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Abstract

Six fungal-type cellulose binding domains were found in the genome of the coccolithophore

Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indi-

cate high similarity to fungal cellulose binding domains, raising the question of why these

domains exist in coccolithophores. The proteins were tested for binding with cellulose and

chitin as ligands, which resulted in the identification of two functional carbohydrate binding

modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain

Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch

and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose bind-

ing domains was created based on the shuffling of one well-functioning and one non-func-

tional domain. These were characterized in order to get more information of the binding

domain’s sequence–function relationship, indicating characteristic differences between the

molecular basis of cellulose versus chitin recognition. As previous reports have showed the

presence of cellulose in coccoliths and here we find functional cellulose binding modules, a

possible connection is discussed.

Introduction

Widespread in oceans all over the world, the marine phytoplankton called coccolithophore, is a

type of unicellular algae from the phylum of haptophytes [1]. A number of coccolithophore

species are capable of constructing coccoliths: exoskeletons consisting of a number of intri-

cately formed CaCO3-scales that surround their cell walls. There are several indications that

the coccolithophore uses so-called coccolith polysaccharides (CP) [2–4] and possibly proteins

[5] for the controlled production of this interesting calcite material, although the exact form

of these constituents still requires further clarification. We found a number of putative cellu-

lose-binding protein domain sequences in the genome of the well-researched coccolithophore

Emiliania huxleyi, and in this publication we aim to further elucidate the function of these

sequences to gain insight in their possible roles for the organism.

The cellulose-binding protein domains found in cellulolytic fungal enzymes, usually in con-

junction with a distinct catalytic domain, are assigned to the family 1carbohydrate-binding
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modules (CBM1) [6–8]. There is a large variety amongst the different CBM families in both

structure and function, binding different carbohydrate molecules including xylan, cellulose,

and chitin [9]. Although CBM1s are generally found in fungi, there are a number of reported

cases where CBM1s are discovered in heterokonts, such as Oomycetes, brown and red algae

(Rhodophyta) [10,11]. CBM1 domains have been thoroughly researched and reviewed [12,13],

generally with the aim to increase knowledge regarding structure and function of cellulolytic

enzymes, and to employ said enzymes in the lignocellulose industry and biofuel production

[14,15]. CBM1s are well-defined polypeptides consisting of typically 36 amino acids (~3.8

kDa), held together in a compact pyramid-like structure by two highly conserved disulfide

bridges. One face of the pyramid interacts with the surface microcrystalline cellulose, where

three aromatic residues (most often Trp or Tyr) facilitate specific cellulose binding affinity by

π-stacking, in addition to hydrogen bonding [16–19].

Coccolithophores are the ocean’s main calcifiers, and intensely studied for their influence

on the global carbon cycle and climate change. Even so, many questions still surround their

coccoliths. Firstly, it is unknown why exactly coccolithophores create their exoskeletons. It has

been suggested that the coccoliths regulate cell sinking, or protect against UV or light [3,20].

Secondly, only a number of species are coccolith-covered and even the ones that can produce

calcite scales, exist in forms with and without scales [3,21]. Finding answers to these questions

is challenging due to the high level of variety that exists between and even within haptophyte

taxa [22].

One aspect that has been extensively reviewed is the coccolith composition and formation,

although questions remain. The elaborate calcite-based scales are produced one-by-one

through biomineralization intracellularly after which the disks are transferred out of the cell.

Using CO2 or bicarbonate ions from the ocean as carbon source, the calcification process

occurs on organic baseplates containing polysaccharides and probably proteins inside dedi-

cated intracellular vesicles cells [3,5]. The suggested role for these polysaccharides is for precise

control of calcite crystallization: they form an inner lining of the coccolith vesicle and seem to

have a key role in giving the coccolith its characteristic shape, through strong anionic binding

to calcium [2,23,24]. Interestingly, it has been shown experimentally that cellulose is present in

coccoliths [25–27], although its precise function is unknown. Also, early reports suggested the

presence of a ‘cellulosic glycoprotein’ with protein covalently linked to cellulose [25].

No proof of chitin in coccoliths has been presented as of yet, even though chitin is often

encountered as a scaffold in calcite-based biomineralization–especially in marine organisms

such as mollusk’s shells [28]. The way chitin is usually involved in the formation of CaCO3

materials is by forming a matrix with super-saturated amorphous calcium carbonate (ACC)

and hydrophobic silk-like proteins, which functions as a controlled micro-environment for

calcite crystal growth. However, there is currently no evidence of ACC existing in

coccolithophores.

The most abundant and widespread coccolithophore species is E. huxleyi, and its entire

pan-genome has recently been sequenced [29]. In the now available genome data, a number of

cellulose-binding protein sequences were found, in addition to several chitin-binding

domains. Since these fungal-type CBM1 appear to be present unexpectedly in coccolitho-

phores, and polysaccharides as well as proteins are anticipated to play a directing role in the

calcification process, we hypothesize that the identified CBM1s might be structural proteins

involved cellulose interactions, possibly in processes targeted to the coccolith. There are no

direct indications for this hypothesis, and to investigate the functioning and possible role of

these CBM1s from E. huxleyi, they have been cloned and produced in E. coli and their binding

to several cellulose and chitin ligands was studied for evaluating possible functional roles.

E. huxley carbohydrate binding modules
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Results

Construct design and protein production

The E. huxleyi genome [29] was screened using Pfam (ID: PF00734) [30] and BLAST (with the

Cel7A-CBM1 sequence) and five proteins were found containing a total of six probable CBM1

domains. A multiple sequence alignment (MSA) as well as an identity distance matrix can be

seen in Fig 1, which shows the homology of these CBM1s to each other as well as to the

Cel7A-CBM1. Pairwise sequence identities between the CBM1 homologs range between

31.71% (14 out of 45 residues identical) up to 97.73% (44 out of 45 residues identical), in the

case of EHUX2 and EHUX4. Cel7A (previously cellobiohydrolase 1, CBH1) is a well-charac-

terized cellulase from the fungus T. reesei [12,31] and since there is extensive binding data pub-

lished regarding its CBM1 domain, it was chosen to be used as a reference CBM1 in this study.

In the pairwise comparison, it showed intermediate values for sequence identity in comparison

to the group of EHUX CBMs. Structures and homology models are shown in S1 and S2 Figs.

The five genes that the identified CBM1 domains were found in, contain a variety of other

functionalities. From sequence predictions, all proteins are expected to be hydrolyzing O-gly-

cosyl compounds and anchored in the membrane extracellularly. The protein that contains

EHUX1a and EHUX1b also shows a highly Asp-rich domain, whereas EHUX2 is predicted to

be a tyrosine kinase. In S1 Table the sequence identifiers (GI), names and probable functions

of the CBM1-containing proteins from E. huxleyi can be seen. The associated functions were

obtained with Gene Ontology (GO) and Interpro sequence-based predictions.

To investigate the functioning of the proteins with CBM1 domains found in the genome of

E. huxleyi, constructs were designed containing an N-terminal pelB signal peptide, Alkaline

Phosphatase (AP) as a carrier protein and the CBM1 of interest with a His-tag on the C-termi-

nus (S3 Fig). The AP was chosen for previous good expression results and because it can be

visualized using a colorimetric assay. The proteins were cloned and expressed in Escherichia
coli with a second CyDisCo plasmid, carrying the genetic code for two proteins that actively

aid in the proper formation of the disulfide bridges in the cytoplasm [35,36], reaching expres-

sion levels of 100–300 mg protein / L culture.

A sequence alignment (Fig 2) with a dataset consisting of the six CBM1 domains found in

E. huxleyi, Cel7A-CBM1, different biochemically characterized CBMs selected from the CAZy

database [37,38] and predicted proteins from the Pfam database [30] show how conserved

amino acids are grouped within the sequences. The evolutionary relation between sequences

could not be reliably determined since phylogenetic trees constructed gave bootstrap values

below 20%. The comparison in Fig 2 shows that only very short stretches of the sequences are

variable, and do not allow reliable phylogenetic analysis.

Binding assays

The purified proteins were tested in binding studies, with three polysaccharides as ligand: CNF
(Cellulose Nano Fibrils), Bacterial Cellulose (BC) and Chitin Nano Crystals (ChNC). A starting

protein concentration ranging from 1–5 μM was incubated with a known amount of ligand

and subsequently separated by centrifugation, after which the resulting protein amounts were

measured on reverse-phase UHPLC (Ultra High Performance Liquid Chromatography) and

compared to a control without ligand.

In Fig 3 the resulting binding isotherms of all tested E. huxleyi proteins can be found, in

addition to the benchmark protein Cel7A-CBM1, for three different ligands. The graphs show

that two of the proteins from E. huxleyi are actually efficient cellulose binders, namely EHUX2

and EHUX4. Both proteins bind to the CNF ligand as well as to BC, both at slightly lower levels

E. huxley carbohydrate binding modules
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than the benchmark protein Cel7A-CBM1. Cel7A-CBM1 still binds most effectively to both

cellulose ligands, and all three binding CBM1s have shown more efficient binding to CNF in

contrast to BC, which is in line with previous reports [39]. The other CBM1 proteins from E.

huxleyi show little to no binding to either cellulose ligand.

Fig 1. (A) Multiple sequence alignment of CBM1 domains found in E. huxleyi, with benchmark CBM1 from Cel7A from T. reesei in the middle. The consensus sequence

is visualized underneath the MSA. Residues are colored according to Zappo color scheme, with conserved residues colored more intensely. The three key aromatic

residues involved in cellulose binding (position 7, 35, 38) are indicated with yellow triangles above the sequences. Alignment made with MUSCLE and formatted with

Jalview 2 [32,33]. (B) Distance identity matrix of CBM1 domains found in E. huxleyi and benchmark CBM1 from Cel7A, displaying pairwise sequence identities in

percentages (X of Y positions identical). The intensity of the blue color correlates with increasing sequence similarity. (C-D) Homology models of the (C) EHUX2 and

(D) EHUX4 CBM1 domains, displayed as blue ribbons, with Cel7A-CBM1 as overlay, displayed in red. Cysteine bridges and the side-chains of residues that are

important for binding are shown. Homology models were created by SWISS-MODEL [34] with the crystal structure of Cel7A-CBM1 (PDB ID: 1CBH [16]) as a template.

https://doi.org/10.1371/journal.pone.0197875.g001

E. huxley carbohydrate binding modules
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In contrast, the binding isotherm for ChNC shows that all CBM1s bind the ligand to some

extent, effectively spreading data points across the graph. EHUX2 and EHUX4 show a clearly

better binding (up to 2.2 μmol/g) than the other proteins, binding to a similar extent as in the

case of CNF. Notably, Cel7A-CBM1 binds significantly less effectively to chitin than to

cellulose.

Specific CBM1-cellulose binding is considered to be facilitated by π-π stacking of a number

of key aromatic residues that can be found on position 7, 35 and 38 in the alignment in Fig 1,

as well as hydrogen bonding. For this reason, the effect of increasing ionic strength was stud-

ied, in order to assess the contribution of non-specific, possibly electrostatic interactions to

binding. A number of data points were collected of all tested proteins that showed binding, at

an initial protein concentration in the lower-mid range of the binding curve (2.5 μM) and in

buffers with increasing salt concentrations: 0, 50, 100 and 200 mM NaCl. The results are

shown in Fig 4, in percentage of CBM1 bound. For the proteins with binding affinity for CNF,

binding slightly declines with increased salt amounts, but the majority of the binding seems to

come from specific structure-related binding. All proteins except EHUX2, EHUX4 and

Fig 2. Multiple sequence alignment of the investigated E. huxleyiCBM1 domains and selected related sequences.

In this MSA, the six E. huxleyi CBM1 domains are shown together with predicted non-fungal CBM1 domains, a

selection of biochemically characterized CBMs from the CAZy database: CBM5 and fungal CBM1. The consensus

sequence is visualized underneath the MSA. Residues are colored according to Zappo color scheme, with conserved

residues colored more intensely. The three key aromatic residues involved in cellulose binding (position 7, 35, 38) are

indicated with yellow triangles above the sequences. Alignment made with MUSCLE and formatted with Jalview 2

[32,33].

https://doi.org/10.1371/journal.pone.0197875.g002
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Cel7A-CBM1, show a large decrease in binding to chitin as salt concentration increases, even

as initial binding is significant. This suggests that there is a significant component of electro-

static interactions in the binding, indicating that it may be non-specific. In contrast, the bind-

ing of EHUX2 and EHUX4 to chitin is only slightly affected by increasing salt concentrations,

supporting the conclusion that the binding is specific, considering the fact that binding of

CBM1 has been shown to consist of mostly pi-stacking and hydrogen bonding.

Similarly, the effect of calcium concentration on the binding of the CBM1s was investigated,

as the calcium is available in and around calcite-creating coccolithophores, and some CBM

families other than CBM1 require calcium ions for functioning. The binding of all CBM1 pro-

teins to chitin and cellulose were tested in four different calcium concentrations: 0, 50, 100,

200 mM CaCl2 (Fig 4, panels E and F). Just as in the salt binding assays, an increase in CaCl2

salt shows a decrease in binding to chitin but not cellulose, confirming that part of the binding

consists of electrostatic interactions. The same proteins that show binding functionality

(Cel7A-CBM1, EHUX2 and EHUX4) show similar binding levels here. As in the binding iso-

therm data (Fig 3C), EHUX5 showed a slightly higher binding to BC than EHUX1a, EHUX1b,

and EHUX3. CaCl2 affected EHUX4 binding to BC slightly up to 100mM, and more clearly at

the high concentration of 200 mM CaCl2.

To further study the relation between the intermediate binding to chitin and very low bind-

ing to cellulose shown by many of the EHUX CBMs (Fig 3), we investigated the EHUX1b

sequence in more detail. The sequence of EHUX1b was divided into four parts and each of

Fig 3. Binding isotherms of all measured CBM1 proteins (A) with cellulose nanofibrils (CNF), (B) with chitin

nanocrystals (ChNC) and (C) with bacterial cellulose (BC) as a ligand, displayed as μmol of bound AP-CBM1 protein /

gram of ligand, against μmol of free protein.

https://doi.org/10.1371/journal.pone.0197875.g003
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them were in turn exchanged with the corresponding sequence of the extensively characterized

benchmark Cel7A-CBM1 (Fig 4). The resulting four sequences were cloned and expressed in

E. coli, and compared to both Cel7A-CBM1 and EHUX1b for binding. The reshuffled

EHUX1b-Cel7A proteins are here referred to with four letter codes (sequences can be found in

Fig 5), where each of the four fragments is represented by the starting letter of the CBM1 they

originate from. The three combinations CEEE, ECEE, and EECE show a decreased binding to

chitin, but still with the general observation of intermediate chitin binding and no cellulose

binding. The EEEC combination, however, shows a cellulose- and chitin-binding capability

comparable to that of Cel7A-CBM1. The shuffling experiment shows that grafting only the last

1/4th and in practice only 5 residues of the Cel7A into the EHUX1b, can make a very similar

protein to Cel7A. Also, the results of this binding assay (Fig 5), also shows similar binding lev-

els as measured with UPLC for Cel7A-CBM1 and EHUX1b as with the colorimetric AP-assay.

In the AP-assay 1% of BSA was added, showing that AP does not contribute to non-specific

binding.

Discussion

The investigation of the binding capabilities of the CBM1s from E. huxleyi clearly identified

two cellulose-binding proteins: EHUX2 and EHUX4. Compared to the benchmark protein

Fig 4. Binding of CBM1s in buffers with NaCl and CaCl2. The effect of increasing ionic strength as well as calcium concentration was studied in detail for all proteins

that showed binding to the ligands. The binding is displayed in percentage of AP-CBM1 protein bound / gram of carbohydrate ligand, in buffers containing increasing

concentrations of NaCl or CaCl2. The CBM1s that show binding are accompanied by viewing guide lines. (A) Cel7A-CBM1 (B) EHUX2 (C) EHUX4(D) EHUX1b,

EHUX3, EHUX5 with ChNC as binding ligand. Calcium concentration effect on binding to ChNC (E) and BC (F) for all proteins.

https://doi.org/10.1371/journal.pone.0197875.g004

E. huxley carbohydrate binding modules
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Cel7A-CBM1, they bind less effectively to both cellulose ligands, but EHUX2 and EHUX4 are

significantly better ChNC binders than Cel7A-CBM1, and they bind chitin more effectively

than either cellulose ligand (Fig 3). Not much is known regarding CBM1 domains binding to

chitin, but fungal-type binding domains with higher binding efficiency for chitin than for cel-

lulose has been demonstrated before [41]. The fact that CBM1s show more binding affinity for

nanofibrils instead of crystalline bacterial cellulose, has been reported previously [39], and

could be attributed to the higher surface area of CNF per weight, as well as the additional bind-

ing mode that Cel7A-CBM1 seems to have on CNF but not on BC. As a comparison to previ-

ously published work we note that the Cel7A-CBM1 construct used here showed the same

binding affinity for cellulose, with a partitioning coefficient of 1.4 L/g, as reported for the

Cel7A CBM previously [39,42].

Fig 5. Cel7A-EHUX1b segment shuffle experiment. (A) Bar graph of the binding of Cel7A-CBM1, EHUX1b and 4 shuffled proteins, with the percentage of the protein

bound to CNF, BC and ChNC shown on the y-axis. The shuffled proteins are labeled with four letter codes, where each of the four fragments is represented by the starting

letter of the CBM1 they originate from (C = Cel7A; E = EHUX1b). (B) Sequences of Cel7A-CBM1, EHUX1b and the shuffled proteins. The four segments from

Cel7A-CBM1 are color coded, corresponding with the 3D structure of Cel7A-CBM1 shown in (C). (C) Cel7A-CBM1 crystal structures with the segments use to create the

shuffled proteins in four different colors. 3D structure shown as cartoon, with a view on the binding face as well as a front-side view. Image created with Chimera [40],

PDB ID: 1CBH [16].

https://doi.org/10.1371/journal.pone.0197875.g005
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Where all other CBM1 proteins clearly show no binding to BC and CNF, the binding iso-

therm for chitin (Fig 3B) shows some level of binding affinity for all proteins. The maximum

binding levels are spread between around 0 and 1 μmol CBM1 / g ChNC, with the exception of

functional binders EHUX2 and EHUX4, which stand out above the rest with up to 2.2 μmol of

bound CBM1 per gram of ChNC. This indicates that the CBM1s EHUX1b, EHUX3 and

EHUX5 seem to have a lower binding specificity for chitin than for cellulose, perhaps due to

non-specific electrostatic interactions contributing more to the binding.

Additional binding studies using buffers with increasing salt concentrations show that for

the domains that bind to cellulosic ligands, binding either stays constant or is reduced only

slightly at higher salt concentrations. Some increase in binding could be observed with for

example CaCl2 for EHUX4 and EHUX5 but only at high concentration, indicating a salting-in

effect rather than indicating calcium dependency. As the presence of salt will screen electrostatic

interactions, this indicates that the contribution of those contacts is only minor, and that the

majority of cellulose binding results from the specific functioning of the CBM1 binding face.

However, for all the CBM1 proteins that bind only to chitin, higher NaCl concentrations had a

clear diminishing effect on binding with a similar but less pronounced effect also for CaCl2. It is

interesting to see that the contribution of screenable electrostatic binding seems to be much

higher in the case of chitin, which corresponds with the ChNC binding isotherm that shows

that almost every investigated CBM1 has at least some level of binding to chitin, suggesting

binding through other ways than the specific, conserved binding residues. The cellulose-binding

domains EHUX2 and EHUX4 retain a significant portion of binding (60% and 75% of CBM1

bound, respectively) even in the highest salt concentration (both NaCl and CaCl2), which once

again depicts these domains from E. huxleyi as effective binders to both chitin and cellulose.

When the sequences of the CBM1s are analyzed more in depth, aided by the multiple

sequence alignment shown in Fig 1, a few observations can be made: Firstly, the three aromatic

residues that are located in the binding face of the domain (Tyr7, Tyr35, Tyr38 in Cel7A-

CBM1) are highly conserved throughout CBM1 domains and have been proven to be crucial

in the binding to polysaccharides, at least in the case of Cel7A-CBM1. [18,43] Also, these aro-

matic residues are followed by highly conserved segments with cysteines (Gln-Cys-Gly-Gly

and Ser-Gln-Cys), which are expected to contribute to the specific, compact pyramid structure

of the CBM1 domain, held together by two disulfide bridges.

There are a number of differences between the CBM1s of E. huxleyi and Cel7A, such as the

additional pair of cysteines in EHUX2 and EHUX4, which are positioned next to each other

when the predicted 3D structure is taken into consideration (S2 Fig). In addition, four out of

five sequences have one or two additional Tyr or Phe just after the CBM1 domain, and all

EHUX CBM1s contain numerous charged residues, whereas Cel7A-CBM1 is without charge.

EHUX1a, EHUX1b, EHUX3 show no binding to cellulose and lack aromatic residues in

position 35. Previously it has been shown for Cel7A-CBM1 that affinity towards cellulose is

lost if this residue is mutated to a non-aromatic one [18], which fits well with the observed lack

of binding of these three E. huxleyi proteins. However, EHUX5 does contain a Tyr in position

35, but still shows only weak binding. There is no obvious reason for the lack of binding but

we note an unusual Trp in position 39 and a His insertion in position 8 that both may cause

structural perturbations, possibly leading to loss of binding. These same proteins (specifically

EHUX1a and EHUX1b) also have a number of positively charged residues just in front of the

final two binding aromatic residues, which could interfere with the carbohydrate binding.

By reshuffling the sequences of Cel7A-CBM1 and EHUX1b-CBM1 we could obtain more

insight into sequence-function relationship of the CBM1 domain. Where three out of four

reshuffled EHUX1b-Cel7A proteins (CEEE, ECEE, EECE) act in line with EHUX1b and do

not bind to CNF, the EEEC reshuffled protein regains the full binding capability of Cel7A-

E. huxley carbohydrate binding modules
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CBM1 for all three ligands, and binds chitin even better. A look at the sequence of the CBM1s

(Fig 1) learns that the double tyrosine residues in Cel7A-CBM1 in place of the threonine and

phenylalanine in EHUX1b-CBM1 seem to be key in binding to cellulose and–to a lesser

extent–chitin. The regaining of binding in this shuffling experiment confirm that the CBM

scaffold can easily be modified for function by the change of only a few amino acids and that

the other differences in EHUX1b compared to Cel7a-CBM1 do not make the scaffold itself

non-functional. The CBM1-scaffold itself seems to be very robust.

This result corroborates our understanding that the original function of CBM1 is to bind

cellulosic ligands, since the change of a small part of the domain can completely remove its

binding capabilities. Vice versa, altering just a few residues of a non-functional binding

domain can result in that protein regaining its cellulose or chitin binding function. This exper-

iment shows the unexpected result that cellulose binding function is more critically dependent

on structure than the chitin affinity, since cellulose affinity is completely lost with the altering

of one segment of the domain, whereas chitin binding functionality seems less specific and is

always present to some extent.

The fact that five genomic sequences encoding homologs of fungal cellulose-binding

domains were found in the genome of E. huxleyi is intriguing. The pfam database that contains

all CBM1 domains–predicted based on sequence–displays that of the 2702 unique sequences

containing a CBM1, 2523 come from fungi. Other eukaryote genomes that have CBM1-con-

taining sequences include green algae, stramenophiles (algae, diatoms) and Haptophyceae (7,

mostly E. huxleyi). Coccolithophores are a type of eukaryotic algae and part of the division of

Haptophyta; although their taxonomy is an ongoing topic of discussion, which illustrates their

peculiar isolated position in the eukaryotic tree of life. [1,22,44] The distribution of CBM1

over organisms shows that it is indeed found mostly in fungi, but also in some unicellular

marine organisms, indicating that at one point in history, the genetic information of CBM1

domains went from fungi to eukaryote unicellular marine organisms, or vice versa. The fact

that the CBM1 domain is only around 30 amino acids long and often part of a protein many

times that length, makes a proper phylogenetic analysis unfeasible, yielding unreliable phyloge-

netic trees with very low bootstrap values. Of the CBM1 sequence only very short stretches are

variable and not directly involved in either the function of the protein or have a structural role

for the scaffold (Fig 2). Residues before 7 and after 43 are parts of linkers or variable termini

with unclear origin. Only a short continuous stretch between the Cys at position 30 and the

aromatic reside at position 38 seems to be variable and not conserved for function or being

critical for structure. This also explains the variety amongst the CBM1 sequences from E. hux-
leyi and why it is hard to pinpoint how and where in the evolutionary history coccolithophores

obtained the genetic data for CBM1 domains. Additional full genome-sequencing of related

organisms could shed light on this question. Meanwhile, functional studies such as presented

here help to gain understanding.

A closer look at the full sequences of the CBM1-containing proteins from E. huxleyi (S1

Table, shows that they are all predicted to have several transmembrane (TM) regions, and all

proteins are likely to be on the outside of the plasma membrane. None of the proteins are

related to carbohydrate metabolism other than their CBM1 domains and sources of cellulose

in oceans (from algae, tunicates) are limited. This promotes the possibility that some of these

CBM1-containing proteins are either genetic remnants of an evolutionary past, or have

evolved to gain a different function: as part of protein signaling chains or targeting of proteins

to cellulose and chitin molecules, or perhaps that they are involved in extracellular cellulose

scaffolding for coccoliths.

The fact that this coccolithophore contains two functional CBM1s that bind both cellulose

and chitin, raises the question of the function of these carbohydrates in the organism. Both
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proteins containing these binding domains are predicted to be extracellular. Related organisms

such as green algae are capable of synthesizing cellulose [45], and chitin is often found as part

of the mineralized biocomposite material in the shells of marine organisms. As polysaccharides

are known elements of coccolith formation, it is possible that E. huxleyi produces its own cellu-

lose for structural purposes, even though no known cellulose synthase homolog sequences

were found in its genome. [29] Since previous research has implied the presence of cellulose

and proteins in the exoskeletons surrounding these organisms, the finding of cellulose-binding

proteins in E. huxleyi could signify a role for cellulose as scaffold in coccoliths, or a role as

structural proteins for the CBM1s.

Materials and methods

Plasmid preparation

The CBM1 constructs were designed to have a carrier protein fused to the CBM1 domain by a

flexible linker, in addition to the N-terminal pelB signal peptide and a 6His purification tag on

the C-terminus. Alkaline Phosphatase (AP) was chosen as carrier protein since it was known

to produce well and could be used in colorimetric assays. The pelB, linker, and CBM1

sequences were ordered as GeneArt Strings (ThermoFisher) and the AP segment was obtained

with PCR (using KAPA HiFi DNA Polymerase from KAPA Biosystems and primers from

Eurofins), all flanked with BsaI restriction sites and appropriate 4bp overlaps. Using the

Golden Gate cloning method [46] the pieces were combined (digest with BsaI-HF from NEB)

and ligated (T4 DNA Ligase NEB) into a pET28a (+) expression vector and transformed in

chemically competent TOP10 E. coli cells. The resulting plasmids were obtained by miniprep

(NucleoSpin Plasmid from Macherey-Nagel). The resulting constructs were verified by 1%

agarose gel electrophoresis and sequencing (FIMM, Helsinki).

Protein expression and purification

The CBM1 constructs were co-transformed into chemically competent BL21(DE3) E. coli cells

with CyDisCo plasmid pMJS205 [35] (which was employed to ensure the formation of disul-

fide bridges in the CBM1 domain and AP). One colony was picked and used to grow a pre-cul-

ture in LB medium supplemented with kanamycin (50 mg/L) and chloramphenicol (35 mg/L),

for 6–8 h at 37˚C with vigorous shaking. 500 mL of EnpressoB growth system (BioSilta), was

supplemented with kanamycin (50 mg/L) and chloramphenicol (35 mg/L) and inoculated

with 1:25 of the pre-culture, and grown for 15–18 h at 30˚C, 230 rpm. Expression was induced

with IPTG (final concentration 500μM), incubating the culture another 24 h at 30˚C, 230 rpm.

The cells were then harvested by centrifugation (24 471 x g (rotor radius 15.2 cm), 4˚C, 30

min), removal of the media and resuspended in lysis buffer (20 mM NaH2PO4, 20 mM imidaz-

ole, 500 mM NaCl, 1mg/mL fresh lysozyme, 10 μg/mL DNAse I, 10 μg/mL MgCl2, protease

inhibitor cocktail (Sigma Aldrich)) at 4˚C. After 30 min shaking at 4˚C, the cell suspension

was further lysed by running it 2–3 times through an EmulsiFlex-C3 homogenizer (Avestin,

Inc.), after which the cell debris was removed by centrifugation (24 471 x g (rotor radius 15.2

cm), 4˚C, 30 min).

The proteins were purified from the resulting lysate using GE healthcare ÄKTA Pure LC

system with HisTrap IMAC columns. The CBMs were verified by SDS-PAGE analysis with

Coomassie Blue staining. Protein concentrations were determined by measuring the absorp-

tion at 280 nm using a Varian Cary 50 UV-VIS spectrophotometer, corrected for background

and calculated using the extinction coefficient, predicted based on protein sequence by Prot-

Param [47].
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Binding ligands

Cellulose nanofibrils (CNF) were prepared by fluidizing never-dried bleached birch pulp in

deionized water six times (six passes) using a Voith LR40 homogenizer at 300kWh/t net spe-

cific energy with specific edge load of 0.5 J/m and refiner speed of 150. The resulting samples

with a solid content of 2% w/v were then used to make a 1 mg/mL solution in water with

0.02% NaN3, stored at 4˚C and taken out to room temperature 1 hour prior to use.

Bacterial cellulose (BC) was prepared from cellulose mats obtained from Acetobacter xyli-
num cultures. The mats were first cut to smaller pieces and blended for 15 min with household

blender in deionized water to obtain a concentration of 0.5% w/v, followed by 10 min homoge-

nization using a Polytron PT 3100 D system. Finally the samples were homogenized six times

using the Voith LR40 homogenizer with similar parameters as for plant cellulose. A similar 1

mg/mL solution was made of BC in water with 0.02% NaN3, stored at 4˚C and taken out to

room temperature 1 hour prior to use.

Chitin nanocrystals (ChNC) were prepared from purified chitin flakes from shrimp shells

(Sigma Aldrich) by a 90 min hydrolysis with 3M HCl at 90˚C. Subsequently, the acid residue

was washed out and the ChNC were further purified by dialysis for 2 days, after which the pH

of the suspension adjusted to pH4 with 1M HCl. The resulting ChNC dispersion with a solid

content of 2% w/v was tip sonicated (for 2 min with pulses of 2 sec on and 2 sec off at 20%

amplitude) and used to make a 1 mg/mL solution in MQ with 0.02% NaN3 and stored at 4˚C.

The degree of acetylation of the ChNC was calculated from 13C NMR-spectra to be 99.6%.

Binding assay

The carbohydrate binding assays were performed by mixing 100μL CBM1 protein (50mM

TrisHCl pH 7 buffer) with both 100μL MQ (control) and 100μL 1 mg/mL binding ligand

(CNF, BC or ChNC) to a final protein concentration of 1, 2, 3, 4 or 5 μM, followed by incuba-

tion at 23˚C for 1 h. The dispersion is then centrifuged at 23˚C for 2 min at 21 130 x g (rotor

radius 8.4 cm) to separate the supernatant (containing the non-bound CBM1 protein) for anal-

ysis by SDS-PAGE or UHPLC. A Vanquish UHPLC (Thermo Scientific) was used to analyze

and quantify the non-bound proteins, by injecting 20 μL of the supernatant on a BioBasic 4

column and eluting by a gradient from water to 0–60% acetonitrile, both containing 0.1% tri-

fluoroacetic acid. For both the NaCl (salt assay) and CaCl2 (calcium assay) binding experi-

ments were performed as described above, for one initial protein concentration in the middle

of the binding curve (2.5 μM) and in four buffers (same as above 50mM TrisHCl pH 7) substi-

tuted with the increasing amounts of salt.

Phylogenetic analysis

The E. huxleyi genome [29] was screened by a BLAST [48] search based on the Trichoderma
reesei Cel7A CBM1 sequence and by searching for putative proteins with the Pfam ID for

CBM1 domains: PF00734 [30]. The genome was further examined for CBM1 homologs by

looking at Gene Ontology, InterPro and KEGG Metabolic Pathways. A MUSCLE [32] multiple

sequence alignment was performed (default parameters) to compare all CBM1-containing

sequences from E. huxleyi with Cel7A-CBM1 and visualized with Jalview [33]. The pairwise

sequence identities were taken from this same MUSCLE MSA and visualized in a heatmap dis-

tance identity matrix. A dataset was created with the six E. huxleyi CBM1 domains,

Cel7A-CBM1 and a randomly selected mix of verified CBM1-containing proteins from Carbo-

hydrate-Active Enzymes (CAZy) database [37,38] and a few predicted CBM1 proteins from

the Pfam database [30]. A MUSCLE MSA was created with this dataset (default parameters).
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Alkaline phosphatase assay (AP-assay)

The colorimetric AP-assay was used to measure the concentrations of the AP-CBM1 proteins

directly from lysate, which in turn could be used to ascertain their binding. The concentration

of protein in lysate was determined by measuring their AP activity and comparing that to the

AP activity of pure AP-CBM1 protein. Then, in 200 μL total volume, 40 or 80 μg of the ligand

(CNF, BC or ChNC) or an equal volume of MQ (control sample) was mixed in a tube contain-

ing 0.3 μM AP-CBM1 protein, 10 mg/mL BSA (Sigma-Aldrich A2153), buffered in 50 mM

sodium acetate, pH 5. The tubes were mixed well and incubated at 23˚C for 1h. The samples

were then centrifuged at 23˚C for 2 min at 21 130 x g (rotor radius 8.4 cm), and the superna-

tant was analyzed with SDS-PAGE or AP activity assay, as described below.

Samples of 50 μL were pipetted on a microtiter plate, in duplicates. 50 μL of liquid para-

nitrophenyl phosphate ligand (Sigma-Aldrich N7653) was quickly added to all wells and the

microtiter plate was immediately put in BioTek Eon/SynergyH1/ Cytation3 microplate reader,

which measured the absorbance at 405 nm every minute for 1h, or as long as the pattern of the

color formation was clear. The Gen5 v. 2.09 software automatically determined the maximal

rate of yellow color formation (V0) as mAU/min within 4 time points in the beginning of the

assay. The alkaline phosphatase activity of the protein measured as V0 corresponds to the pro-

tein concentration of the AP-CBM1 fusion protein. The loss of alkaline phosphatase activity

between the control and sample was interpreted to represent the part of the protein bound to

the ligand.

Supporting information

S1 Appendix. Protein sequence data.

(DOCX)

S1 Fig. Cartoon representation of the crystal structure of the CBM1 domain of Cel7A from

T. reesei. The disulfide bridges are shown in yellow, and the tyrosines involved in cellulose

binding in green. Image created with Chimera, PDB ID: 1CBH.

(TIF)

S2 Fig. Homology models of the (A) EHUX2, (B) EHUX4 and (C) EHUX5 CBM1 domains,

displayed as blue ribbons, with Cel7A-CBM1 as overlay, displayed in red. Cysteine bridges

and the side-chains of residues that are important for binding are shown. Homology models

were created by SWISS-MODEL with the crystal structure of Cel7A-CBM1 (PDB ID: 1CBH)

as a template.

(TIF)

S3 Fig. Visual overview of the pelB-AP-CBM1-6His constructs cloned, expressed and char-

acterized in this paper. The proteins were designed to contain an N-terminal pelB signal pep-

tide, Alkaline Phosphatase (AP) as a carrier protein and the CBM1 of interest with a His-tag

on the C-terminus. The spacers flanking the CBM1 domains can be cleaved by trypsin, which

does not degrade the Cel7A-CBM1 (it does degrade most of the EHUX-CBM1s).

(TIF)

S1 Table. Overview of the CBM1-containing proteins found in E. huxleyi, displaying their

gene identifiers (GI) and predicted functions. The associated functions (of the proteins,

besides their CBM1 domains) were obtained with Gene Ontology (GO) and Interpro, so they

are predicted based on sequence, using protein domains and families. The proteins can be

found in Uniprot database using their GI.

(DOCX)
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13. Henrissat B, Driguez H, Viet C, Schülein M. Synergism of Cellulases from Trichoderma reesei in the

Degradation of Cellulose. Bio/Technology. Nature Publishing Group; 1985; 3: 722–726. https://doi.org/

10.1038/nbt0885-722

14. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. Biomass Recalcitrance:

Engineering Plants and Enzymes for Biofuels Production. Science. 2007;315.

15. Wilson DB. Cellulases and biofuels. Curr Opin Biotechnol. 2009; 20: 295–299. https://doi.org/10.1016/j.

copbio.2009.05.007 PMID: 19502046

16. Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, et al. Determination of the

Three-Dimensional Solution Structure of the C-Terminal Domain of Cellobiohydrolase I from Tricho-

derma reesei. A Study Using Nuclear Magnetic Resonance and Hybrid Distance Geometry-Dynamical

Simulated Annealing. Biochemistry. 1989; 28: 7241–7257. https://doi.org/10.1021/bi00444a016 PMID:

2554967
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