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Abstract

Piwi-interacting RNAs (piRNAs) are regarded as drug targets and biomarkers for the diag-
nosis and therapy of diseases. However, biological experiments cost substantial time and
resources, and the existing computational methods only focus on identifying missing associ-
ations between known piRNAs and diseases. With the fast development of biological experi-
ments, more and more piRNAs are detected. Therefore, the identification of piRNA-disease
associations of newly detected piRNAs has significant theoretical value and practical signifi-
cance on pathogenesis of diseases. In this study, the iPiDA-LTR predictor is proposed to
identify associations between piRNAs and diseases based on Learning to Rank. The iPiDA-
LTR predictor not only identifies the missing associations between known piRNAs and dis-
eases, but also detects diseases associated with newly detected piRNAs. Experimental
results demonstrate that iPiDA-LTR effectively predicts piRNA-disease associations outper-
forming the other related methods.

Author summary

Accumulating evidences have indicated that dysfunction and abnormal expression of piR-
NAs are closely associated with the emergence and development of diseases. Currently,
identifying piRNA-disease associations mainly focuses on biological experimental meth-
ods and computational methods. However, biological experimental methods take substan-
tial time and resources. Computational methods mainly focused on identifying diseases
associated known piRNAs. With the development of biological technology, more and
more newly detected piRNAs were detected. Therefore, identifying diseases associated
with newly detected piRNAs is more important compared with identifying diseases asso-
ciated with known piRNAs. Information retrieval (IR)’s goal is to rank documents based
on the relevance to certain topics. This task is particularly similar with identification of
piRNA-disease associations. Specifically, ranking documents related to previous topics
corresponds to identify diseases associated with known piRNAs, and ranking documents
related to novel topics is similar to identify diseases associated with newly detected piR-
NAs. Therefore, we propose a new predictor called iPiDA-LTR to predict associations
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between piRNAs and diseases based on information retrieval technology. Experimental
results indicated that iPIDA-LTR is promising in identifying diseases associated with
known piRNAs and newly detected piRNAs.

This is a PLOS Computational Biology Methods paper.

Introduction

Piwi-interacting RNA (piRNA) with 24-31 nucleotides in length is a class of small RNAs
interacting with Piwi-subfamily Argonaute proteins [1-3]. Early studies found that piRNAs
mainly located in germ stem cells on drosophila and mouse, and regulated germ stem cell
proliferation [4-6]. With the fast development of biotechnology and computing techniques
[7, 8], more and more piRNAs were discovered, and the corresponding functions were also
detected, including stem cell proliferation, gene expression, and heterochromatin forma-
tion, etc [9-12].

As more and more piRNA functions were detected, many evidences indicated that dys-
function and abnormal expression of piRNAs are closely associated with the emergence and
development of diseases [13—17]. Therefore, the identification of associations between piR-
NAs and diseases is important for diagnosis and treatment of diseases [18, 19]. Currently, it
mainly focused on biological experimental methods and computational methods. For bio-
logical experiments methods, Cabral et al. indicated that piRNAs play a role in the process
of translational research of gastric cancer as potential biomarkers [20]. Krishnan et al. iden-
tified eight non-redundant piRNAs as breast cancer markers [21]. Roy et al. studied the
reciprocal expression between piRNAs and the corresponding targets, and provided a novel
insight into the role of piRNAs in Alzheimer’s disease [22]. Although biological experimen-
tal methods are highly reliable, it takes substantial time and resources. Some computational
methods have been proposed for identifying the associations between non-coding RNAs
and diseases, such as miRNA-disease associations [23], circRNA-disease associations [24],
etc. In this regard, computational methods are proposed to predict piRNA-disease associa-
tions, which can serve as powerful auxiliary tools to save time and cost compared with bio-
logical experiments. For example, Wei et al. proposed the first computational predictor for
identifying piRNA-disease associations based on the positive unlabelled learning algorithm,
and established the first web server [25]. A convolutional neural network was utilized to
extract association features between piRNAs and diseases, and then the Support Vector
Machine was employed to construct the predictor [26]. Although computational methods
have been proposed, they mainly aim at the application scenario of identifying missing asso-
ciations between known piRNAs and diseases. However, more and more newly detected
piRNAs were detected [27-29]. Therefore, the application scenario of identifying piRNA-
disease associations of newly detected piRNAs is very important to investigate piRNA func-
tions and disease pathogenesis.

In recent years, information retrieval (IR) becomes a widely used technology, whose ulti-
mate goal is to rank documents based on the relevance to certain topics [30, 31]. As an suc-
cessful algorithm in information retrieval, Learning to Rank (LTR) [32, 33] has been
successfully applied to web page retrieval employed by Google [34], Yahoo [35], Microsoft
[36], etc. Compared with traditional IR methods, the advantage of LTR is that it integrates
component methods so as to automatically rank documents associated with query from
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multiple perspectives [30]. LTR has been applied in identifying circRNA-disease associa-
tions [24], detecting protein remote homology [37], predicting protein-phenotype associa-
tions [38], drug-target binding affinity prediction [39], etc. The core concept of LTR is to
calculate the relevance score f(g, d) between query g and document d. Therefore, this task is
particularly similar with identification of piRNA-disease associations (see Fig 1). PIRNAs
and diseases can be treated as queries and documents, respectively. Learning to Rank not
only identifies associations between known piRNAs and diseases, but also ranks diseases
associated with newly detected piRNAs.

In this study, we propose a new predictor, named iPiDA-LTR, to predict associations
between piRNAs and diseases, which has the following advantages. iPiDA-LTR predictor com-
bines component methods and Learning to Rank, which cannot only identify missing associa-
tions between known piRNAs and diseases, but also can identify diseases associated with
newly detected piRNAs. Experimental results indicated that iPiDA-LTR is promising to iden-
tify piRNA-disease associations. A web server of iPIDA-LTR is constructed to identify diseases
associated with query piRNAs, which can be accessed at http://bliulab.net/iPiDA-LTR.

Materials and methods

Materials
To imitate two application scenarios, we construct two types of datasets based on piRDisease

v1.0 database [40] collecting 7939 piRNA-disease associations with 4796 piRNAs and 28 dis-
eases. Firstly, a standard dataset S is constructed following [25], which can be represented as:

{ Sall = Aall U ]Pall U D

P (1)
Aall = Aall U Aall

where A represents 5002 piRNA-disease associations from [25]. P, and D contain 4350 piR-
NAs and 21 diseases from A, respectively. A}, and A contain known piRNA-disease associ-
ations and unknown piRNA-disease associations, respectively. Specifically, piRNA-disease
associations contained in A, are labelled as 1, otherwise 0. To avoid overfitting problem, S is
further divided into a benchmark dataset and an independent dataset. The benchmark dataset
is used to adjust parameters and train model via cross-validation, and the independent dataset
is employed to evaluate the performance of different methods.

For the first application scenario: predicting associations between known
piRNAs and known diseases

Benchmark dataset and independent dataset are constructed as:

Shen = Sten U Shen
Sha = Siar:i U S 2)
Si = Sen U Sing
S = Sien U S

where we randomly select 20% associations from A and A, to construct S}, and S}, respec-
tively, and then the remaining associations in A, and A are used to constructS;, and S;_,,
respectively. Obviously, S; represents benchmark dataset, which is used to optimize parameters

and train models, and then trained models are used to identify unknown associations in S} ;.
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Fig 1. The similarities between the prediction of documents related with query topics and the identification of diseases associated with query piRNAs,
where piRNA and disease can be treated as query and document, respectively.

https://doi.org/10.1371/journal.pchi.1010404.9001

For the second application scenario: predicting the associations between
newly detected piRNAs and known diseases

To imitate the second application scenario, we randomly select 80% and 20% piRNAs from PP,
as known piRNA set PX"*" and newly detected piRNA set P'1“"*"", respectively, based on
which benchmark dataset and independent dataset are constructed as:

St = {8k, U Sk piRNAs € P}

S0,y = (S04 USEalpiRNAs € P17} 5
) =St USE,
Sur = Sen U S

where S¢_and SP

ben ind
NAs contained in SP,, and P, belong to P/ and P*7*"*"", respectively. Detailed information
of S;,.» S} > Sh,, and SF , is shown in Table 1. The datasets can be obtained at http://bliulab.

net/iPiDA-LTR/dataset/.

represent benchmark dataset and independent dataset, respectively. PiR-

Method overview

In this study, a novel ranking framework, named iPiDA-LTR, is proposed to solve two applica-
tion scenarios. The workflow of iPiDA-LTR is shown in Fig 2 with three steps: (a) Association

Table 1. The detailed statistical information of S;_ , S}, ;> S, and S} ;.

Datasets PiRNAs Diseases Known* Unknown”

S 4350 21 4002 69079
S?nd 4311 21 1000 17269
Sk 3480 21 3999 69081
SP, 870 21 1003 17267

" The associations between piRNAs and diseases have been validated by experiments

* The associations between piRNAs and diseases without experiment validations.

https://doi.org/10.1371/journal.pcbi.1010404.t001
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Fig 2. The workflow of iPiDA-LTR predictor. (i) Association feature extraction: piRNA sequences and disease ontology are used to calculate piRNA
sequence similarities and disease semantic similarities by combining them and piRNA-disease associations to construct association features and labels; (ii)
Component methods: four methods are used to train models with benchmark dataset, and then trained models are utilized to calculate association scores
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of query piRNAs; (iii) Ranking diseases associated with query piRNAs: association scores of samples in the benchmark dataset are used to train
LambdaMART model, and then trained LambdaMART model is employed to rank diseases associated with query piRNAs.

https://doi.org/10.1371/journal.pcbi.1010404.9002

feature extraction; (b) Component methods; (c) Ranking diseases associated with query
piRNAs.

Association feature extraction

PiRNA sequence similarities. The piRNA similarities play a vital role in RNA-disease
association identification [24-26], and piRNA sequence similarities have been applied to
piRNA-disease association identification [25, 26]. Many methods have been proposed to calcu-
late sequence similarities [41-43]. For example, Smith-Waterman algorithm has been success-
fully applied to multiple sequence analysis tasks, including RNA sequence similarity analysis
[25, 26, 44], protein sequence analysis [45, 46], etc. In this study, we employ Smith-Waterman
algorithm [41, 44] to calculate piRNA sequence similarities:

SW(p,,p;
S» (pi7pj> = (PuP]) (4)
VSW,.p) % SW(p,.p)

where Sp(p;, p;) is similarity between piRNA p; and piRNA p;. SW(p;, p;) represents local align-
ment score between piRNA p; and piRNA p; based on Smith-Waterman algorithm.

Disease semantic similarities. The disease semantic similarity calculation is a key component
in RNA-disease association identification. The disease ontology [47] has been applied to RNA-dis-
ease association identification so as to calculate disease semantic similarities [48—53]. Disease ontol-
ogy organized by the directed acyclic graph (DAG) provides a hierarchical structure of the complex
disease parent node [47]. Similar diseases share similar hierarchical structure in DAG of disease
ontology. Therefore, DAG of disease ontology helps to measure similarity between two diseases. In
this study, we use DAG of disease ontology to calculate disease semantic similarities [54, 55]:

2ier, e, (Su(i) +8, (1))

Sp(m,n) = > jer, Su(d) + 2, Sa () X

S (i) = max{0.5 xS (j)|j € children of i} ifi#n
{no (0:5+8,) € children of 3} if i 2 o

S, (i) =1 ifi=n
where Sp(m, n) is similarity between disease m and disease n. Ty represents the node set containing
the ancestor nodes of k and itself. S,,(i) is the semantic value of node i to node n.

Association features and labels. The association feature between disease d and the query
piRNA p is:

F<p7 d) = {SP(pv :)> SD(d7 )} (7)

where F(p, d) is the association features of piRNA p and disease d. Sp(p,:) and Sp(d,:) represent
pth row and dth row in the Sp and Sp, respectively. If piRNA p is associated with disease d, the
label of F(p, d) is equal to 1, otherwise 0.

Component methods

In this study, we select two types of component methods to calculate association scores, includ-
ing machine learning methods and collaborative filtering (CF). For machine learning methods,

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010404  August 15, 2022 6/17


https://doi.org/10.1371/journal.pcbi.1010404.g002
https://doi.org/10.1371/journal.pcbi.1010404

PLOS COMPUTATIONAL BIOLOGY The identification of piwi-interacting RNA-disease associations

Random Forest (RF) [56-60], Logistic Regression method (LR) [61], and Support Vector
Machine (SVM) [62-64] are employed, treating the identification of piRNA-disease associa-
tion as a classification problem. CF is a recommendation algorithm [65, 66], which utilizes
guilt-by-association assumption to identify piRNA-disease association focusing on local infor-
mation. In this study, association features of benchmark dataset (see Eq 7) are used to train
machine learning models, and then used to calculate association scores for S, dataset. Finally,
association features between piRNA p and disease d can be represented as:

Qp,d) = {Ver(p: d), Vir(p; d), Vie (p, d), Vo (p, d) } (8)

where Q(p, d) represents association features of piRNA p and disease d. V;(p, d), V. (p, d),
Vie(p, d) and Vi, (p, d) are association scores between piRNA p and disease d calculated by
CF, LR, RF and SVM, respectively.

Ranking diseases associated with query piRNAs

In this study, we employ Learning to Rank (LTR) to solve the problem of identifying potential
piRNA-disease associations motivated by information retrieval [24, 37, 38, 67]. LTR is gener-
ally classified into three categories, including ListWise, PairWise and PointWise [68]. In this
study, a ListWise method LambdaMART [32] is selected to obtain high quality of top-ranked
diseases, which has been applied in identifying circRNA-disease associations [24], detecting
protein remote homology [37], predicting protein-phenotype associations [38] and drug-tar-
get binding affinity prediction [39]. The number of trees, the truncation level k, shrinkage and
the number of leaves are the four main parameters. The truncation level of k influences the
quality of top-ranked results by Normalized Discounted Cumulative Gain (NDCG), which can
be formulated as [32]:

2rel,- -1
DCG@k=S"* =~
2t log (i + 1) o)
NDCGak — DGk
IDCG@k

where k represents the truncation level. IDCG@*k is the value of DCG@k in the best optimal
ranking results. If a query piRNA is associated with disease located in position i, rel; is equal to
1, otherwise 0. To obtain the final ranking results, association scores calculated by Eq 8 for
training set are used to train LambdaMART model, and the trained LambdaMART model is
employed to rank diseases associated with query piRNAs based on association scores of query
piRNAs.

Results and discussion
Evaluation criteria

In this study, the benchmark dataset is employed to optimize the parameters of the models,
and the independent dataset is used to evaluate the performance of predictors. How to evaluate
the ranking quality and prediction performance is crucial for identifying piRNA-disease asso-
ciations. Because iPiDA-LTR predictor treats the identification of piRNA-disease associations
as an information retrieval ranking task, we employ three important ranking criteria to evalu-
ate the rank quality of different predictors: Normalized Discounted Cumulative Gain
(NDCG), Mean Average Precision (MAP) and ROCk. Besides, Area Under the ROC Curve
(AUC) and Area Under the Precision-Recall Curve (AUPR) are also used to measure
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comprehensive performance [69-72]. The average values of these criteria for all query piRNAs
are calculated to evaluate performance of predictors.

The effect of parameters for identifying piRNA-disease associations

iPiDA-LTR predictor mainly contains the following four parameters: the number of trees, the
truncation level k, shrinkage and the number of leaves. Due to the large number of combina-

tions of the four parameters, we fix three parameters in turns, and then find the local optimal

values of the remaining parameters according to AUPR. The influences of different combina-
tions of parameters for iPiDA-LTR on S} dataset and S}  dataset are shown in Figs 3 and 4,
respectively, from which we can see that the final optimized combinations of four parameters
on iPiDA-LTR predictor on S} dataset and S} dataset are (120, 14, 0.22, 3) and (30, 15, 0.10,

29), respectively.

Complementary analysis for component methods

In this study, iPiDA-LTR incorporates two types of component methods, including machine
learning methods (LR, RF and SVM) and collaborative filtering (CF). LR, RF and SVM are
obtained by python package Scikit-learn [73]. For LR’s parameters, max_iter and solver are
assigned as 300 and liblinear, respectively. For RF’s parameters, n_estimators, max_leaf_nodes,
n_jobs and max_features are assigned as 80, 10, -1 and 0.2, respectively. For SVM’s parameters,
kernel and probability are assigned as linear and True, respectively. We analyze the impact of
different types of component methods to identify associations between piRNAs and diseases,
and the results are shown in Tables 2 and 3, from which we can see the followings: (i) iPi-
DA-LTR predictor outperforms iPiDA-LTR-ML predictor on S} dataset and S}, dataset; (ii)
The iPiDA-LTR obviously outperforms iPiDA-LTR-ML in terms of ranking criteria
(NDCG@5 and ROC1), especially for the second application scenario (see Table 3). Machine
learning methods based on classification algorithms focus on global predictive performance,
and collaborative filtering can identify special piRNA-related diseases focusing on local predic-
tive performance. Therefore, machine learning methods and collaborative filtering are com-
plementary. It is not surprising that iPiDA-LTR predictor obtains the best performance
compared with iPIDA-LTR-ML, because iPiDA-LTR shares the advantages of these two types
of methods.

The usage frequencies of component methods measure the contribution of component
methods for iPiDA-LTR. Fig 5 shows the usage frequencies of component methods on iPi-
DA-LTR, from which we can see that each component method is frequently used, indicating
that they are important for iPiDA-LTR. Tables 2 and 3 and Fig 5 show that component meth-
ods are complementary, and iPiDA-LTR combines them leading to better performance for
identifying piRNA-disease associations.

Comparison with related methods

In this section, the two state-of-the-art predictors including iPiDi-PUL predictor [25] and
iPiDA-sHN predictor [26] are compared with iPiDA-LTR predictor, and the results are shown
in Tables 4 and 5, from which we can see that iPiDA-LTR is better than the other methods,
indicating that iPiIDA-LTR is more suitable for identifying piRNA-disease associations.
Researchers tend to focus on the top ranked predicted associations in practical application sce-
narios. Therefore, we analyze the quality of the predicted results (see Fig 6), from which we
can see that iPiIDA-LTR outperforms the other predictors in terms of ROC1-ROC10. It is not
surprising because the loss function of LambdaMART NDCG mainly focuses on the top-
ranked predictive known associations (see Eq 9).
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Fig 3. The predictive results of iPiDA-LTR predictor on S}, dataset via five-fold cross-validation. (a) The truncation level k, shrinkage and the number of

ben

leaves are assigned as 10, 0.10, and 10 respectively, which are RankLib’s default values (https://sourceforge.net/p/lemur/wiki/RankLib/), and the optimal value
of the number of trees is 120; (b) The number of trees, shrinkage and the number of leaves are fixed as 120, 0.10 and 10 respectively, and the truncation level k
is optimized as 14; (c) The number of trees, the truncation level k and the number of leaves are fixed as 120, 14 and 10 respectively, and the shrinkage is
optimized as 0.22; (d) The number of trees, the truncation level k and shrinkage are 120, 14 and 0.22 respectively, and the number of leaves is set as 3.

https://doi.org/10.1371/journal.pcbi.1010404.9003

Case study

To illustrate the predictive performance of iPiDA-LTR predictor for the identification of asso-
ciations between new piRNAs and diseases, two query piRNAs, including piR-hsa-23210 and
piR-hsa-15023, are selected as query piRNAs from S ; dataset, respectively. The remaining
piRNAs in S, are used to train iPiDA-LTR model, and then the trained iPiDA-LTR model is
employed to predict diseases associated with piR-hsa-15023 and piR-hsa-23210.

The predicted results of piR-hsa-23210 and piR-hsa-15023 are shown in Tables 6 and 7,
respectively, from which we can see the followings: (i) The evidences for the top five predicted
piR-hsa-23210-associated diseases are supported by PubMed (https://pubmed.ncbi.nlm.nih.gov/).
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https://doi.org/10.1371/journal.pchi.1010404.g004

Table 2. The comparison results of predictors based on Learning to Rank integrating different component methods via five-fold cross-validation on S}, dataset.
AUC AUPR NDCG@5 MAP ROC1 ROC3 ROC5
iPiDA-LTR-ML" 0.9511 0.9003 0.9492 0.9305 0.8678 0.9407 0.9503
iPiDA-LTR® 0.9543 09111 0.9545 0.9379 0.8822 0.9457 0.9538
* The component methods include RF, LR and SVM
> The component methods include RF, LR, SVM and CF.
https://doi.org/10.1371/journal.pchi.1010404.1002
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Table 3. The comparison results of predictors based on Learning to Rank integrating different component methods via five-fold cross-validation on and S},

dataset.
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# The component methods include RF, LR and SVM

> The component methods include RF, LR, SVM and CF.
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Table 4. The comparison results between iPiDA-LTR and two state-of-the-art predictors on S} ; dataset.

AUC AUPR NDCG@5 MAP
iPiDi-PUL 0.9153 0.8511 0.9190 0.8847
iPiDA-sHN 0.8042 0.7023 0.8198 0.7705
iPiDA-LTR 0.9521 0.8987 0.9472 0.9283
Note: iPiDi-PUL and iPiDA-sHN are reproduced, and their parameters are set as the optimized values reported in [25] and [26], respectively.
https://doi.org/10.1371/journal.pchi.1010404.t004
Table 5. The comparison results between iPiDA-LTR and two state-of-the-art S} ; dataset.
AUC AUPR NDCG@5 MAP
iPiDi-PUL 0.9413 0.6154 0.7736 0.7110
iPiDA-sHN 0.8015 0.3702 0.4875 0.4583
iPiDA-LTR 0.9623 0.6780 0.8067 0.7697

Note: iPiDi-PUL and iPiDA-sHN are reproduced, and their parameters are set as the optimized values reported in [25] and [26], respectively.

https://doi.org/10.1371/journ

al.pchi.1010404.t005
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Table 6. The top five piR-hsa-23210 associated diseases and relevant evidences.

Rank disease name Evidence
1 Cardiovascular diseases (CDC, CF, CCS) cardicregeneration PMID: 28289238
2 Renal Cell Carcinoma PMID: 25998508
3 Alzheimer Disease PMID: 28127595
4 Male Infertility PMID: 24855106
5 Gastric Cancer PMID: 25779424

Note: the evidences can be found at https://pubmed.ncbi.nlm.nih.gov/.

https://doi.org/10.1371/journal.pchi.1010404.t006
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Table 7. The top five piR-hsa-15023 associated diseases and relevant evidences.

Rank disease name Evidence
1 Cardiovascular diseases (CDC, CF, CCS) cardicregeneration PMID: 28289238
2 Renal Cell Carcinoma PMID: 26071182
3 Alzheimer Disease PMID: 28127595
4 Rheumatoid Arthritis None
5 Gastric Cancer PMID: 25779424

Note: the evidences can be found at https://pubmed.ncbi.nlm.nih.gov/.

https://doi.org/10.1371/journal.pcbi.1010404.t007

For example, the target gene of piR-hsa-23210 is SMC5, which plays crucial roles in the process of
human spermatogenesis, such as on the synaptonemal complex between synapsed chromosomes,
and in the development of spermatogonial cells [74]. Roy et al. found that piR-33044 (piR-hsa-
23210) is significantly abnormal expression in Alzheimer Disease [22]. (ii) Four diseases in

Table 7 have been proved to be associated with piR-hsa-15023. For example, Busch et al. found
that piR-hsa-15023 is down-regulated in renal cell carcinoma [75]. piR-hsa-15023 showed a sig-
nificantly differentially expression in gastric adenocarcinoma and non-malignant stomach tissue
[76]. Therefore, these results demonstrated that iPiDA-LTR predictor is an effective approach to
identify associated diseases for newly detected query piRNAs.

Conclusion

In this study, we treat the task of piRNA-disease associations as a search task based on Learn-
ing to Rank [32, 68], where piRNA and disease are regarded as query and document, respec-
tively. The following conclusions can be drawn: (i) iPIDA-LTR can effectively handle with two
types of application scenarios compared with the other state-of-the-art methods, especially for
the identification of diseases associated with newly detected piRNAs, which is important for
studying the pathogenesis of disease and the function of piRNAs; (ii) iPiDA-LTR incorporates
component methods into Learning to Rank so as to improve the predictive performance; (iii)
The corresponding web server of iPIDA-LTR is freely accessed at http://bliulab.net/
iPiDA-LTR/. Although iPiDA-LTR effectively predicts piRNA-disease associations, it only
integrates basic machine learning methods and collaborative filtering. In future studies, we
will integrate the other state-of-the-art methods and features to improve piRNA-disease asso-
ciations. The LTR-based framework discussed in this study is a general framework, which
would have many other applications in bioinformatics, such as protein function prediction,
remote homology detection, etc.
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