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Occurrence of retained placenta is
preceded by an inflammatory state
and alterations of energy metabolism
in transition dairy cows
Elda Dervishi*†, Guanshi Zhang†, Dagnachew Hailemariam, Suzana M. Dunn and Burim N. Ametaj

Abstract

Background: Failure to expel fetal membranes within 24 h of calving is a pathological condition defined as
retained placenta (RP). The objective of this investigation was to evaluate whether there are alterations in several
selected serum variables related to innate immunity and carbohydrate and lipid metabolism that precede
occurrence of RP in transition Holstein dairy cows.

Methods: One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected
from the coccygeal vein during the −8 to +4 wks around parturition, once per week before the morning feeding.
Six healthy control cows (CON) and 6 cows with RP were selected and serum samples at −8, −4, time of diagnosis
of disease, and +4 wks relative to parturition were used for analyses. All samples were analyzed for lactate, non-
esterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor
(TNF), haptoglobin (Hp), and serum amyloid A (SAA).

Results: Cows with RP had greater concentrations of serum lactate, IL-1, IL-6, TNF, and SAA in comparison with
CON cows. Intriguingly, elevated concentrations of all five variables were observed at −8 and −4 wks before the
occurrence of RP compared to healthy cows. Cows with RP also had lower DMI and milk production vs CON
animals; however milk composition was not affected by RP.

Conclusions: Cows with RP showed an activated innate immunity 8 wks prior to diagnosis of disease. Overall
results suggest that serum IL-1, IL- 6, and TNF, and lactate can be used as screening biomarkers to indicate cows
that might have health issues during the transition period.
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Background
It is widely accepted that transition period in dairy cows
is characterized by a high incidence of metabolic and
infectious diseases. Failure to expel fetal membranes
within 24 h of calving is a pathological condition defined
as retained placenta (RP) [1]. Normally, expulsion of
placenta occurs 3–8 h after calf delivery [2]. An import-
ant sign associated with RP is degradation, discoloration,

and hanging of fetid fetal membranes from the
vulva > 24 h after parturition.
During the years four main hypotheses have been

proposed with regards to retain placenta: uterine atony,
edema of the chorionic villi, inflammatory states, and
neutrophil inactivation [3, 4]. The later hypothesis was
supported by data generated by Kimura et al. [1] that
proposed a decrease in neutrophil functions before
parturition. Later, LeBlanc [5] suggested that RP, metri-
tis, and endometritis are diseases of immune function in
the transition period, which begins at least 2 wks pre-
partum. Furthermore, Ametaj et al. [3] proposed that
endotoxin might be involved in all four conditions by
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lowering uterine atony, inducing edema of the chorionic
villi, initiating the inflammatory state, and causing
neutrophilia from inability of neutrophils to move to
inflammatory tissues.
There is an increasing body of evidence to support

utilization of blood metabolites, cytokines, and acute
phase proteins (APPs) as biomarkers of disease in dairy
cattle. The use of APPs as biomarkers of cattle diseases
also has been recently discussed by Bertoni and Trevisi
[6]. In fact, several studies have reported alterations in
blood metabolites, cytokines, and APPs in cows with RP.
For example, concentrations of beta-hydroxybutyrate
(BHBA) in the plasma of cows with RP induced by treat-
ment with LPS, peaked at 14 d postpartum reaching
sub-ketotic levels [7]. In addition, both prepartum non-
esterified fatty acids (NEFA) and postpartum BHBA
were associated with clinical diseases in dairy cows
including RP [8, 9]. Moreover, Seifi et al. [10] showed
greater concentrations of NEFA and BHBA in cows with
RP. Also it has been suggested that elevated NEFA and
ketone bodies are metabolic indicators of increased risk
for RP [8, 11].
The decline in immune status around parturition and

the incidence of RP (averages 5–15 %) in dairy cows,
negatively affect animal welfare, herd health, fertility,
and milk production. Retained placenta results in in-
creased days open, calving to first heat interval, services
per conception, and days from calving to first service,
instigating important financial loses to dairy industry
[1, 12, 13]. Because RP increases the odds of deve-
loping metritis and infertility [14, 15], mastitis, and
lowers milk production [16] this disorder is consid-
ered an economically important issue for the dairy
industry with estimated cost of $285 per case with an
average incidence rate of 7.8 % [17].
The etiopathology of RP is not known and it will be of

great interest to study the potential contributing factors
that influence the occurrence of RP. Therefore, the
objectives of this investigation were to evaluate whether
there are alterations in selected blood variables related
to innate immunity and carbohydrate and lipid metabol-
ism that precede occurrence of RP, during the dry period
starting at −8 wks prior to the expected day of partur-
ition and up to +8 wks after calving and that might serve
as screening biomarkers of RP, identification of cows at
increased risk of developing RP, and learning more about
the pathobiology of disease.

Methods
Animals and diets
One hundred pregnant Holstein dairy cows at the Dairy
Research and Technology Centre, University of Alberta
(Edmonton, AB, Canada), were used in a longitudinal
study. Six pregnant multiparous Holstein dairy cows that

were diagnosed with RP and six healthy control cows
(CON) that were similar in parity, age, and body condi-
tion were selected for this nested case-control study (the
mean parity of CON group is 3.2 ± 0.3 and the mean
parity of RP group is 3.1 ± 0.3) age, and body condition
score (BCS; the mean BCS for both groups is 3.17).
There were 9 cows diagnosed with RP out of 100 cows
sampled. Cows affected concurrently by RP and another
disease were excluded from the study in order to better
characterize RP. Out of 100 cows sampled only 6 were
affected only by RP. All experimental procedures were
approved by the University of Alberta Animal Policy and
Welfare Committee for Livestock and animals were
cared for in accordance with the guidelines of the
Canadian Council on Animal Care [18].
The experimental period lasted for 17 wks starting

from −8 wks before parturition to +8 wks postpartum
(i.e., −8 wks to +8 wks, 0 wk means the week of calving)
for each cow. Cows were housed in individual tie stalls
bedded with sawdust and with free access to water
throughout the experiment. One wk before the expected
day of calving cows were transferred to the maternity
barn and returned to their stalls on the following day of
parturition. Diets were offered as TMR for ad libitum in-
take once daily at 0800 h to allow approximately 5 %
orts. All TMR were formulated to meet or exceed the
nutrient requirements of dry and early 680 kg lactating
cows as per National Research Council guidelines [19].
Individual dry matter intake (DMI) was recorded daily
throughout the 17 wks period by calculating the differ-
ence between the total daily diets given to each cow with
the orts on the next morning. Since the onset day of lac-
tation, cows were milked in their stalls twice per d at
0500 and 1600 h, and individual milk yield (MY) was re-
corded electronically. Milk samples collected on d 0, 14,
21, 35, and 49 relative to parturition (d 0 means the day
of calving) were used for analysis of milk composition.
Milk composition including crude protein (CP), milk fat,
lactose, somatic cell count (SCC), milk urea nitrogen
(MUN), and total solids (TS) were analyzed by mid-
infrared spectroscopy (MilkoScan 605; A/S Foss Electric,
Hillerød, Denmark) at the DHI Central Milk Testing La-
boratory in Edmonton, Alberta.

Monitoring of clinical health status
Health status (HS) of cows was monitored daily based on
clinical signs of disease by trained individuals and on a
weekly basis by a veterinary practitioner. All periparturient
diseases and veterinary treatments were recorded for each
cow throughout the entire experimental period. Diagnosis
of pregnancy was performed routinely by a veterinary prac-
titioner at 60–70 d post-insemination. Based on the artifi-
cial insemination (AI) data, supported with the information
of pregnancy diagnosis, the expected date of parturition
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was estimated by adding 280 d from the day of AI. All cows
were monitored daily starting at −8 wks prior to the
expected date of calving and continuing up to +8 wks
postpartum. The various external symptoms observed
were - rectal temperature, ease of calving, body condition
score (BCS), body temperature, and vaginal discharges
(color and consistency).
In this study, RP was diagnosed if cows failed to expel

fetal membranes within 24 h of calving. According to the
veterinary protocol, cows with RP were treated with
Tetrabol (Vetoquinol N.-A. Inc., lavatrie, Quebec, Canada)
in the uterine cavity.

Sample collection
Blood samples were obtained from the coccygeal vein
once per wk at 0700 before feeding from −8 wks before
parturition to +8 wks postpartum. All blood samples were
collected into 10-mL vacutainer tubes (Becton Dickinson,
Franklin Lakes, NJ, USA) and allowed to clot and kept at
4 °C until separation of serum. Clotted blood was centri-
fuged at 2,090 x g at 4 °C for 20 min (Rotanta 460 R
centrifuge, Hettich Zentrifugan, Tuttlingen, Germany).
The separated serum was aspirated from the supernatant
gradually by transfer pipets (Fisher Scientific, Toronto,
ON, Canada) without disturbing the sediment. The
separated serum was transferred to a sterile 10-mL plastic
test tube (Fisher Scientific, Toronto, ON, Canada). All
serum samples were stored at −80 °C until analysis to
avoid loss of bioactivity and contamination and were
thawed on ice for approximately 2 h before use.

Sample analyses
Serum metabolites. Quantitative determination of serum
lactate, BHBA, and NEFA were measured by an enzymatic
colorimetric method using commercially available kits
provided by Sigma (St. Louis, MO, USA), Stanbio Labora-
tory (Boerne, TX, USA) and Wako Chemicals (Richmond,
VA, USA), respectively. The detailed methods have been
described previously by Ametaj et al. [20]. Briefly, accord-
ing to the manufacturers’ instructions, the lower detection
limits of the kits were 0.06 mg/dL, 0.125 μmol/L, and 0.50
μEq/L, respectively. The principle of the lactate assay
involves reduction in the colorless tetrazolium salt by an
NADH-coupled enzymatic reaction to formazan, which
develops a red color change proportional to the lactate
concentration. BHBA test involved the basic principle of
conversion of serum BHBA to acetoacetate and NADH by
BHBA dehydrogenase in presence of NAD. Then, the
NADH reacts with 2-p-iodophenyl-3-p-nitrophenyl-5-
phenyltetrazolium chloride (INT) in the presence of di-
aphorase to form a pink colored adduct proportional to
the concentration of BHBA in the serum. The principle of
NEFA kit involved acylation of coenzyme A (CoA) by fatty
acids in the serum in presence of acyl-CoA synthetase and

production of hydrogen peroxide in presence of acyl-CoA
oxidase. Hydrogen peroxide, together with peroxidase,
permits the oxidative condensation of 3-methyl-N-ethyl-
N-β-hydroxy ethyl-O-aniline with 4-aminoantipyrine to
produce a purple color change, which is proportional
to the serum NEFA concentrations. All samples were
tested in duplicate and absorbance of standards and
samples vs a blank for lactate, BHBA, and NEFA were
read at 492, 505, and 550 nm, respectively, in a mi-
croplate reader (Spectramax 190, Molecular Devices
Corporation, Sunnyvale, CA, USA). The intra-assay
variation of all the three assays was controlled by coef-
ficient of variation (CV) limits < 10 %.
Serum cytokines: Concentration of IL-1 in the serum

was assayed by a commercially available bovine ELISA
kit (Cusabio Biotech Co. Ltd., Wuhan, China) with mAb
(monoclonal antibodies) specific for IL-1 coated on the
walls of the microplate strips provided. The procedure
involved the basic principle of a competitive inhibition
enzyme immunoassay between biotin-conjugated IL-1
and IL-1 with the pre-coated antibody. All samples
(50 μL) were tested in duplicate in microtitration wells
with biotin-conjugated IL-1 according to the manufac-
turer’s instructions. The plates were washed with wash
buffer after the incubation for 60 min at 37 °C, followed
by addition of 50 μL of horseradish peroxidase (HRP)-
avidin. Samples were incubated for 30 min at 37 °C.
Then, they were washed 3 times with buffer, and 50 μL
substrate A and 50 μL of substrate B reagent were added
to each well. After incubation at 37 °C for 15 min, the
resulting color reaction was read at 450 nm by a
microplate reader (Spectramax 190, Molecular De-
vices Corporation, Sunnyvale, CA, USA) within
10 min, and the final IL-1 concentration was calcu-
lated using a 4-parameter logistic curve fit. The
sensitivity of this assay was 250 pg/mL, and the
intra-assay CV was < 10 %.
Concentration of IL-6 in the serum was measured with

a bovine ELISA kit provided by Uscnk Life Science Inc.
(Wuhan, China) as described by the manufacturer. The
detection limit of the assay was 7.8 pg/mL and the intra-
assay variation of all IL-6 assays was controlled by CV
limits < 10 %. The principle of the IL-6 test involves a
sandwich enzyme immunoassay, which exhibits a yellow
color change proportional to IL-6 concentration. Sam-
ples or standards were added to the microtiter plate
wells with a biotin-conjugated antibody specific for IL-6
with all samples in duplicate. Then, HRP-avidin was
added and the plate was incubated for 90 min at 37 °C
in total. After 3,3,5,5-tetramethylbenzidine (TMB) sub-
strate and sulphuric acid solution were added, the color
change was measured spectrophotometrically at a wave-
length of 450 nm (Spectramax 190, Molecular Devices
Corporation, Sunnyvale, CA, USA).
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Concentration of TNF in the serum was determined
by a commercially available bovine ELISA kit (Bethyl
Laboratories, Inc., Montgomery, TX, USA) using a
method described previously by Iqbal et al. [21]. Briefly,
all samples were tested in duplicate and the optical
density values were read at 450 nm on a microplate
spectrophotometer (Spectramax 190, Molecular Devices
Corporation, Sunnyvale, CA, USA). The detection range
of TNF assay was between 0.078 and 5 ng/mL, and the
intra-assay CV was lower than 10 %.
Serum APPs: Methods used for the measurement of

concentration of Hp (Tridelta Development Ltd.,
Co.Kildare, Ireland) and SAA (Tridelta Development
Ltd.) in the serum were described previously in detail
by Iqbal et al. [22]. Briefly, serum samples for Hp were
not diluted. The minimum detection limits for Hp,
and SAA assays were 2.5 mg/mL, and 18.8 ng/mL
respectively. All samples were tested in duplicate and
the optical densities were measured at 600 nm for Hp
and 450 nm for SAA. The intra-assay variations of
APPs assays were controlled by the CV limits at no
more than 10 % and for those greater than 10 %
samples were reanalyzed.

Statistical analyses
To perform standard longitudinal study comparisons
between the two groups, the group of healthy cows with
those of RP one were compared at each time point
(−8, −4, disease diagnosis, and +4 wks).
For parametric analysis of the data ANOVA was used by

MIXED procedure of SAS (SAS Institute Inc., Cary, NC,
USA, Version 9.2) according to the following model:

Yijk ¼ μþ Si þWj þ SWð Þij þ eijk

where Yijk is the observations for dependent variables, μ
represents the population mean, Si is the fixed effect of
health status i (i = 1-2, sick cows compared with healthy
control separately), Wj is the fixed effect of measure-
ment week j (j = 1–4 or 1 –17), SWij is the fixed effect
of health status by week interaction, and eijk is the
residual error.
Measurements taken at different weeks on the same

cow were considered as repeated measures in the
ANOVA. The variance–covariance structure of the re-
peated measures was modeled separately for each response
variable according to the lowest values of the fit statis-
tics based on the Bayesian Information Criteria, and an
appropriate structure was fitted. Degrees of freedom
were approximated by the method of Kenward-Roger
(ddfm = kr).
In order to identify early indicators of RP, average

serum concentrations in the week of diagnosis, as well
as at −8 and −4 wks before the expected day of

parturition were compared using t-test of SAS 9.2
between healthy cows and cows with RP. Data are exhib-
ited as least-squares means (LSM) and the respective
standard error of the mean (SEM). All statistical tests
were two-sided. Significance was declared at P < 0.05,
and tendency was defined at 0.05 < P < 0.10.
Multivariate analysis was performed using Meta-

boAnalyst [23]. Recommended statistical procedures
for principal component analysis (PCA) and partial
least squares discriminant analysis (PLS-DA) were
followed according to previously published protocols
[23]. To perform a longitudinal study combined with
cross-sectional comparisons between two groups, we
compared the group of CON cows with that of RP
one at each time point ( −8, −4, disease diagnosis,
and +4 wks). In the PLS-DA model, a variable importance
in the projection (VIP) plot was used to rank the variables
based on their importance in discriminating RP group
from the CON group of cows. Variables with the highest
VIP values are the most powerful group discriminators.
Typically, VIP values > 1 are significant and VIP values > 2
are highly significant. Biomarker profiles and the quality
of the biomarker sets were determined using receiver-
operator characteristic (ROC) curves as calculated by
MetaboAnalyst 3.0 [24]. Paired sensitivity and false-
positive ratios (1-specificity) at different classification deci-
sion boundaries were calculated. A ROC curve is plotted
with sensitivity values on the Y-axis and the corresponding
false-positive rates (1-specificity) on the X-axis. ROC
curves are often summarized into a single metric known
as the area under the curve (AUC), which indicates the
accuracy of a test for correctly distinguishing one group
such as RP cows from CON ones. If all positive samples
are ranked before negative ones, the AUC is 1.0, which
indicates a perfectly discriminating test. The 95 % confi-
dence interval (CI) and P values were calculated. A rough
guide for assessing the utility of a biomarker set based
on its AUC is 0.9 ~ 1.0 = excellent; 0.8 ~ 0.9 = good;
0.7 ~ 0.8 = fair; 0.6 ~ 0.7 = poor; 0.5 ~ 0.6 = fail.

Results
Serum metabolites
Concentrations of metabolites for the prepartum period
are shown in Tables 1 and 2. Overall data demonstrated
that concentration of lactate in cows with RP were greater
compared to CON ones (4,502 vs 2,258 μmol/L; P < 0.05).
Furthermore, comparison of means at −8 wk before par-
turition showed that cows with RP tended to have greater
concentrations of lactate compared to those of CON
(P = 0.05), reaching significance at −4 wk before par-
turition (P < 0.05) and remaining elevated until +4 wks
after parturition (P < 0.05). No differences between the
two groups of cows were detected with regards to
concentrations of NEFA and BHBA in the serum;
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however, data showed an effect of week of sampling
on those variables (P < 0.05).

Serum cytokines
Data with respects to concentrations of IL-1, IL-6, and
TNF in the serum showed that cows with RP had greater
concentrations of IL-1 and TNF throughout the study
(P < 0.05); with sampling week also having an effect on
the results of IL-1 (Table 1 and 2). Comparisons of
means also showed greater concentrations of IL-1 and
TNF in cows with RP (P < 0.05) at −8 and −4 wks prior
to parturition. Concentrations of IL-1 and TNF tended
to be greater in cows with RP at +4 wks after parturition.
Moreover, at −8 wks, cows with RP had greater concen-
trations of IL-6 compared to healthy cows. Elevated con-
centrations of IL-6 were not maintained at −4 wks
before parturition, and at the week of diagnosis of RP.
Data showed an effect of week of sampling and inter-
action of health status and week of sampling on IL- 6
(P < 0.05).

Serum acute phase proteins
Results with regards to concentrations of Hp and SAA
in the serum are shown in Table 1 and 2. Concentrations
of Hp in the serum of cows with RP were lower
compared to healthy cows at −4 wks before parturition
(P < 0.05), however, during the week of diagnosis of RP
concentrations of Hp in cows with RP increased almost
10-fold compared to healthy cows (P < 0.01). Cows with
RP had greater concentrations of SAA compared to
CON ones throughout the study (P < 0.05). Interestingly
concentrations of SAA in RP cows were greater starting
from wk −8 and −4 prior to parturition (P < 0.01)
and remained elevated until +4 wks after calving
(P < 0.05).

Dry matter intake, milk production, and milk composition
Changes in DMI, concentrations of milk fat, protein,
and fat:protein ratio in the milk are shown in Table 1
and 2. Moreover, the number of somatic cell count
(SCC), milk urea N (MUN), total solid (TS), and lactose

Table 1 Data of dry matter intake, milk production, milk composition, and selected metabolites, cytokines, and APP in the serum of
dairy cows with (n = 6) and without (n = 6) retained placenta (RP) during the periparturient period

Groupa Effect,b P-value

Item CON RP SEM Hs Wk Hs ×Wk

DMIc, kg/d 18.64 16.45 0.56 0.02 <0.01 0.23

Milk productiond, kg/d 42.37 32.58 2.80 0.02 <0.01 0.07

Temperature, °C 38.43 38.42 0.05 0.88 <0.01 0.63

BCS 2.93 3.08 0.11 0.39 <0.01 074

Milk compositione, %, unless otherwise stated

Fat 3.84 3.80 0.22 0.91 0.33 0.28

Protein 2.88 2.92 0.10 0.77 <0.01 0.15

Fat:protein ratio 1.36 1.28 0.09 0.57 0.21 0.26

Lactose 4.56 4.49 0.04 0.35 0.04 0.49

SCC, 103 cells/mL 30.83 50.79 4.2 0.01 0.22 0.30

Milk urea N, mg/dL 15.56 12.85 0.98 0.11 0.25 0.10

TS 12.21 13.65 0.68 0.22 0.29 0.56

Serum parametersf

Lactate, μmol/L 2,258 4502 456 0.01 0.27 0.36

NEFA, mmol/L 397.13 275.87 73.11 0.30 <0.01 0.50

BHBA, μmol/L 595.81 431.32 67.51 0.13 <0.01 0.14

IL-1, pg/mL 296.64 313.39 3.69 0.02 <0.01 0.53

IL-6, pg/mL 26.74 57.71 12.24 0.20 <0.01 <0.01

TNF-α, ng/mL 0.19 1.22 0.11 <0.01 0.42 0.68

Haptoglobin, mg/mL 0.15 0.36 0.07 0.10 0.16 0.10

SAA, ug/mL 8,477 23,165 2,311 <0.01 0.81 0.95
aCON = cows without retained placenta (health control); RP = cows with retained placenta
bEffect of health status (Hs), sampling week (Wk), and health status by sampling week interaction (Hs ×Wk)
cDry matter intake was calculated from week −8 to +8 relative to parturition
dMilk production was calculated from week +1 to +8 relative to parturition
eMilk compositions were determined on week +2, +3, +5, +7 relative to parturition
fSerum parameters were calculated from week −8, −4, disease and +4 relative to parturition
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Table 2 Data of dry matter intake, milk production, milk composition and serum variables at the diagnosis week, and concentrations of serum indicators prior to the diagnosis
of retained placenta (RP)

−8 wks before parturation −4 wks before parturation RP diagnosis weeka +4 wks after parturition

Item CON RP P-value CON RP P-value CON RP P-value CON RP P-value

DMI, kg/d 16.27 ± 0.82 12.48 ± 0.88 0.02 15.92 ± 0.10 14.28 ± 0.78 0.08 20.34 ± 0.56 15.55 ± 0.88 <0.01 21.68 ± 0.68 20.71 ± 1.34 0.53

Milk production, kg/d 30.95 ± 0.32 24.61 ± 3.52 0.13 42.04 ± 2.21 38.32 ± 4.23 0.45

Temperature, °C 38.23 ± 0.15 37.90 ± 0.30 0.42 38.45 ± 0.08 38.42 ± 0.11 0.81 38.42 ± 0.10 38.77 ± 0.16 0.09 38.32 ± 0.05 38.34 ± 0.13 0.87

BCS 2.75 ± 0.22 3.13 ± 0.22 0.18 3.04 ± 0.16 3.21 ± 0.10 0.41 3.17 ± 0.17 3.17 ± 0.15 1.0 2.58 ± 0.08 2.75 ± 0.14 0.41

Milk composition, %, unless otherwise stated

Fat 5.08 ± 0.45 4.29 ± 0.44 0.25

Protein 3.00 ± 0.10 3.12 ± 0.13 0.50

Fat : Protein ratio 1.69 ± 0.12 1.38 ± 0.14 0.13

Lactose 4.54 ± 0.05 4.38 ± 0.05 0.05

SCC, 103 cells/mL 28.33 ± 5.63 108.67 ± 39.46 0.10

Milk urea N, mg/dL 15.39 ± 0.76 13.33 ± 1.66 0.29

TS 12.21 ± 0.31 13.98 ± 1.14 0.19

Serum parameters

Lactate, μmol/L 2,455 ± 348 4,855 ± 692 0.05 2,162 ± 184 5,507 ± 933 0.03 2,227 ± 320 4,458 ± 925 0.05 2,100 ± 129 3,726 ± 468 0.04

NEFA, mmol/L 140.79 ± 32.77 193.32 ± 54.25 0.41 194 ± 47 182 ± 37.61 0.87 756.51 ± 232.01 471 ± 146 0.34 500.43 ± 151.71 269.48 ± 69.13 0.23

BHBA, μmol/L 352 ± 37.71 340 ± 63.99 0.87 312 ± 18 366 ± 49.62 0.30 827 ± 151.50 553 ± 85 0.15 896.73 ± 188.3 553.15 ± 85.24 0.13

IL-1, pg/mL 317 ± 6.04 347 ± 15.90 0.04 321 ± 1.59 337. ± 6.04 0.02 277 ± 5.42 290 ± 7.36 0.05 270.57 ± 2.87 287.51 ± 8.99 0.05

IL-6, pg/mL 19.23 ± 5.67 100 ± 41.45 0.02 48.24 ± 17.51 69.39 ± 18.43 0.34 23.17 ± 5.18 35.65 ± 21.63 0.59 15.71 ± 3.27 32.99 ± 7.32 0.10

TNF-α, ng/mL 0.34 ± 0.03 1.26 ± 0.30 0.03 0.27 ± 0.05 1.31 ± 0.22 <0.01 0.06 ± 0.03 1.37 ± 0.41 0.01 0.07 ± 0.04 1.04 ± 0.25 0.05

Haptoglobin, mg/mL 0.19 ± 0.03 0.34 ± 0.25 0.58 0.15 ± 0.01 0.07 ± 0.02 <0.01 0.12 ± 0.01 1.06 ± 0.31 <0.01 0.16 ± 0.01 0.17 ± 0.17 0.98

SAA, ug/mL 8,447 ± 3373 24,584 ± 7,794 0.04 3,461 ± 342 19,378 ± 6,445 0.03 10,401 ± 1,722 21,706 ± 8,746 0.04 11,797 ± 1,853 23,955 ± 10,369 <0.01
aCows were diagnosed with retained placenta (n = 6) ranging from week 0 to +1. CON = cows without retained placenta (health control); RP = cows with retained placenta
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in the milk are shown in Table 1 and 2. Overall DMI in
cows with RP was lower compared to controls (P < 0.05).
The sampling week also had an effect (P < 0.05), indicat-
ing wk-to-wk variation in DMI. Comparison of means
demonstrated that DMI was lower at −8 wks before par-
turition (P = 0.05) and during the week of diagnosis of
RP (P < 0.01). At −4 wks before calving DMI tended to
be lower in cows with RP (P = 0.08).
Moreover, cows with RP showed lower milk produc-

tion throughout the experimental period and during the
week of diagnosis of RP (32.58 vs 42.37 kg/d; P < 0.05).
In addition, SCC were greater in cows with RP com-
pared to healthy controls during the study (P < 0.05), but
not during the week of diagnosis of RP.

The amount of lactose in the milk of cows with RP
tended to be lower only at diagnosis week (P = 0.05),
whereas protein, fat:protein ratio, MUN, and TS did not
show differences between RP and healthy controls
during the postpartum weeks of the study (P > 0.05).

Results of multivariate analyses
Principal component analysis of healthy cows versus
those with RP at −8 wks showed that the first 2 PC
(principal components) covered 69.1 % of the observed
variance in the sample set (Fig. 1a). In addition, PLS-DA
scores plot revealed that it is possible to discriminate be-
tween cows that did not have RP and those that did
at −8 wks before calving (Fig. 1b). When healthy cows

Fig. 1 a Principal component analysis (PCA) and (b) Partial least squares-discriminant analysis (PLS-DA) of 6 control and 6 RP cows at −8 wk
before parturition showing 2 separated clusters for 2 groups. c Variables ranked by variable importance in projection (VIP), and (d) Receiver-operator
characteristic (ROC) curve of 6 CON and 6 RP cows at −8 wks before parturition for the top 3 serum variables
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and RP cows were compared at −4 wks prepartum
(Fig. 2a), PCA analysis showed that the first 2 PC covered
69.2 % of the observed variance in the sample set. PLS-
DA scores plot revealed that it is possible to discriminate
between healthy cows and those with RP at −4 wks before
parturition (Fig. 2b). Similar results were obtained during
the week when RP was diagnosed (Fig. 3a and Fig. 3b) and
+4 wks postpartum (Fig. 4a). A VIP plot in a PLS-DA
model at 4 time points in which the serum variables were
ranked based on their contribution to discriminating the
RP cows from CON ones are shown in Figs. 1c, 2c, 3c,
and 4c. The VIP plots indicated that TNF, IL-6 and IL-1 at
−8 wks; TNF, lactate, and IL-1 at −4 wks; TNF, lactate,

and BHBA at the week of diagnosis of RP; and lactate, IL-
6, and TNF at +4 wks were the strongest discriminating
variables for separating RP cases form CON cows. The
heat map on the right side of the 4 VIP plots indicated
that these variables were enhanced in cows with RP
relative to CON cows.
A ROC curve plot indicating the performance of the

top 3 metabolites in predicting which cows will develop
RP at −8 and −4 wks using a PLS-DA model are shown
in Figs. 1d and 2d. The AUC for the curve at −8 wks is 1
(95 % CI, 1-1), which indicates that TNF, IL-6, and IL-1
together at −8 wks have very strong predictive abilities.
The AUC for the curve at −4 wks was 1 (95 % CI, 1-1),

Fig. 2 a PCA and (b) PLS-DA of 6 control and 6 RP cows at −4 wks before parturition showing 2 separated clusters for 2 groups. c VIP, and
(d) ROC curve of 6 CON and 6 RP cows at −4 wks before parturition for the top 3 serum variables
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which suggest that at −4 wks the combination of TNF,
lactate, and IL-1 have very strong predictive abilities.
These results demonstrate that biomarker models devel-
oped at −8 and −4 wks could be used to predict which
cows are susceptible to develop RP after parturition. The
ROC curve developed based on three metabolites TNF,
lactate, and BHBA at the week of diagnosis of RP
indicates that this three-metabolite set were a highly
significant biomarker for diagnosis of RP, with AUC,
0.955 (95 % CI, 0.5–1, Fig. 3d). Moreover, multivariate
models (ROC curves) combining 3 discriminating var-
iables lactate, IL- 6, and TNF at +4 wks produced an

area under the receiver-operating curve of 1 (95 % CI:
1-1, Fig. 4d).

Discussion
The objective of this investigation was to evaluate
whether there were alterations in some of the most stud-
ied blood variables related to some aspects of innate
immunity and carbohydrate and lipid metabolism in
transition dairy cows that retained their fetal placental
membranes more than 24 h after parturition. Indeed, the
results of our study revealed that cows that developed
RP had greater concentrations of serum IL-1, IL-6, TNF,

Fig. 3 a PCA and (b) PLS-DA of 6 control and 6 RP cows at disease week showing 2 separated clusters for 2 groups. c VIP, and (d) ROC curve of
6 CON and 6 RP cows at disease wk for the top 3 serum variables
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SAA, and lactate in comparison with CON cows. Intri-
guingly, elevated concentrations of all five variables
were observed at −8 and −4 wks before the occurrence
of RP compared to CON cows. In addition, cows with
RP also had lower DMI and milk production compared
to CON animals.
Results of this study showed that concentrations of IL-

1 and IL-6 were significantly greater in cows with RP
throughout the study, starting at −8 wks before calving.
Interleukin-1 is a central mediator of innate and adap-
tive immunity and inflammation. It is a cytokine pro-
duced mainly by activated macrophages in the liver,
lymph nodes, udder, adipose tissue, systemic circulation
or other inflamed tissues or organs and also plays a

significant role in the activation of APR [25]. In the
present study, the overall concentration of IL-6 was not
different between healthy cows and those with RP;
however, serum IL-6 was greater in RP cows at −8 wks
before parturition. Interleukin-6 plays a significant role
during the transition from innate to adaptive immunity.
The reasons why both IL-1 and IL-6 were greater in
would-be-RP cows suggest presence of an inflammatory
insult starting at −8 wks before parturition. This
assumption also is supported by concurrent elevated
concentrations of TNF in the serum of RP cows, which
has a critical role in initiating the host immune response
by triggering the release of IL-1 and IL-6. Our results
are in line with other studies that have reported that

Fig. 4 a PCA and (b) PLS-DA of 6 control and 6 RP at 4 wks after parturition showing 2 separated clusters for 2 groups. c VIP, and (d) ROC curve
of 6 CON and 6 RP cows at +4 wks after parturition for the top 3 serum variables
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greater serum TNF, at approximately 15 d before partur-
ition, is associated with greater risk of RP [26, 27]. Our
data suggest that combination of serum TNF, IL-1, and
IL-6 can be used to screen cows for the potential occur-
rence of RP starting at −8 wks prior to calving. This
suggestion should be taken with caution because proin-
flammatory cytokines are global indicators of inflamma-
tion but not of a specific disease. To our best knowledge
this is the first study to relate high concentrations of IL-
1, IL-6, and TNF, at least 8 wks before parturition, with
potential development of RP. It is speculated that the
reason why serum IL-1, IL-6, and TNF are greater in RP
cows might be presence of an inflammatory insult in the
mammary gland at 8 wks before parturition. This is in
agreement with the reported data that high concentra-
tions of cytokines, or inflammatory indicators in cows
during the dry period have been associated with greater
incidence of mastitis or to inflammatory events around
calving [28, 29]. However, additional research is warranted
to clarify the reasons behind elevated concentrations of
pro-inflammatory cytokines prior to occurrence of RP.
Pro-inflammatory cytokines like IL-1 and IL-6 are

known to trigger the release of APPs from hepatocytes
[30, 31]. Indeed, in the present study serum concentra-
tions of SAA were greater in cows with RP, throughout
the study, starting at −8 wks before calving and up to +4
wks after parturition. In addition, concentrations of Hp
in cows with RP increased almost 10-fold compared to
healthy cows at the week of diagnosis of RP. Serum
amyloid A binds to high density lipoproteins and partici-
pates in expedited clearance of translocated endotoxin
through the liver [32], whereas Hp binds hemoglobin
and prevents utilization of iron by bacteria translocated
into the blood circulation [33] and plays a significant
role in neutrophil recruitment to the inflammation site.
Numerous studies have shown that cows experiencing
an APR around parturition have greater odds of devel-
oping metabolic diseases [32, 34, 35]. The results of this
study support the idea that APR in cows with RP is
probably due to the existence of an inflammatory state
in cows starting at 8 wks before parturition. Ametaj et
al. [3] proposed that LPS from E. coli might be involved
in the incidence of RP. In addition, in a previous study
we demonstrated that intermittent intravenous infusion
of LPS in transition dairy cows increased the incidence
rate of RP and was associated with greater systemic con-
centrations of SAA and Hp [7]. This study supports our
assumption that an infection involving Gram-negative bac-
teria might be involved in triggering of APR and the release
of positive APPs in the systemic circulation prior to and
during occurrence of RP. To our best knowledge this is the
first study to report that concentrations of SAA increase at
least 8 wks before parturition in cows that retained their
fetal membranes after calving.

Results of this study also showed that an inflammatory
insult associated with an APR preceded RP in postpar-
tum dairy cows. An intriguing question is whether acti-
vation of innate immunity during the dry off period
contributes to retention of fetal membranes in the
transition dairy cows? Although there are no published
reports with respects to how an inflammatory condition
might affect RP in dairy cows, research in human
subjects indicates that inflammatory leukocytes of ma-
ternal origin migrate to placental membranes and cause
chorioamnionitis (inflammation of fetal membranes on
both maternal (chorion) and fetal sides (amnion) [36]. It
is speculated that inflammatory leukocytes might infil-
trate from the dam’s systemic circulation to the placenta
and even fetus itself and trigger inflammation associated
with RP and harmful effects on the fetus.
Another important finding of this study was that cows

with RP had greater concentrations of lactate in the
serum starting at −8 wks before parturition, at −4 wks,
disease diagnosis wk, and even at +4 wks postpartum.
The reason for greater lactate in the serum is not clear.
It is speculated that lactate is coming from muscle tissue
or mammary gland. Previous research has indicated that
during endotoxemia there is increased blood lactate,
originating from altered muscle metabolism [37]. Given
the obseervation that would-be-RP cows had greater
concentrations of cytokines and APPs in the serum dur-
ing the dry off period, it is reasonable to speculate that
translocation of endotoxin might have also occurred in
those cows. Blood lactate has been previously associated
with other metabolic disease like mastitis [38]. In addition,
our team has reported that greater concentrations of
lactate precede milk fever and laminitis in transition dairy
cows [39, 40]. Intriguingly lactate has been shown to
inhibit motility of T cells to the inflammation site and
their effector functions [41]. In addition, lactate has
suppressive effects on T cell cytotoxic activity [42], alters
antigen-presenting ability of dendritic cells [43], and inter-
feres with NK cell activity [44]. Lactate also has been
demonstrated to affect the motility of neutrophils and
their killing capabilities, and trigger anti-inflammatory
responses by suppression of inflammasome and proin-
flammatory cytokine production.
The overall DMI in cows that retained their fetal

membranes was lower compared to CON cows. Dry
matter intake was lower in RP cows starting at −8 wks
before parturition (16.27 ± 0.82 vs 12.48 ± 0.88 kg) and at
the wk of diagnosis of RP. One of the most important
physiological changes occurring during the dry off period
is the decrease in feed intake [36, 45] and lower feed
intake is known to be associated with a drop in body
weight. This is in agreement with previously reported
findings that proinflammatory cytokines affect both DMI
and disease incidence around calving [28].
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Retained placenta is associated with lowering of milk
production and significant financial losses to the dairy
industry [1]. In this study cows with RP had lower milk
production throughout the postpartal experimental
period, which is in line with previous reports including
Lucey et al. [15] and Sartori et al. [46]. Overall, cows with
RP produced 9.79 L of milk/d less compared to their
healthy counterparts, which implies a loss of 2.74$/d/cow,
without taking into consideration the cost of medications
and veterinary services. The reason why cows with RP had
lower milk production might be related to the increase in
concentrations of circulatory TNF. Infection by Gram-
negative bacteria and their cell wall component, lipopoly-
saccharide (LPS), has been shown to inhibit production of
prolactin in the pituitary gland, mediated by TNF [47].
This assumption also is supported by a previous investiga-
tion demonstrating a decrease in milk yield in lactating
cows after parenteral administration of TNF [48].
Furthermore the results of PCA and PLS-DA showed

separation between healthy cows and those with RP
starting at −8 wks before parturition. The metabolic and
innate immunity alterations prior to calving suggest
presence of an inflammatory insult prior to parturition.
This substantiates the notion that alterations in blood
plasma metabolites starts prior to the onset of the
clinical signs of transition diseases and supports our
previous reports that revealed clear separation of healthy
and diseased cows on the basis of blood plasma metabo-
lites profile at 4 wks before the onset of clinical signs of
periparturient diseases in dairy cattle [49, 50].

Conclusions
In conclusion, to the best of our knowledge this is the first
study to relate concentrations of IL-1, IL-6, TNF, SAA, and
lactate in the serum of would-be-RP cows with occurrence
of RP starting at −8 wks prior to parturition and during the
entire dry off period and during disease diagnosis. Elevated
concentrations of several serum innate immunity variables
and lactate reflect pathophysiological events occurring in
would-be-RP cows prior to occurrence of disease. Since
cytokines and APPs measured are part of the innate
immunity, which is a general and non-specific immune
response, they cannot be used to identify specific diseases;
however, their utilization in identification of cows that are
susceptible to periarturient diseases is of great value.
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