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Abstract

Motivation: Proteins are ubiquitous molecules whose function in biological processes is determined by their 3D
structure. Experimental identification of a protein’s structure can be time-consuming, prohibitively expensive and
not always possible. Alternatively, protein folding can be modeled using computational methods, which however
are not guaranteed to always produce optimal results. GraphQA is a graph-based method to estimate the quality of
protein models, that possesses favorable properties such as representation learning, explicit modeling of both se-
quential and 3D structure, geometric invariance and computational efficiency.

Results: GraphQA performs similarly to state-of-the-art methods despite using a relatively low number of input fea-
tures. In addition, the graph network structure provides an improvement over the architecture used in ProQ4 operat-
ing on the same input features. Finally, the individual contributions of GraphQA components are carefully
evaluated.

Availability and implementation: PyTorch implementation, datasets, experiments and link to an evaluation server
are available through this GitHub repository: github.com/baldassarreFe/graphqa.

Contact: azizpour@kth.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein molecules are predominantly present in biological forms,
where they are responsible for most cellular functions. Therefore,
understanding, predicting and modifying proteins in biological proc-
esses are essential for medical, pharmaceutical and genetic research.
Such studies strongly depend on discovering mechanical and chem-
ical properties of proteins through the determination of their
structure.

At the high level, a protein molecule is a chain of hundreds of
smaller molecules called amino acids. Identifying a protein’s amino-
acid sequence is nowadays straightforward. However, the function
of a protein is primarily determined by its 3D structure. Spatial fold-
ing can be determined experimentally, but the existing procedures
are time consuming, prohibitively expensive and not always pos-
sible. Thus, several computational techniques were developed for
protein structure prediction (Arnold et al., 2006; Wang et al., 2017;
Xu, 2019). So far, no single method is always best, e.g. some pro-
teins are best modeled by some specific method, also, computational
methods often produce multiple outputs. Thus, candidate generation

is generally followed by an evaluation step. This work focuses on
quality assessment (QA) of computationally derived protein models
(Lundstrom et al., 2001; Won et al., 2019).

Protein QA, also referred to as the estimation of model accuracy,

estimates the quality of computational protein models in terms of di-

vergence from their native structure. The downstream goal of QA is

twofold: to find the best model in a pool of models and to refine a

model based on its estimated local quality.
Computational protein folding and design have recently received

attention from the machine learning community (AlQuraishi, 2019;

Anand and Huang, 2018; Evans et al., 2018; Jones and Kandathil,

2018; Ingraham et al., 2019b; Wang et al., 2017; Xu, 2019), while

QA has yet to follow. This is despite the importance of QA for struc-

tural biology and the availability of standard datasets to benchmark

machine learning techniques, such as the biannual CASP event

(Moult et al., 1999). The field of bioinformatics, on the other hand,

has witnessed noticeable progress in QA for more than a decade:

from earlier works using artificial neural networks (Wallner and

Elofsson, 2006) or support vector machines (Ray et al., 2012; Uziela
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et al., 2016) to more recent works including MULTICOM (Hou
et al., 2019), SARTclust (submitted as group UOSHAN in CASP13)
(Cheng et al., 2019), ModFOLD7 (McGuffin et al., 2019b),
FaeNNz (Studer et al., 2020) and those using deep learning techni-
ques, such as 1D-CNNs, 3D-CNNs and LSTMs (Conover et al.,
2019; Derevyanko et al., 2018; Hurtado et al., 2018; Pagès et al.,
2018).

In this work, we tackle QA with graph convolutional networks
(GCNs), which offer several desirable properties over previous
methods. Through extensive experiments, we show GraphQA per-
forms similarly to the state-of-the-art methods despite using a rela-
tively low number of features. Particularly, in comparison to ProQ4
which uses the same set of input features, it provides a clear im-
provement in performance.

1.1 Related works
Protein quality assessment methods are evaluated in CASP (Moult
et al., 1995) since CASP7 (Cozzetto et al., 2007). Current techniques
can be divided into two categories: single-model methods which op-
erate on a single protein model to estimate its quality (Wallner and
Elofsson, 2003), and consensus methods that use consistency be-
tween several candidates to estimate their quality (Lundstrom et al.,
2001). Single-model methods are applicable to a single protein in
isolation and in the recent CASP13 performed comparably to or bet-
ter than consensus methods for the first time (Cheng et al., 2019).
Several recent single-model QA works are based on deep learning:
3DCNN and Ornate adopt a volumetric representation of proteins
(Derevyanko et al., 2018). Ornate improves 3DCNN by defining a
canonical orientation (Pagès et al., 2018). ProQ3D (Uziela et al.,
2017) uses a multilayer perceptron with carefully optimized residue
descriptors from ProQ3 (Uziela et al., 2016) as inputs.
MULTICOM-NOVEL (Hou et al., 2019) trains a 1DCNN with
multitask learning to predict local and global scores. ProQ4 adopts
a pretrained 1D-CNN that is fine-tuned in a Siamese configuration
with a rank loss (Hurtado et al., 2018) using exactly the same pro-
tein descriptors as used in this work. Other recent methods not
based on deep learning include SBROD that uses ridge regression
(Karasikov et al., 2019), QMEANDisCo (Studer et al., 2020) and
VoroMQA that takes a statistical approach on atom-level contact
area (Olechnovi�c et al., 2013). VoroMQA and ProQ3D are among
the top-performing methods of CASP13 (Won et al., 2019) together
with MULTICOM, ModFOLD7 (McGuffin et al., 2019a) and
SART (Cheng et al., 2019), which use a large combination of pro-
tein predictors as inputs to the machine learning algorithm .

Graph convolutional networks bring the representation learning
power of CNNs to graph data, and have been recently applied with
success to multiple domains, e.g. physics (Gonzalez et al., 2018), vis-
ual scene understanding (Narasimhan et al., 2018) and natural lan-
guage understanding (Kipf and Welling, 2017). In the chemistry
domain, molecules can be naturally represented as graphs, and

GCNs have been proven effective in several related tasks, including
molecular representation learning (Duvenaud et al., 2015), protein
interface prediction (Fout et al., 2017), chemical property prediction
(Gilmer et al., 2017; Li et al., 2018a; Niepert et al., 2016), drug–
drug interaction (Zitnik et al., 2018), drug–target interaction (Gao
et al., 2018), molecular optimization (Jin et al., 2019) and
generation of proteins, molecules and drugs (Ingraham et al., 2019a;
Li et al., 2018b; Liu et al., 2018; Simonovsky and Komodakis,
2018; You et al., 2018). However, to the best of our knowledge,
when we started this work, GCNs have never been applied to the
problem of protein QA.

1.2 Contributions

• This work is the first to tackle QA with GCNs which bring sev-

eral desirable properties over previous methods, including repre-

sentation learning (3DCNN, Ornate), geometric invariance

(VoroMQA, Ornate), sequence learning (ProQ4, AngularQA),

explicit modeling of 3D structure (3DCNN, Ornate, VoroMQA)

and computational efficiency.
• Thanks to these properties, a simple GCN setup performs simi-

larly to state-of-the-art methods while using a relatively low

number of features. Also, the graph network structure provides

an improvement over the architecture used in ProQ4. This is

demonstrated through extensive experiments on multiple data-

sets and scoring regimes.
• Novel representation techniques are used to explicitly reflect the

sequential (residue separation) and 3D structure (angles, spatial

distance and secondary structure) of proteins.
• Enabled by the use of GCN, we combine the optimization of

local and global predictions for QA, improving over the perform-

ance of global-only or local-only scoring methods.
• Through an extensive set of ablation studies, the significance of

different components of the method, including architecture, loss

and features, are carefully analyzed.

2 Materials and methods

We start describing our method by arguing for the representation of
protein molecules as graphs in learning tasks, then we define the
problem of protein QA, and finally, we introduce the GraphQA
architecture.

2.1 Protein representation as graphs
Proteins are large molecular structures that perform vital functions
in all living organisms. At the chemical level, a protein consists of

Fig. 1. Protein QA. GraphQA predicts local and global scores from a protein’s graph using message passing between chemically bonded or spatially close residues. CASP QA

algorithms score protein models by comparison with experimentally determined conformations
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one or more chains of smaller molecules, which we interchangeably
refer to as residues for their role in the chain, or as amino acids for
their chemical composition. The sequence of residues S ¼ faig that
composes a protein represents its primary structure, where ai is one
of the 22 amino acid types (20 natural ones, plus Selenocysteine and
Pyrrolysine). The interactions between neighboring residues and the
environment dictate how the chain will fold into complex spatial
structures that represent the protein’s secondary structure and ter-
tiary structure.

Therefore, a suitable representation for any learning task should
reflect both the identity and sequence of the residues, i.e. the pri-
mary structure, and geometric information about the protein’s ar-
rangement in space, i.e. its tertiary structure (Fig. 2). Some works
use RNN or 1D-CNN to model proteins as a flat sequence of resi-
dues with the spatial structure potentially embedded in the hand-
crafted residue features (Conover et al., 2019; Hurtado et al., 2018).
Other works model proteins’ spatial structure using volumes of
atomic densities and 3D-CNNs, but do not explicitly use the sequen-
tial information contained in the residue chain (Derevyanko et al.,
2018; Pagès et al., 2018). We argue that graph-based learning can
explicitly model both the sequential and geometric structures of pro-
teins. Moreover, it accommodates proteins of different lengths and
spatial extent and is invariant to rotations and translations.

In the simplest form, a protein can be represented as a linear
graph, where nodes represent amino acids and edges connect con-
secutive residues according to the primary structure. This set of
edges, which represent the covalent bonds that form the protein
backbone, can be extended to include the interactions between non-
consecutive residues, e.g. through Van der Waals forces or hydrogen
bonds, commonly denoted as contacts. By forming an edge between
all pairs of residues that are within a chemically reasonable distance
of each other, the graph becomes a rich representation of both the
sequential and geometric structure of the protein (Fig. 2). To spatial-
ly locate residues and measure distances, we consider the coordi-
nates of alpha carbons. We refer to this representation, composed of
residues, bonds and contacts, as the protein graph:

P ¼ ðfvig; febond
i;j jji� jj ¼ 1g [ fecontact

i;j jji� jj > 1; kCi � Cjk � dmaxgÞ;

where i; j ¼ 1; . . . ; jSj are residue indices, C ¼ fðx; y; zÞig are the
coordinates of each residue’s alpha carbon, representing the pro-
tein’s conformation, and dmax is a cutoff distance for contacts.

With the protein’s structure encoded in the graph, additional
residue and relationship features can be encoded as nodes and edges
attributes, vi and ei;j respectively. Section 3.2 describes, in detail, an
attribution that preserves the sequence information and 3D geom-
etry while remaining invariant to rotation.

2.2 Protein quality assessment
Experimental identification of a protein’s native structure can be
time consuming and prohibitively expensive. Alternatively, compu-
tational folding methods are used to generate decoy conformations
for a specific target protein. Since no single method is consistently
best, a QA step is used to identify the conformations Cd that most
correctly represent the native structure.

If the native structure Cnative is experimentally determined, the
quality of a decoy can be measured by comparing the decoy with the
native structure. In the CASP challenge, decoys submitted for a tar-
get are scored against the unreleased native structure. Some QA
methods compute global (per decoy) scores, which can be used for
ranking and represent the principal factor for CASP, while others
produce local (per residue) scores which help identify incorrect parts
of a decoy (Uziela et al., 2018).

In most scenarios, however, the native structure is not available,
and quality must be estimated based on physical and chemical prop-
erties of the decoy, e.g. in drug development, it would be unpractical
to synthesize samples of novel proteins and researchers rely on com-
putational folding and QA instead.

Here, we introduce GraphQA, a graph-based neural network
that learns to predict global and local QA scores, with a relatively
low number of features and minimal model engineering, using exist-
ing datasets of scored proteins. At the residue level, GraphQA is
trained to output the Local Distance Difference Test (Mariani et al.,
2013) and the Contact Area Difference (Olechnovi�c et al., 2013)
scores. For a residue i, we denote them as: q‘i :¼ ½LDDTi;CADi�.

At the decoy level, GraphQA is trained to output widely used
scores: Global Distance Test Total Score, which is the official CASP
score for protein-level QA, Global Distance Test High Accuracy
(Zemla, 2003), TM-score (Zhang and Skolnick, 2004) and the glo-
bal versions of LDDT and CAD. Together, we denote them as:
qg :¼ ½GDTTS;GDTHA;TM;LDDT;CAD�.

With GraphQA‘
i ðPÞ and GraphQAgðPÞ denoting the network’s

local and global predictions for an input P, the learning objective is
to minimize the following Mean Squared Error (MSE) losses:

‘‘ ¼
XjSj

i

½GraphQA‘
i ðPÞ � q‘i �

2;

‘g ¼ ½GraphQAgðPÞ � qg�2:
(1)

Note that, for the sole purpose of sorting decoy according to
ground-truth quality, training with a ranking loss would be suffi-
cient (Derevyanko et al., 2018). Instead, MSE forces the output to
match the quality score, which is a harder objective, but results in a
network can be more easily inspected and possibly used to improve
existing folding methods in an end-to-end fashion (Section 4.3).

2.3 GraphQA architecture
GraphQA is a GCN that operates on protein graphs using the
message-passing algorithm described by Battaglia et al. (2018). The
building block of GraphQA, a graph layer, takes a protein graph as
input (with an additional global feature u), and performs the follow-
ing propagation steps to output a graph with updated node/edge/glo-
bal features and unchanged structure:

e0i;j ¼ /eðei;j; vi; vj;uÞ Update edges
e 0i ¼ qe!vðfe0j;igÞ Aggregate edges
v0i ¼ /vðe 0i; vi;uÞ Update nodes
e 0 ¼ qe!uðfe0i;jgÞ Aggregate all edges

v 0 ¼ qv!uðfv0igÞ Aggregate all nodes
u0 ¼ /uðe 0; v 0;uÞ Update global features

where / represent three update functions that transform nodes/
edges/global features (e.g. a MLP), and q represent three pooling
functions that aggregate features at various levels (e.g. sum or
mean).

Similarly to CNNs, multiple graph layers are stacked to propa-
gate local information to increasingly larger neighborhoods, i.e. re-
ceptive field. This enables the network to learn quality-related
features at multiple scales: secondary structures in the first layers,
e.g. a-helices and b-sheets, and larger structures in deeper layers e.g.
domain structures and arrangements.

The GraphQA architecture is conceptually divided into three
stages (Fig. 1). At the input, the encoder increases the node and edge
features’ dimensions through 2� (Linear-Dropout-ReLU) trans-
formation and adds a global bias. Then, at its core, L message-pass-
ing layers operate on the encoded graph, leveraging its structure to

(a) (b) (c)

Fig. 2. Protein representations for learning. Sequential representations for LSTM or

1D-CNN fail to represent spatial proximity of non-consecutive residues. Volumetric

representations for 3D-CNN fail instead to capture sequence information and are

not rotation invariant. Protein graphs explicitly represent both sequential and spa-

tial structure, and are geometrically invariant by design
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propagate and aggregate information. The update functions / con-
sist of Linear-Dropout-ReLU transformations, with the size of the
linear layers progressively decreasing. We use average pooling for
the aggregation functions q, since preliminary experiments with
max/sum pooling performed poorly. Finally, the readout layer out-
puts local and global quality scores by applying a Linear-Sigmoid
operation to the latest node and global features, respectively.

3 Experiments

3.1 Datasets
Following the common practice in QA, we use the data from past
years’ editions of CASP, encompassing several targets with multiple
scored decoys each. From CASP 9–12, we assemble a dataset of 85k
decoys ðP; fq‘i g; qgÞt;d, which we randomly split into a training set
(�270 targets) and a validation set for hyperparameter optimization
(�50 targets). These targets are also used for the extensive ablation
studies described in Section 4.2 and in Supplementary Appendix S4.
To compare GraphQA against other top-scoring methods, we col-
lect the �14k stage-2 decoys across 72 targets of CASP 13 as a test
set. We obtain ground-truth scores for training and evaluation by
comparing each decoy with the released native structure. Further
details on data collection and processing are available in
Supplementary Appendix S2.1.

3.2 Features
Node features The node attributes vi of a protein graph P represent
the identity, statistical and structural features of the ith residue. We
encode the residue identity using a one-of-22 encoding of the corre-
sponding amino acid. Following Hurtado et al. (2018), we also add
residue-level statistics computed using Multiple Sequence Alignment
(MSA) (Rost et al., 1994), namely self-information and partial en-
tropy, each described by a 23-dimensional vector. Finally, we add a
14-dimensional vector of spatial features including the dihedral
angles, surface accessibility and secondary structure type as deter-
mined by DSSP (Kabsch and Sander, 1983).

Edge features An edge represents either a contact or a bond be-
tween two residues i and j w.r.t. to the conformation
C ¼ fðx; y; zÞig. An edge always exists between two consecutive resi-
dues, while non-consecutive residues are only connected if
jjCi � Cjjj < dmax, with dmax optimized on the validation set. We
further enrich this connectivity structure by encoding spatial and se-
quential distances as an 8D feature vector ei;j. Spatial distance is
encoded using a radial basis function expð�d2

i;j=rÞ, with r deter-
mined on the validation set. Sequential distance is defined as the
number of amino acids between the two residues in the sequence
and expressed using a separation encoding, i.e. a one-hot encoding
of the separation ji� jj according to the classes
f0;1; 2; 3;4;5 : 10; > 10g.

3.3 Optimization and hyperparameter search
The MSE losses in Equation 1 are weighted as ‘tot ¼ k‘‘‘ þ kg‘g and
minimized using Adam Optimizer (Kingma and Ba, 2014) with L2

regularization. GraphQA is significantly faster to train than LSTM
or 3D-CNN methods, e.g. 35 epochs take �2 hours on one NVIDIA
2080Ti GPU with batches of 200 graphs, thus allowing for an exten-
sive hyperparameter search. Supplementary Appendix S3.2 reports
search space, optimization procedure and the parameters of the
model with highest Rtarget on the validation set.

4 Evaluation

We compare GraphQA with other single-model methods which are
top-performing in CASP13 and/or represent a relevant approach for
QA. ProQ3D computes fixed-size statistical descriptions of the
decoys in CASP 9-10, including Rosetta energy terms, which are
then used to train a Multilayer Perceptron on quality scores (Uziela
et al., 2017). In ProQ4, a 1D-CNN is trained to predict LDDT
scores from a vectorized representation of protein sequences, a

global score is then obtained by averaging over all residues
(Hurtado et al., 2018). ProQ4 is pretrained on a large dataset of pro-
tein secondary structures and then fine-tuned on CASP 9-10 using a
Siamese configuration to improve ranking performances. 3DCNN
(group name: LamoureuxLab) trains a CNN on a three-dimensional
representation of atomic densities to rank the decoys in CASP 7–10
according to their GDT_TS scores (Derevyanko et al., 2018).
Notably, no additional feature is used other than atomic structure
and type, however, the fixed-size volumetric representation of this
method is sensitive to rotations and does not scale well with protein
size. Ornate (group name: 3DCNN) applies a similar 3D approach
to predict local CAD scores and achieves rotation invariance by
specifying a canonical residue-centered orientation (Pagès et al.,
2018). Although optimized for local scoring, the average of the pre-
dicted scores is shown to correlate well with GDT_TS. AngularQA,
feeds a sequence-like representation of the protein structures from
3DRobot and CASP 9–12 to an LSTM to predict GDT_TS scores
(Conover et al., 2019). VoroMQA is a statistical potential method
that represents an alternative to the other machine learning-based
methods (Olechnovi�c et al., 2013). SART (group name: SASHAN)
combines statistical- and consistency-based terms to predict global
and local scores (Cheng et al., 2019).

4.1 Results
We evaluate all methods on a common subset of 72 CASP13 targets
for which official submissions are publicly available (list in
Supplementary Appendix S6).

Global metrics For the main experiments, we restrict the evalu-
ation of global performances to GDT_TS, since it is the official score
for CASP and all participants are expected to submit predictions for
GDT_TS. Further results for GDT_HA and TM-score are available
in the Supplementary Material. For each QA method, we consider
the predicted and ground-truth scores and compute: Root Mean
Squared Error (RMSE), Pearson correlation coefficient computed
across all decoys of all targets (R), Pearson correlation coefficient
computed on a per-target basis and then averaged over all targets
(Rtarget), z-score of the top-scoring decoy of each target and averaged
across targets (z), and the minimum difference between the true
score of the best decoy and the true scores of the five highest-
ranking decoys for each target averaged over targets (FRL5).

Local metrics GraphQA predicts LDDT and CAD scores, to en-
able a valid comparison with the local scores predicted by other
methods, we compute the absolute Spearman correlation coefficient
between predicted and ground-truth scores. Specifically, we com-
pute: Spearman correlation coefficient across all residues of all
decoys of all targets (q), and Spearman correlation coefficient on a
per-decoy basis and then averaged over all decoys of all targets
(qdecoy). Of these, we focus on Rtarget and qdecoy, which, respectively,
measure the ability to rank decoys by quality and to distinguish the
correctly predicted parts of a model from those that need improve-
ment. See Supplementary Appendix S5 for more details and
definitions.

Table 1 compares the performances of GraphQA and other
state-of-the-art single-model methods on GDT_TS predictions for
CASP13, while Figure 3 contains a graphical representation of true
versus predicted GDT_TS and LDDT scores for all targets in
CASP13. At the global level, a noticeably higher Rtarget metric indi-
cates that GraphQA is more capable than other state-of-the-art sin-
gle-model QA methods at ranking decoys of a target based on their
overall quality. The 95% confidence interval for Rtarget computed
using the Fisher r-to-z method is ½:772; :786�. Additional results for
our method are reported in Supplementary Appendix S6.

Evaluation metrics for local quality predictions w.r.t. ground-
truth CAD and LDDT scores are reported in Table 2. At the local
level, our method proves to be on a par with best-performing meth-
ods, demonstrating the ability to evaluate quality at the residue level
and distinguishing correctly predicted parts of the protein chain.
Interestingly, GraphQA and ProQ4 use the same input features and
they both co-optimize for local and global predictions, but the for-
mer achieves much better performances than the latter. We argue
that the graph-based architecture allows GraphQA to capture more
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complex and long-range dependencies between residues than the
Siamese 1D-CNN used in ProQ4 (Fig. 6).

As shown in our ablation studies, hand-engineered features like
MSA and DSSP contribute to the performances of GraphQA
(Fig. 5), yet we wish to prove that our method can learn directly
from raw data. GraphQA-RAW is a variant that relies uniquely on
the one-hot encoding of amino acid identity, similarly to how 3D-
CNN and Ornate use atomic features only. The results for
GraphQA-RAW show that the graph representation and the GCN
architecture are effective at automatically extracting features that
are almost as expressive as the hand-engineered features used by the
full GraphQA.

4.2 Ablation studies
Here, we analyze how various components of GraphQA contribute
to the final performance, ranging from optimization and architec-
tural choices to protein feature selection. Unless stated otherwise, all
ablation studies follow the training procedure described in Section
3.3 for a lower number of epochs. We report results on CASP 11 as
mean and std dev of 10 runs.

Local and global co-optimization We investigate the interplay
between local and global predictions, specifically whether co-
optimizing for both is beneficial or detrimental. At the global level,
models trained to predict only global scores achieve a global RMSE
of 0:1296:007, whereas models trained to predict both local and
global scores obtain 0:1176:006, suggesting that local scores can
provide additional information and help the assessment of global
quality. At the local level instead, co-optimization does not seem to
improve performances: models trained uniquely on local scores
achieve a local RMSE of 0:1216:002, while models trained to pre-
dict both obtain 0:1236:004.

Connectivity and architecture In this study, we test the combined
effects of the depth of the network L and the cutoff value dmax.
Every additional message-passing layer allows to aggregate informa-
tion from a larger neighborhood, effectively extending the receptive
field at the readout. Also, the num. of included contacts affects
graph connectivity and message propagation: low dmax correspond
to low average degree and long shortest paths between any two resi-
dues, and vice versa (Supplementary Appendix S2.2).

Thus, an architecture that operates on sparsely connected graphs
will require more message-passing layers to achieve the same holistic
view of a shallow network operating on denser representations.
However, this trade-off is only properly exposed if u;/u; qu are
removed from the architecture. In fact, a global pathway creates a
shortcut that connects all nodes in the graph and sidesteps the limi-
tations of shallow networks. With the global pathway disabled, glo-
bal predictions are computed in the readout layer by aggregating
node features from the last MP layer.

Figure 4 reports the RMSE obtained by networks of different
depths with no global path, operating on protein graphs constructed
with different cutoff values. As expected, the shallow 3-layer archi-
tecture requires more densely connected inputs to achieve the same
performances of the 9-layer network. Surprisingly, local predictions
seem to be more affected by these factors than global predictions,
suggesting that a large receptive field is important even for local
scores.

Table 2. CASP13 local quality assessment

CAD LDDT

Method jqj " jqdecoyj " jqj " jqdecoyj "

ProQ3D-lDDT 0.611 0.380 0.754 0.543

GraphQA 0.664 0.423 0.797 0.527

FaeNNz 0.648 0.361 0.794 0.523

ModFOLD7 0.523 0.336 0.678 0.501

ProQ3D-CAD 0.638 0.415 0.728 0.499

GraphQA-RAW 0.613 0.385 0.730 0.497

ProQ4 0.549 0.326 0.677 0.474

3DCNN 0.539 0.298 0.688 0.431

VoroMQA-A 0.499 0.285 0.600 0.412

Ornate 0.415 0.286 0.462 0.373

UOSHAN 0.517 0.317 0.688 0.488

ModFOLDclust2 0.486 0.338 0.641 0.512

Note: Global and per-decoy absolute Spearman corr. are reported w.r.t.

ground-truth CAD and LDDT. Above the line: single-models methods sorted

by LDDT jqdecoyj, consensus methods below. Best results

Fig. 4. Trade-off between the number of message-passing layers and the connectivity

of the protein graph (CASP11)

Table 1. CASP13 global quality assessment

Method RMSE # R " Rtarget " z " FRL5 #

GraphQA 0.130 0.855 0.779 1.274 0.030

ModFOLD7_rank 0.156 0.872 0.742 1.063 0.023

GraphQA-RAW 0.158 0.769 0.720 0.962 0.051

ProQ4 0.176 0.698 0.664 0.870 0.028

FaeNNz 0.141 0.803 0.661 0.865 0.032

ProQ3D 0.146 0.802 0.637 0.815 0.024

VoroMQA-A 0.208 0.657 0.555 0.755 0.041

Ornate 0.205 0.478 0.490 0.535 0.058

PLU-AngularQA 0.193 0.574 0.421 0.425 0.049

MULTICOM_CLUSTER 0.103 0.908 0.839 1.112 0.025

UOSHAN 0.090 0.925 0.865 1.122 0.030

Note: RMSE, Pearson corr., z-score and top-5 rank loss w.r.t. GDT_TS

scores (normalized in [0,1]). Top: single-models methods sorted by Rtarget. At

the bottom: consensus methods for context. Best results in bold.

(a) (b)

Fig. 3. Joint plots of LDDT and GDT_TS scores on CASP13. The marginal plots

show the distribution of true versus predicted scores
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Node and edge features We evaluate the impact of node and
edge features on the overall prediction performances (Fig. 5). For
the nodes, we use the amino acid identity as a minimal representa-
tion and combine it with: (i) DSSP features, (ii) partial entropy, (iii)
self-information, (iv) both DSSP and MSA features. All features im-
prove both local and global scoring, with DSSP features being mar-
ginally more relevant for LDDT. For the edges, we evaluate the
effect of having either: (i) a binary indicator of bond/contact, (ii)
geometric features, i.e. the Euclidean distance between residues, (iii)
sequential features, i.e. the categorical encoding of the separation
between residues, (iv) both distance and separation encoding.
Progressively richer edge features seem to be benefit LDDT predic-
tions, while little improvement can be seen at the global level.

4.3 Visualization and explainability
Since GraphQA is fully differentiable, the trained model can be used
to explain the factors that influenced a low score and thereby pro-
vide potentially useful feedback for protein structure refinement. A
simple approach for explaining predictions of a differentiable func-
tion f ðxÞ is Sensitivity Analysis (Baehrens et al., 2010), which uses
krxfk to measure how variations in the input affect the output. In
Figure 6, we consider the LDDT score predicted for two different
residues and compute the magnitude of the gradients w.r.t. the edges
of the graph. Thanks to its GCN architecture, GraphQA is able to
capture quality-related dependencies not only in the neighborhood
of the selected residues, but also further apart in the sequence.

We further probe the feasibility of structure refinement with a
simple experiment and leave elaborate experiments as future work.
If the network has learned a meaningful scoring function, then the
gradient of the score w.r.t. the contact distances should aim in the
direction of the native structure. Considering all decoys of all targets
in CASP 11, we obtain an average cosine similarity
cos ð@GraphQAg=@d; ddecoy � dnativeÞ of 0:146:08, which suggests
that gradients can be used as a coarse feedback for end-to-end pro-
tein structure prediction.

5 Conclusion

We applied GCNs to the important problem of protein QA. Since
proteins are naturally represented as graphs, GCN allowed us to col-
lect the individual benefits of the previous QA methods including
representation learning, geometric invariance, explicit modeling of
sequential and 3D structure, simultaneous local and global scoring,
and computational efficiency. Thanks to these benefits, and through
an extensive set of experiments, we demonstrated similar perform-
ance levels compared to the state-of-the-art in single-model QA
using various metrics and datasets. This is achieved using relatively
low number of features. We further analyzed the results via thor-
ough ablation and qualitative studies. It is important to note that
our tests were conducted offline while the other methods’ perform-
ance are taken from the blind test of CASP13 challenge. Thus, a fair
comparison will only be possible when the results of CASP14 be-
come available.

Finally, we believe that richer geometric representations, e.g.
including relative rotations, and atom-level graphs could represent
an interesting future direction for learning-based QA.
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