
than conventional FISH: By this approach, we can detect and quantify low-abundance mRNA [50]
while suppressing background noise [51]. This method permits the detection of up to 12 different RNA
targets and can be conveniently combined with IHC and/or IF to simultaneously study RNAs and
proteins in an automated manner [52–54]. A major advantage of RNAscope over other FISH-based
technologies is that >13,000 RNA probes have already been designed and validated with commercially
established protocols; it is thus a time-saving and user-friendly approach for use in research and
clinical laboratories.

RNAscope has already been widely used in various disciplines, including in the context of
infectious diseases, cancers, immunotherapy, inflammation, and neurosciences [55–58]. In particular,
it is a robust alternative to IHC to evaluate the expression of immune checkpoints, such as PD-L1,
in various solid cancers [59–64]. By detecting a specific RNA of interest, RNAscope has shed light
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on the TME, the mechanisms of immune escape [65–71], and new predictive and prognostic cancer
biomarkers [72,73].

In the context of immunotherapy, RNAscope has played valuable roles in understanding chimeric
antigen receptor (CAR)-T cell therapy, a technique by which T cells are genetically engineered to
produce receptor proteins that target cancer cells. RNAscope has been used to assess the specificity of
target gene expression and to track the distribution of CAR-T cells in a xenograft mouse model [57].
Extending to human samples, Bu et al. validated the expression of B-cell maturation antigen (BCMA)
as a target for CAR-T cell immunotherapy in multiple myeloma [74] while O’ Rourke et al. tracked
infused CAR-modified T cells against glioblastoma using RNAscope [75]. Overall, despite its limited
multiplexed capacity and low target throughput, RNAscope is still a viable option for researchers and
clinical laboratories to study the expression of targeted RNA species in cancer: The sensitivity and
convenience is so high that studying only a handful of RNA targets is useful.

2.3. Multiplexed smFISH

Although we can gain increased sensitivity and specificity from technologies, such as RNAscope,
we ultimately need FISH-based technologies that permit a high-throughput transcriptomic analysis to
better characterize rare populations of cells and cell types that display a distinctive gene expression
profile. New technologies, such as multiplexed error-robust FISH (MERFISH) (Vizgen, Cambridge, UK)
and sequential FISH (seqFISH), not only provide improved RNA quantification, signal amplification,
and detection but also, more importantly, offer the opportunity of image-based transcriptome analysis
by massively increasing the number of RNA species that can be detected at a given time [76,77].

Modified from smFISH, MERFISH employs a barcode-based combinatorial labelling approach
followed by multiple rounds of hybridization to ensure a high level of brightness of the fluorescence signal
and a high number of RNA species that can be detected at one time (Figure 1) [78]. Impressively, MERFISH
can achieve near genome-wide profiling and a detection efficiency of >90%, as demonstrated using a
modified error-robust protocol in human osteosarcoma cells [79,80]. Compared to conventional FISH,
MERFISH also provides the additional benefit of being able to quantify individual RNA molecules at a
low abundance.

Figure 1. Diagram showing multiplexed error-robust FISH (MERFISH) imaging. (a) Diagram depicting
the encoding probe hybridized to the cellular RNA; (b) After the first round of hybridization, readout
probe 1 (green) binds to the complementary readout sequence on the encoder probe and is fluorescently
labelled (green circle); (c) After round 2 of hybridization, readout probe 2 (purple) binds to the encoding
probe; (d) This process is repeated with N rounds of hybridization, whereby readout probe N (red) will
bind to the readout sequence on the encoding probe.
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seqFISH is another multiplexed smFISH technique that is based on sequential rounds of barcoded
hybridization labelling [81]. Interestingly, it provides a spatial resolution at the sub-diffraction limit
that is superior to other RNA-profiling techniques [77]. For example, seqFISH was used to image
>10,000 mRNA species in mouse embryonic stem cells and brain tissues with high accuracy and
resolution [77,82]. Zhou et al. demonstrated that seqFISH is a powerful tool to study and gain
a snapshot of the regulatory gene expression dynamics in T-cell maturation [83]. More recently,
Voith von Voithenberg et al. combined microfluidics technology with multiplexed smFISH to study
tumour heterogeneity in breast cancer; they demonstrated that multiplexed smFISH can be further
optimized from different angles [84].

smFISH and multiplexed smFISH are appealing alternatives to single-cell RNA-sequencing to
study and quantify cellular RNA as it provides subcellular spatial information at the single-cell
and even single-molecule level. Yet, despite its promise, multiplexed smFISH-based technologies
are not yet widely used in either translational research or in clinical settings due to the complex
probe design, validation, image analysis, and decoding [85]. It is generally more convenient to use
non-multiplexed FISH, quantitative PCR, IHC, and IF to study single gene expression at the mRNA or
protein level, especially when the number of genes being studied is small, such as a set of prognostic
markers. Another limitation is that, because of the nature of sequential hybridization, the total imaging
time adds up to a minimum of 18 h excluding the initial probe hybridization time of 36–48 h [76],
resulting in an overall low throughput compared to other library-based technologies, like digital
spatial profiling and Visium (Table 1), which we will discuss later. In addition, multiplex smFISH
techniques only assess one type of analyte, such as RNA, in predominantly fresh-frozen tissues [86].
Emerging technologies, such as digital spatial profiling, can assess both protein and RNA levels in
fresh-frozen tissues and standard formalin-fixed paraffin-embedded (FFPE) tissues that are routinely
used by pathologists [87,88].
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Table 1. Overview and comparison of the different imaging modalities.

Characteristics
Imaging Modalities

RNAscope MERFISH DSP Visium

Vendor Advanced Cell Diagnostics Vizgen NanoString 10× Genomics

Year of Launch 2012 2015–2016 2018–2019 2019

Target molecules RNA DNA or RNA RNA or protein mRNA

Methodology
Hybridization of branched DNA

probes followed by signal
amplification

Hybridization of
fluorochrome-labelled barcoded DNA

probes followed by signal
amplification

Oligonucleotide-tagged RNA or antibody
probes followed by photocleavage and

sequencing or hybridization

On-slide cDNA barcoding followed by
sequencing

FFPE validation
√

×
√

×

Maximum multiplexed capacity 12 RNA species 10,000+ mRNA species 96 proteins and 1400+ RNA 100,000+ unique molecule identifiers

Turnaround time 30 slides/11–14 h 1 slide/2–3 days 10–20 slides/48 h 4 capture areas/slide/day

Whole slide imaging
√

×
Possible but very costly and time

consuming
√

Resolution <1 µm <1 µm 10 µm 55 µm

Key equipment required Standard bright-field or
fluorescence microscope

Microscope integrated with an
automatic fluid handling system

Pressure cooker (for manual slide prep)
or automated stainer (for Leica slide
prep), GeoMx Digital Spatial Profiler

Cryostat, microscope, sequencer

Analytic software HALO®
3D-daoSTORM or MERlin (for

decoding) Bundled software Bundled software

Commercialized
√

In progress
√ √

Cost $$ $ $$$ $$

Publications 2000+ 10+ 15+ 4
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Table 1. Cont.

Characteristics
Imaging Modalities

RNAscope MERFISH DSP Visium

Advantages

– End-to-end workflow
available and can
be automated

– Easily assimilated into
existing lab infrastructure

– Single-cell spatial resolution
– High sensitivity (able to detect

low abundance RNA)
– Whole tissue analysis
– FFPE compatible

– Single-cell and subcellular
spatial resolution

– High multiplexing capacity
(~10,000 mRNA)

– High sensitivity (able to detect
low-abundance RNA)

– Whole tissue analysis

– End-to-end workflow available
and automated

– Easily assimilated into existing
lab infrastructure

– Able to profile both protein
and RNA

– Integrity of tissue sample is
preserved, allowing reuse of sample

– FFPE compatible

– End-to-end workflow available
and automated

– Easily assimilated into existing
lab infrastructure

– Full transcriptome analysis
– Whole tissue analysis

Disadvantages

– Limited multiplexed capacity
(~12 RNA species)

– Only profiles RNA

– Complex workflow that
requires extensive probe design
and downstream validation

– Requires installation of
specialized equipment

– Only profiles DNA or RNA
– Tissues are fixed with

paraformaldehyde, and no
FFPE validation yet

– Poor single-cell spatial resolution
– Limited multiplexed capacity

(~1400 RNA and 96 proteins)
– Requires the selection of a region of

interest (ROI), causing biased
hypothesis-driven analysis

– Whole slide imaging only allows
for the visualization of up to
four markers

– Single-cell spatial resolution not
yet achieved

– Relatively lower sensitivity than
RNAscope and MERFISH

– Only profiles RNA
– Requires fresh frozen tissue,

and is not compatible with
FFPE tissues

– An optimization test is required
for every new tissue

Abbreviations: DSP, digital spatial profiling; FFPE, formalin-fixed paraffin-embedded.
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3. Digital Spatial Profiling

Digital spatial profiling (DSP) is a high-plex spatial profiling method that overcomes the key
limitations of multiplexed smFISH techniques, including prolonged experimental times that decrease
sample throughput, the limited capacity to only assess a single analyte type (RNA or protein), a lack of
FFPE compatibility, and the lack of a commercial integrated system. DSP uses oligonucleotide detection
technologies to quantify protein or RNA levels in FFPE tissue samples (Figure 2). Oligonucleotide tags
are conjugated using a photocleavable UV light-sensitive linker to primary antibodies or RNA probes,
for protein or RNA profiling, respectively. Firstly, the FFPE tissue section undergoes antigen retrieval
and incubation with oligo-labelled primary antibodies or proteinase K digestion and incubation with
an RNA probe cocktail. The slides are then stained with fluorescently labelled antibodies (up to
four markers) to visualize features of interest and enable region of interest (ROI) selection on the
tissue sample. The user-defined ROI is illuminated with UV light, releasing the photocleavable
oligonucleotides from the antibodies or RNA probes. These oligonucleotides are collected in a
microcapillary tube and transferred to a microtiter plate for quantitation. This process is repeated
for the next ROI. Once all ROIs have been processed, spatially resolved pools of oligonucleotides
are hybridized to capture and reporter probes with unique fluorescent barcodes that can be digitally
counted using the nCounter analysis system. Alternatively, next-generation sequencing (NGS) may be
used as a readout, where reads are processed into digital counts that are mapped back to the ROI to
allow spatial profiling of the ROI [20,87].

Figure 2. Diagram showing digital spatial profiling (DSP) for detection of RNA targets. (a) After the
FFPE tissue sample undergoes proteinase K digestion, it is incubated with RNA probes that bind to
target RNA in the sample. Each RNA probe is conjugated to an oligonucleotide tag via an ultraviolet
(UV) photocleavable linker; (b) The slide is stained with 3 antibody-based markers (up to a maximum
of 4 markers) and imaged to visualize tissue morphology and enable selection of regions of interest
(ROI); (c) Illumination of the ROI with UV light causes the release of photocleavable oligonucleotides
from the RNA probes. The oligonucleotides are collected in a microcapillary tube and transferred to
a microtiter plate; (d) Spatially resolved pools of oligonucleotides bind to a target-specific reporter
probe with a fluorescent barcode via a capture probe. Digital counts from the barcodes are analysed
using the nCounter analysis system and mapped back to the region of interest (ROI), providing spatial
information about the targets within the ROI.

Unlike sequential hybridization techniques, such as MERFISH, which have prolonged experimental
times of up to 48 h for one slide (including probe hybridization) [76], DSP offers a more efficient
workflow that generates results from 10–20 tissue sections or up to 384 regions of interest within 48 h
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(Table 1) [87]. In addition, DSP can detect up to 96 proteins or 1400 mRNA simultaneously [20,87] as
compared to multiplex smFISH, which only profiles RNA. This feature is particularly relevant for
cancer immunotherapy, as discrepancies in mRNA and protein expression patterns can be used to
elucidate post-transcriptional regulation and post-translational modifications contributing to protein
instability and affecting prognosis and response to therapy [20,89]. DSP is also particularly attractive
for clinical use as it offers a commercial integrated system that is highly automated, and optimized
workflows, validated assays, and data analysis software are available. In addition, it also preserves the
integrity of tissue samples, allowing precious samples to be stored and used for further analysis in
the future.

DSP has been used widely in the field of immunotherapy. Jeyasekharan et al. used DSP to
assess the immune microenvironment of patients with diffuse large B-cell lymphoma (DLBCL) who
had been treated with chemo-immunotherapy. Using a customized immune panel of 36 antibodies,
the researchers found that tumour infiltration by M2 macrophages (CD163 and CD68) had a significant
negative impact on prognosis. This finding provided the basis for further treatments targeting
tumour-infiltrating macrophages [90]. DSP has also been explored in the area of immune checkpoint
blockade therapies, including anti-PD-L1 and anti-PD-1 therapy [91]. Specifically, researchers found
that DSP could be used to quantify PD-L1 expression objectively and accurately in a standardized cell
line index tissue microarray (TMA). The concordance of PD-L1 measurements with other routinely
used techniques, such as quantitative immunofluorescence (QIF), was high, with coefficients > 0.9
while providing the additional benefit of high reproducibility that was independent of the slide storage
time [89]. Existing commercial PD-L1 IHC assays are semi-quantitative and require scoring by trained
pathologists, which may introduce error due to inter-observer variability [92,93]. DSP might thus be
used as a companion diagnostic tool that provides standardized, quantitative, and objective assessments
of PD-L1 protein expression within spatially defined compartments in the tumour microenvironment.

In a separate study, DSP was shown to successfully identify >20 biomarkers that predict responses
to immunotherapy in patients with melanoma. The most notable finding was that PD-L1 expression
in CD68-positive cells (macrophages) rather than in tumour cells was integral to determining
progression-free survival, overall survival, and treatment responses in melanoma patients [94].
Others have used DSP to explore responses of non-small-cell lung cancer (NSCLC) treatment with
checkpoint inhibitors. By using tumour samples from NSCLC patients and studying immune
infiltration in four different compartments (tumour, macrophages, leukocytes, and non-immune
stroma), researchers found that DSP could identify prognostic biomarkers predicting the response to
checkpoint therapy. For example, high CD56+ cell counts in the stroma were associated with improved
survival while high CD127 levels in the tumour compartment were associated with immunotherapy
resistance [95]. Thus, it seems that DSP has the potential to be an accurate and reproducible tool for
determining patient prognosis following checkpoint inhibition. The usefulness of DSP is not just
limited to fresh-frozen or FFPE tissue samples; indeed, one study showed how DSP could be extended
to bone marrow trephine samples with unprecedented high-plex spatial profiling of the bone marrow
microenvironment [96]. This finding means that DSP might serve to identify biomarkers and potential
drug targets specific to haematological malignancies.

Although DSP shows promise in the context of immunotherapy research, some key limitations
remain. Firstly, DSP requires the selection of regions of interest (ROI) for analysis. This is mostly
an automated process that allows great flexibility in the types of ROI selection, such as geometric,
gridded, rare cell population profiling, and segmentation into the tumour and TME [20,89]. While this
is particularly useful in interrogating the TME and features of interest, it prevents whole-tissue
analysis especially in larger excisional biopsy samples and may lead to a biased hypothesis-driven
sample analysis [88,97]. In addition, DSP has poor single-cell resolution, requiring at least 10 cells
in an ROI to generate adequate counts [96,98]. This restriction might limit the effectiveness of DSP
when analysing tumour regions with low cellularity. Secondly, DSP only provides images based
on its ‘morphology kit’ for no more than four colours. Multiplexing only provides numerical data
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in the form of counts that are detected within the ROI. As there is no reconstructed tissue image,
it is not possible to ascertain staining quality and there is a loss of critical spatial information [97].
Furthermore, the multiplexing capacity is limited to up to 1400 genes [87], which is comparatively
less than other tools, such as MERFISH and Visium (discussed below), which have multiplexing
capacities of 10,000 and 100,000 genes, respectively (Table 1). There have been efforts to overcome this
limited multiplexing capacity by integrating DSP with NGS readout, which theoretically might lead
to an unlimited multiplexing capacity, but studies have yet to demonstrate this [88,99]. This lack of
sequencing information offered by DSP has thus spurred the development of spatial transcriptomics
(ST), which enables unprecedented full-transcriptome profiling while retaining spatial context.

4. Spatial Transcriptomics

During single-cell RNA sequencing, spatial information is lost as tissues are often homogenized
to obtain an averaged overview of the transcriptome [100,101]. Although this technique is widely
used to explore gene expression profiles at a single-cell level, it confers a low capture efficiency
and sequencing coverage, as well as a high rate of dropout events, which together can impede
downstream data analysis and interpretation [101–103]. Recently, the emerging field of spatial
genomics entered the arena, with the development of a technique pioneered by a company aptly named
“Spatial Transcriptomics” (Stockholm, Sweden). This technique enables quantitative visualisation
and analysis of the transcriptome within intact tissue sections with the use of spatially barcoded
oligo-deoxythymidine microarrays [100,101]. Here, unique positional barcodes are introduced onto
glass slides to preserve spatial positioning within the tissue architecture before proceeding with the
RNA sequencing process [104] (Figure 3).

Figure 3. Diagram showing Visium Spatial Gene Expression Solution. Tissue samples are sectioned
and placed in the 4 capture areas on the Visium Spatial Gene Expression slide. Each capture area
contains over 5000 barcoded spots and each spot has multiple spatially barcoded oligonucleotides that
will bind to mRNA released from permeabilized tissue samples.

This novel technique was first demonstrated on the mouse olfactory bulb, and it follows a standard
workflow as follows: Tissue sectioning, fixation, haematoxylin and eosin (H&E) staining, bright-field
imaging, tissue permeabilization, cDNA synthesis, tissue removal, probe release, library preparation,
sequencing, data processing, data visualization, and analysis [101,105–107]. Notably, a distinctive
feature of this workflow is the ability to generate an on-slide cDNA library with preserved spatial
information, making it possible to visually map the gene expression profile to its corresponding tissue
morphology [105]. This possibility encourages the identification of novel gene targets and the early
detection of premalignant tissue areas that might not be identifiable by pathologists.

Various success stories applying spatial transcriptomics (ST) techniques have been reported
in the literature, based on identifying unique gene expression profiles in tissue biopsies prior to
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histopathological annotations. Data analysis of breast cancer [101], prostate cancer [108], and cutaneous
malignant melanoma [109] biopsies by ST have revealed an unprecedented level of intra- and
inter-tumoral heterogeneity, as well as distinct differences in gene expression profiles between the
annotated tumour area and periphery that were not evident through RNA sequencing analysis and/or
standard morphological annotations. Moreover, in vivo experimentation utilising this technique has
identified the induction of IL-6 signalling by repopulating microglia, which might have value in the
therapeutic context [110]. Of course, histopathological annotations and single-cell RNA sequencing can
identify aberrant tissue morphologies and confirm the presence of genetically distinct cell populations,
respectively; however, ST can highlight distinct spatial regions based on gene expression profiles.

To harness the potential of ST, researchers recently developed an analytical approach known as
multimodal intersection analysis (MIA). MIA incorporates datasets generated from single-cell RNA
sequencing and ST techniques to produce an unbiased map of transcripts across the tissue footprint at
a cellular level. As a proof-of-concept, MIA was performed on a pancreatic ductal adenocarcinoma
dataset and revealed specific cell type and subpopulation enrichment across spatially restricted regions
that was previously unknown or undetectable [100].

Visium Spatial Gene Expression Solution

Based on the concept pioneered by Spatial Transcriptomics, Visium Spatial Gene Expression
Solution (10× Genomics, USA) was recently released with enhancements, such as a higher resolution
and increased sensitivity, compared to the first iterations of the ST technique [111]. In the context of
human squamous cell carcinoma [112], single-cell RNA sequencing revealed a distinct subpopulation
of tumour-specific keratinocytes (TSKs) with signature genes associated with epithelial-mesenchymal
transition and invasive behaviours. The first-generation ST technique identified clear TSK clusters at
the tumour leading edges, including TSK marker MMP10, in each patient. Using the enhanced Visium
technique, additional spot transcriptomes were identified and as such, enrichment of endothelial and
cancer-associated fibroblast-associated transcripts at the stroma were demonstrated. This finding
reveals and supports a fibrovascular niche surrounding TSKs in the tumour microenvironment.

Visium is a well-built platform for in-depth investigations of diseases that are associated with tissue
structure and function. This is because it can identify tissue regions with aberrant gene expression,
allowing for the discovery of novel biomarkers within an area. For example, the laminar organization
of the human cerebral cortex is highly complex; studies of neurological disorders have proposed that
differences in pathology and gene expression profiles are localized to specific cortical layers [113].
By applying Visium to the human dorsolateral prefrontal cortex, researchers have successfully defined
the spatial topography of gene expression profiles within the tissue, identified several formerly
underappreciated layer-enriched expression profiles, and verified laminar enrichment of several
genes in specific cortical layers [114]. These findings suggest that as well as cancer immunotherapy,
Visium could also be applied to neurological disorders.

The Visium software programs for data analysis and visualisation of the generated cDNA library
to achieve multidimensional datasets are provided by 10× Genomics (Space Ranger and Loupe
Browser). With an end-to-end workflow, Visium can be easily integrated into existing lab infrastructure;
no specialised equipment is required other than a cryostat, microscope, and sequencer [105]. The 10×
Genomics platform has been used to profile tumour-associated macrophages (TAMs) from patient
biopsies, where it helped to quantify the main subpopulations. By mapping glioma structures, it was
revealed that microglia take the lead in tumour infiltration while blood-derived TAMs are enriched
near blood vessels. As a result, a negative correlation between blood-derived TAMs and low-grade
gliomas was reported. This finding supports the notion that macrophage ontogeny is critical to shaping
macrophage activation in the glioma microenvironment [115].

Particularly in the field of spatial genomics, 10× Genomics’ Visium is a promising platform
with the capacity to construct high-resolution microscopic images with gene expression data aligned
to the tissue footprint. It allows flexibility to analyse spatial gene expression from different angles
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within a single experiment and because it embraces the ST technique, users can perform multiple data
generation without losing valuable information as original tissue transcripts are conserved on the
slide [114]. Apart from the software programs provided by 10× Genomics, Itai Yanai and his team
proposed that Visium might also be compatible with MIA [116].

Despite its great promise, there are limitations to Visium that must be noted. Although the
recommended optimal tissue thickness is 10 µm, this value is dependent on the tissue type and
composition. 10× Genomics have produced a support site that provides users with an updated list of
compatible tissues and the corresponding thicknesses; to date, there are currently 4 rat tissues, 20 mouse
tissues, and 19 human tissues listed, as well as 4 tissues planned for further optimisation [117]. Users are
also recommended to run a one-time optimisation experiment for every new tissue type, as tissue
permeabilization conditions vary between tissues, species, and even laboratories. We anticipate
that 10× Genomics’ Visium Spatial Tissue Optimization Slide and Reagent Kit will aid in ensuring
tissue compatibility and a better workflow. Furthermore, although Visium has only been validated
in fresh-frozen specimens [105], early studies suggest that it can be used for genome-wide spatial
profiling in FFPE specimens as well [118]. Lastly, as part of ST enhancement, each tissue capture area
contains ~5000 spots with an individual spot size of 55 µm; this generates a cell resolution of 1–10 cells
per spot depending on the tissue type and thickness [119]. While some might find this resolution
satisfactory, extra precaution should be taken when analysing spots at a boundary. One suggestion is to
integrate MIA into the workflow to allow read-outs at a cellular level. Regardless of these limitations,
because Visium can promptly identify aberrant gene expression profiles and detect emerging hallmarks
of cancer initiation and progression without losing spatial information, we feel that the potential of
Visium prevails over the aforementioned technologies.

5. Conclusions and Future Perspectives

Transcriptional spatial profiling techniques have rapidly evolved over recent years. From early
tools, such as FISH-based technologies, that allow for the analysis of a few gene targets to recent
developments, such as Visium, that allow unprecedented whole-transcriptome analysis, we are now
able to characterize the cancer immune profile with high-throughput technologies while retaining
critical spatial information and resolution. With such rapid advancements in spatial profiling techniques,
the relevance of traditional multiplex IHC/IF may come into question. Multiplex IHC/IF has been
used extensively in both the research and clinical settings to simultaneously detect multiple target
proteins in the same tissue sample. Although there are numerous commercialized multiplexed tissue
imaging techniques available, such as multiplexed ion beam imaging (MIBI) [120] and imaging mass
cytometry (IMC) that evaluate up to 40 biomarkers at any one time [121], these techniques still lack the
high multiplexing capacity and spatial information offered by other transcriptional spatial profiling
techniques. However, multiplex IHC/IF still retains key advantages in cancer tissue analysis that
are worth remembering. Firstly, proteins are functional molecules and hence, gene expression that
is evaluated using transcriptional spatial profiling techniques might not necessarily correlate with
protein expression. This is particularly relevant in PD-L1 checkpoint inhibitor therapy, where PD-L1
IHC is the primary biomarker assay currently used for selection of patients for checkpoint inhibitor
therapy as increased PD-L1 tissue expression is associated with improved survival rates [122,123].
Interestingly, in two separate studies [124,125] that used transcriptomic technology to predict the
response to anti-PD1 therapy, it was found that genes involved in the checkpoint pathway, such as PD-L1
and CD8A/B, showed no significant association with response to therapy [19]. Instead, inflammatory
tumour phenotypes [124] and the expression levels of metabolic-related genes [125] were found to
predict an anti-PD1 response. Thus, while transcriptional spatial profiling techniques may enable
extensive sequencing up to the entire genome level, one must consider that not every mRNA transcript
necessarily leads to translation and synthesis of biologically active proteins that contribute to tumour
initiation, progression, and therapeutic response. This may be attributed to the heterogeneity in
signalling pathways, post-translational modifications, and protein isoforms, which limits the utility of
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mRNA abundance as a proxy for protein abundance and activity [126–129]. Therefore, protein-based
technologies, such as multiplex IHC/IF, remain integral for downstream analysis after transcriptomics
studies as they serve as an excellent endpoint to validate protein function after identifying genetic
targets. Multiplex IHC/IF is not redundant, and instead, should be viewed as a complementary tool to
the transcriptional spatial profiling techniques discussed above.

Despite being relatively new, transcriptional spatial profiling technologies have been explored
widely in cancer immunotherapy. FISH and RNAscope are useful clinical tools for the diagnosis
and prognostication of solid and haematological cancers [130–132]. Newer techniques, such as
MERFISH and Visium, have overcome some of the limitations to their multiplexing capacity by
enabling bulk transcriptome analysis with an unprecedented level of resolution and sensitivity [79,133].
The increasing accessibility of such techniques is exciting for the field of cancer immunology, as they
enable the discovery of novel biomarkers that serve to predict responses to immunotherapy and
permit personalized treatment approaches based on the heterogeneity of their unique TME [108,109].
These spatial profiling techniques can potentially be combined with dimensionality-reduction
techniques, such as uniform manifold approximation and projection (UMAP), to visualize the immune
landscape of the tumour microenvironment (Figure 4a). This will provide critical information about
the immune cells surrounding the tumour border and stroma (Figure 4b) and can be correlated with
clinical outcomes to determine predictive biomarkers. For instance, as intra-tumoral tissue hypoxia
can also contribute to the heterogeneity of the tumour microenvironment, visualization of the hypoxia
gradient (Figure 4c) is critical for determining treatment resistance and prognosis. Thus, overlaying
the UMAP and hypoxia gradient (Figure 4d) can help provide a more holistic visualization of the
heterogenous tumour microenvironment.

Figure 4. Diagram showing uniform manifold approximation and projection (UMAP) and hypoxia
gradient in a tissue sample. (a) UMAP showing the immune landscape of tumour micro-environment;
(b) Immune cells surrounding the tumour border; (c) Hypoxia gradient of tumour micro-environment;
(d) Overlay of UMAP and the hypoxia gradient to visualize heterogeneity of the tumour micro-environment.

Going forward, DSP offers spatial profiling and digital characterization of mRNA expression
but remains limited by the number of gene targets that can be investigated simultaneously.
However, its operation via a commercial platform with an optimized pipeline for both protein
and RNA targets is likely to be attractive to some users [134]. Although Visium is relatively new to the
market, 10× Genomics has recently released a new protocol that allows for IF staining instead of the
conventional H&E staining. By combining whole-transcriptome analysis with protein detection in
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this way, users can spatially map cell populations and their gene expression profiles within tissues
by visualizing co-localized protein and gene expression simultaneously [135]. Through the constant
improvements made within a short time, Visium holds great potential to provide new insights into
disease pathology and clinical translational research.

Given the variety of evolving transcriptional spatial profiling techniques available to researchers,
it is important that one considers both the technical characteristics of the technology, including the
spatial resolution, sensitivity, specificity, and tissue type, as well as practical considerations, such as
the cost, compatibility with available resources, and turnaround time. Ultimately, researchers must
carefully consider their research questions and select an appropriate technology that closely aligns
with their research and clinical goals.
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