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Abstract

One of the stated goals of the London Declaration on Neglected Tropical Diseases is the

interruption of domiciliary transmissions of Chagas disease in the region of the Americas.

We used a game-theoretic approach to assess the voluntary use of insecticide treated nets

(ITNs) in the prevention of the spread of infection through vector bites. Our results show that

individuals behave rationally and weigh the risks of insect bites against the cost of the ITNs.

The optimal voluntary use of ITNs results in predicted incidence rates that closely track the

real incidence rates in Latin America. This means that ITNs are effective and could be used

to control the spread of the disease by relying on individual decisions rather than centralized

policies. Our model shows that to completely eradicate the vector transmission through the

voluntary individual use of ITNs, the cost of ITNs should be as low as possible.

Authors summary

We construct a game-theoretic model of individual use of insecticide treated nets (ITNs)

to prevent the vector transmission of Chagas disease within the household.

Our results show that individuals behave rationally and weigh the risks of insect bites

against the cost of the ITNs. The optimal voluntary use of ITNs results in predicted inci-

dence rates that closely track the incidence rates in Latin America.

This means that ITNs are effective and could be used to control the spread of the dis-

ease by relying on individual decisions rather than centralized policies.

Introduction

American trypanosomiasis, in humans known as Chagas disease, is one of the world’s most

important neglected tropical diseases [1] and is most prevalent in Latin America where it is
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endemic in all 33 countries [2]. One of the stated goals of the London Declaration on

Neglected Tropical Diseases is the interruption of domiciliary transmissions in the region of

the Americas [3]. Worldwide 6–7 million people had been diagnosed with Chagas disease [4],

and the actual numbers may be even higher [5]. There is a lack of research on Chagas disease

despite the fact that (1) there are 50,000 to 200,000 new infections per year [6], (2) the disease

results in an estimated $627.46 million in healthcare costs and $7.19 billion in societal costs

annually [7], and (3) Chagas disease is still the largest parasitic disease burden on the American

continent [8].

Chagas disease is a parasitic infection caused by the protozoan Trypanosoma cruzi [9]. There

are two main forms of transmission: blood transfusion, most common in urban areas, and vec-

tor biting, most common in rural areas [10]. Chagas disease can also be contracted through

organ transplantation, ingestion of parasite-contaminated food, and from mother to fetus [11,

12]. Three species of Triatominae insects, nicknamed kissing bugs, are the most common vec-

tors. T. infestans is the primary vector in sub-Amazonian endemic regions (southern South

America), Rhodnius prolixus is typically reported in northern South America and Central Amer-

ica, and T. dimidiata occupies a similar area, but also extends further north into Mexico [13].

Historically, the control of Chagas disease has focused on vector reduction using insecticides

or indirect vector control through housing modifications [1, 14]. Still, preventive measures for

vector transmission have remained a challenge due to the disease being closely linked to poverty

and poor housing infrastructure such as mud and thatched houses that lack sanitary supervision

[6]. Currently, no vaccine has been created in order to help stop the spread of Chagas disease

[15]. Preventative measures in high risk areas include (1) avoiding sleeping in mud and

thatched housing, (2) using insecticide treated netting (ITN) over one’s bed, and (3) using

insect repellent on exposed skin [11, 16, 17]. Even in relatively poor areas, the use of ITNs was

already demonstrated to be very cost-effective [18]. However, human behavior such as inconsis-

tent use due to hot weather or inadequate education diminishes the effectiveness of ITNs [19].

From the behavioral perspective, disease prevention, such as ITNs use, produces public

goods (herd immunity) that is non-rivalrous and non-exclusive [20]. Individuals often act in a

way that maximizes their self-interests rather than the interests of the entire group [21, 22].

Disease prevention is thus prone to free-riding. The “free-riders” avoid the costs associated

with the use of ITNs while they benefit from the preventive actions of others. This social

dilemma is captured by the game theory framework [23]. The framework has now been

applied to help model the prevention of many diseases such as African trypanosomiases [24],

chikungunya [25], cholera [26], dengue [27], ebola [28], hepatitis B [29], hepatitis C [30], men-

ingitis [31], monkeypox [32], polio [33], toxoplasmosis [34], typhoid [35] and many others,

see for example [36] and [22] for recent reviews.

There are many mathematical models of Chagas disease [37], including [1, 10, 11, 38–43].

In this paper, we consider a recent, yet relatively simple model of Chagas disease dynamics

developed in [44]. This model includes vector transmission by Rhodnius prolixus as well as the

interplay of palm plantations and human settlements (domestic) habitats for the vectors. We

consider the use of ITNs as a mode of voluntary protection from vector bites, similarly to what

was done in [45] for malaria. We apply a game-theoretic approach to evaluate individual and

population-wide use of ITNs. We also perform the sensitivity analysis and validate the model

on Chagas disease incidence data.

Mathematical model of Chagas disease dynamics

We extend the compartmental epidemiological model of Chagas disease introduced in [44] by

incorporating the use of ITNs. The model, shown in Fig 1, describes the interactions between
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the vectors, Rhodnius prolixus, and the host (human) populations denoted by r and h sub-

scripts, respectively. The model involves two separate areas: the palm plantation and human

settlement. The palm plantation acts as a potential reservoir of vectors. Since R. prolixus usually

bites humans at night [46], the transmission is modelled only through contact between vectors

and humans in the settlement. For simplicity, we do not consider any infected vectors in the

plantation area, although infected R. prolixus can be found in the palm trees as well [47]. We

also do not consider any human dynamics in the plantation area.

There is no recovery from Chagas disease [16] so the total human population is divided

into (1) susceptible (Sh), i.e. not infected with T. cruzi, (2) exposed (Eh), i.e. infected with T.
cruzi but not yet infectious, and (3) infectious (Ih). The population size is normalized so that

Nh = Sh + Eh + Ih = 1. The vector population is divided into vectors living in the plantation

(Mr) and the settlement (Nr). The population in the plantation is always susceptible. The vector

population in the settlement is divided into susceptible (Sr), exposed (Er) and infectious (Ir).
Humans are born as susceptible at the per capita rate α. While there is a disease induced

mortality [48], we follow [44] in omitting this for the sake of simplicity of the model. To keep

the human population constant, the human natural death rate is considered the same as the

birth rate and the same across all classes. The vectors are born as susceptible at per capita rate

β; the birth rate is considered the same in the plantation and the settlement. The vectors follow

a logistic growth with carrying capacity Kp in the plantation and Ks in the settlement. The vec-

tors migrate from the plantation to the settlement at rate ω. The natural death rate of vectors,

μ, is considered the same across all classes. We assume μ< β.

The disease is transmitted from an infectious vector to susceptible humans at rate (1 − p)a0

and from an infectious human to susceptible vectors at rate (1 − p)b0. Here, p is the frequency

of ITN use while a0 and b0 are the transmission rates without ITN use. After the incubation

period, the exposed individuals become infectious at rate δ for humans and σ for vectors.

The values and ranges of model parameters are summarized in Table 1, details are pre-

sented below.

Parameter estimation

The vector-to-human transmission rate, a0, is estimated as 5.8 × 10−4 � 0.3, i.e. 1.74 × 10−4 per

day with range [5.2, 44] × 10−5 by the following reasoning. Using various datasets from

Fig 1. The scheme of Chagas disease population dynamics in humans and vectors R. prolixus, adapted from [44]. Human

population is at the top, R. prolixus at the bottom, the Mr compartment represents vectors in the palm plantation, the remaining

compartments represent populations in the settlement. Solid lines represent movement to and from the compartments, dotted lines

demonstrate the influence on the transmission rates.

https://doi.org/10.1371/journal.pntd.0008833.g001
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literature, [49] estimated the probability of vector-to-human transmission (per contact) as

5.8 × 10−4 (with 95% CI: [2.6, 11.0] × 10−4). This estimate is consistent across triatomine spe-

cies, robust to variations in other parameters, and corresponds to 900–4,000 contacts per case.

Moreover, [59] estimates the biting rate to be between 0.2 − 0.4 and [60] and [49] further con-

firm this by stating that the biting rate on average is 0.3 per day. We note that [61] found feed-

ing rate of T. infestants to be between 0.3 and 0.6 per day.

Similarly, from the data presented in [50, Table 4], we estimate the host-to-vector transmis-

sion rate, b0, as 0.0062 � 0.3 = 19 × 10−4 per day with the range [3.8, 32] × 10−4 per day.

The average life expectancy age in Latin America is 75 years, ranging from 63 in Haiti to 80

in Chile and Costa Rica [51]. This gives the average rate (75�365)−1 = 3.65 × 10−5 per day with

the range [3.42, 4.35] × 10−5 per day.

The average instantaneous birth rate, β is given as 0.158 per week with a range [0.120,

0.208] per week in [52, Table 7]. This yields the average 0.022 per day with the range [0.017,

0.30] per day.

The life expectancy of various Triatoma species ranges from 73 days to 268 days [62]. This

gives the range for the vector death rate as [0.0037, 0.0136] per day. Further estimates for

instantaneous death rate of T. infestants ranging from 0.023–0.109 per week are given in [52,

Table 7]. This yields an average 0:056

7
¼ 0:008 per day and the range [0.0033, 0.016] per day. We

note that [63] assume the death rate (for T. infestants) to be 0.0046 per day with a reference to

[52]; however we believe that this discrepancy is likely caused by [63] considering the standard

deviation 0.034 instead of the average rate 0.056 per week in [52]. Also, [1] uses the death rate

1.73 per year (i.e. 0.0047 per day) with a reference to [62]. For the purpose of our study we will

use 0.008 per day as the average death rate with the range [0.0033, 0.016] per day.

The incubation period for humans after exposure to a triatomine bite is 5–14 days [13]. As

noted by [12], definitive data is not available because persons who live in areas of active trans-

mission are generally continually at risk for exposure to the vectors. We assume that the

Table 1. Model parameters of Chagas disease dynamics. Detailed estimates of parameter values and ranges are presented in the text. All rates are per capita per day. The

costs are in USD per year. The carrying capacities are in the number of vectors per person.

Symbol Meaning Base value Reference(s)

a0 Vector-to-host transmission rate 1.74 × 10−4 [49]

b0 Host-to-vector transmission rate 19 × 10−4 [50]

p Frequency of ITNs use variable in [0, 1]

α Host recruitment and death rate 1/(75 × 365) [51]

β Birth rate of vectors 0.022 [52]

μ Natural death rate of vectors 0.008 [52]

δ Incubation rate in humans 0.1 [13]

σ Incubation rate in vectors 0.143 [53]

Ks Carrying capacity of vectors in settlement 10 [54]

Kp Carrying capacity of vectors in plantation 200 [55]

μs Density-dependent death rate of vectors in the settlement b� m

Ks

μp Density-dependent death rate of vectors in the plantation b� m

Kp

μ� Mortality rate of vectors in settlement in equilibrium μ + μs Nr

ω Migration rate of vectors 0.01 [56]

CITN Cost of ITN use 2.5 [57, 58]

CChagas Cost of Chagas infection 383 [7]

https://doi.org/10.1371/journal.pntd.0008833.t001
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incubation is 10 days on average. Therefore, the incubation rate in humans, δ, was estimated

as 0.1 per day on average with a range can be represented by [0.071, 0.2] per day.

The average incubation rate in vectors, σ, is estimated as 1/7 per day with the range [1/8,

1/6] per day. This is based on [53] who found that 3–4 days post-infection, the T. cruzi parasite

population begins to colonize the triatomine hosts to reach a climax at day 7 post-infection,

which is maintained during the next two weeks.

Our model is normalized with a total human population equal to 1, and we use Ks = 10, i.e.

10 bugs per person as used in [1]. We note that [54] use 10, 50, 100 and cite variable bug num-

bers in studies [64–67]. Other study, [43], uses 158 bugs per household [68].

The carrying capacity of vectors in the field is 31, 900 per km2 [55]. The small plantation

size is about 5ha [69], yielding 1600 bugs, i.e. after renormalization for a 8 person household,

we get Kp = 200.

The migration rate, ω, was set to 0.01 per day on average with the range [0, 0.02] [56]. We

note that [56] cites [70] as the source for that number, but we were not able to locate the infor-

mation in [70]. Also, [44] and [2] use ω = 0.05. However, for the other values of the parame-

ters, most notably the vector birth rate β and death rate μ such a high value of ω would result

in no bugs in the plantation area. Consequently, we adapted the value 0.01 from [56]. More-

over, as seen from the sensitivity analysis, the results are not overly sensitive to values of ω.

Analysis

The model of the transmission dynamics shown in Fig 1 yields the following system of differ-

ential equations.

dSh
dt

¼ a � aSh � ð1 � pÞa0IrSh ð1Þ

dEh

dt
¼ ð1 � pÞa0IrSh � ðaþ dÞEh ð2Þ

dIh
dt

¼ dEh � aIh ð3Þ

dMr

dt
¼ ðb � mÞMr 1 �

Mr

Kp

 !

� oMr ð4Þ

dSr
dt

¼ oMr þ bNr � ðð1 � pÞb0Ih þ mþ msNrÞSr ð5Þ

dEr

dt
¼ ð1 � pÞb0IhSr � ðmþ sþ msNrÞEr ð6Þ

dIr
dt
¼ sEr � ðmþ msNrÞIr ð7Þ

Equilibria of the ODE system (1)–(7)

There are four possible equilibria of the dynamics (1)–(7): (i) an unstable disease-free equilib-

rium E1

0
¼ ð1; 0; 0; 0; 0; 0; 0Þ, (ii) a disease-free equilibrium E2

0
¼ ð1; 0; 0; 0;Ks; 0; 0Þ, (iii) a
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disease-free equilibrium E3

0
¼ ð1; 0; 0;M�

r ;N
�
r ; 0; 0Þ where

M�
r ¼ Kp

b � m � o

b � m
; ð8Þ

N�r ¼ Ks

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
oM�

r

Ksðb � mÞ

r

2
;

ð9Þ

and finally (iv) the endemic equilibrium E� ¼ ðS�h;E
�
h; I
�
h ;M

�
r ; S

�
r ;E

�
r ; I
�
r Þ where

E�h ¼

N�r ð1 � pÞa0 �
m�

s

m� þ s

ð1 � pÞb0

d

a

ðaþ dÞ

ðaþ dÞ 1þ
m�

s
þ N�r

ð1 � pÞa0

a

� � ð10Þ

I�h ¼
d

a
E�h ð11Þ

S�h ¼ 1 � E�h �
d

a
E�h ð12Þ

I�r ¼
E�hðaþ dÞ

ð1 � pÞa0 1 � E�h 1þ
d

a

� �� �
ð13Þ

E�r ¼
m�

s
I�r ð14Þ

S�r ¼
sþ m�

ð1 � pÞb0I�h
I�r
m�

s

� �

ð15Þ

and m� ¼ mþ msN�r denotes the vector mortality rate in the settlement when the population

levels reach the equilibrium. See the section below for detailed calculations.

Step-by-step calculations for equilibria

Let us set Nr = Sr + Er + Ir and investigate the system

dMr

dt
¼ ðb � mÞMr 1 �

Mr

Kp

 !

� oMr ð16Þ

dNr

dt
¼ ðb � mÞNr 1 �

Nr

Ks

� �

þ oMr ð17Þ

that results from (4) and from the sum of eqs (5) and (6), and (7).
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The system (16) and (17) has three equilibria: (a) (0, 0) which is always unstable (if β> μ),

(b) (0, Ks) which is locally stable if β − μ< ω, and finally (c) ðM�
r ;N

�
r Þ where

M�
r ¼ Kp

b � m � o

b � m
; ð18Þ

N�r ¼ Ks

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
oM�

r

Ksðb � mÞ

r

2
;

ð19Þ

which is defined and locally stable if ω< β − μ.

Now, let us proceed to solve for the equilibria of the system (1)–(7). Based on above calcula-

tions, we have to solve the following system of algebraic equations

0 ¼ að1 � ShÞ � ð1 � pÞa0ShIr ð20Þ

0 ¼ ð1 � pÞa0ShIr � Ehðaþ dÞ ð21Þ

0 ¼ dEh � aIh ð22Þ

0 ¼ oM�
r þ bN

�
r � Srðð1 � pÞb0Ih þ mþ msN�r Þ ð23Þ

0 ¼ ð1 � pÞb0SrIh � Erðmþ sþ msN�r Þ ð24Þ

0 ¼ sEr � Irðmþ msN�r Þ ð25Þ

where M�
r is given by (18) and N�r is given by (19). Let us set m� ¼ mþ msN�r .

By adding (20),(21), and (22), we get

Nh ¼ Sh þ Ih þ Eh ¼ 1: ð26Þ

We have the disease-free equilibrium with Sh = 1, Eh = 0, Ih = 0, Sr = Nr, Er = 0, Ir = 0 when-

ever any of the following happens: (1) Ir = 0 (in particular when N�r ¼ 0), or (2) Ih = 0, or (3)

p = 1.

For the rest of the section, we will assume that p< 1, Ih> 0 and Ir> 0. By (22),

Ih ¼
dEh

a
ð27Þ

and so by (26) and (27),

Sh ¼ 1 � Eh �
d

a
Eh: ð28Þ

By (25),

Er ¼ Ir
m�

s
ð29Þ

Using Eq (24)

Sr ¼
Erðsþ m

�Þ

ð1 � pÞb0Ih
¼

sþ m�

ð1 � pÞb0Ih

� �
Irm�

s

� �

ð30Þ
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By (20),

Ir ¼
að1 � ShÞ
ð1 � pÞa0Sh

¼
aðIh þ EhÞ

ð1 � pÞa0Sh
ð31Þ

¼
Ehðaþ dÞ

ð1 � pÞa0 1 � Eh 1þ
d

a

� �� �
ð32Þ

Finally,

Nr ¼ Sr þ Ir þ Er ð33Þ

¼
m� þ s

ð1 � pÞb0Ih

m�

s
Ir þ Ir þ

m�

s
Ir ð34Þ

¼ Ir 1þ
m�

s
þ

m� þ s

ð1 � pÞb0Ih

m�

s

� �

ð35Þ

¼ Eh
aþ d

ð1 � pÞa0 1 � Eh 1þ
d

a

� �� � 1þ
m�

s
þ

m� þ s

ð1 � pÞb0

d

a
Eh

m�

s

0

B
@

1

C
A ð36Þ

and thus

E�h ¼

Nr 1 � pð Þa0 �
m�

s

m� þ s

1 � pð Þb0

d

a

aþ dð Þ

aþ dÞð1þ
m�

s
þ Nr

1 � pð Þa0

a

� � ð37Þ

and the remaining values are given by

I�h ¼
d

a
E�h ð38Þ

S�h ¼ 1 � E�h �
d

a
E�h ð39Þ

I�r ¼
E�hðaþ dÞ

ð1 � pÞa0 1 � E�h 1þ
d

a

� �� �
ð40Þ

E�r ¼ I�r
m�

s
ð41Þ

S�r ¼
sþ m�

ð1 � pÞb0I�h
I�r
m�

s

� �

: ð42Þ
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The basic reproduction number

The basic reproduction number, i.e. the number of secondary infections caused by a single

infectious individual in an otherwise disease-free population is given by

R0 ¼ ð1 � pÞ2RnoITN
0

ð43Þ

where

RnoITN
0
¼

1

a

� �

b0N�r
� � s

sþ m�

� �
1

m�

� �

a0ð Þ
d

dþ a

� �

ð44Þ

is the number of secondary infections caused by a single infectious individual if nobody uses

ITN. The formula can be derived as follows. An infectious individual lives on average for a

time α−1. During that time, they expose susceptible vectors at the rate ð1 � pÞb0N�r . Each of the

exposed vectors become infectious with probability s

sþm�
. Each of the infectious vectors then

lives for the time μ�−1 during which it exposes susceptible individuals at the rate (1 − p)a0 Nh =

(1 − p)a0. Each of those exposed individuals will become infectious with probability d

dþa
.

The equilibrium E1

0
is always unstable. The disease-free equilibrium E2

0
is locally stable if

ω> β − μ and R0 < 1. The disease-free equilibrium E3

0
exists if ω< β − μ and is stable if R0 <

1. The endemic equilibrium E� is defined and locally stable if ω< β − μ and R0 > 1.

Herd immunity

It follows from (43) that
@R0

@p < 0, i.e. R0 is decreasing in p. Consequently, the population will

reach herd immunity at the smallest value of p 2 [0, 1] for which R0 � 1, i.e.

pHI ¼ maxf0; 1 � ðRnoITN
0
Þ
� 1=2
g: ð45Þ

Game-theoretic model of ITN use

Model setup

In this section, we set up and solve a game-theoretic model of individual ITN use decisions.

We will assume that the system (1)–(7) is in an equilibrium. Individuals can either use or not

use an ITN. We assume that all individuals are rational and act in their own self-interest [21].

As usual in vaccination games, see for example [35], individuals weigh the perceived cost of

ITN use against the risks of infection. The risk of infection depends on the population-wide

ITN use rate. This results in a public goods game in which individuals base their ITN use deci-

sion on the decisions of others.

For simplicity, we will consider only the actual monetary costs of ITN use, but we note that

perceived costs could involve other factors such as possible discomfort associated with limited

air circulation, and possible side effects of the insecticide [45]. The cost varies, it can be about

$5 in Mexico and $9 in Columbia [58]. An ITN lasts about 2 years [57], so the annual cost is

CITN = $2.50 in Mexico and CITN = $4.5 in Columbia. The annual cost of a T. cruzi infection,

CChagas, in Latin America is estimated as $383 with a range $207–$636 [7]. From the perspec-

tive of an individual, the expected cost of not using ITNs when the probability of ITN use in

the overall population is p, denoted by CnoITN(p), is given as a product of CChagas and the prob-

ability of getting infected (the probability of moving from the Sh compartment to the
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compartment Ih),

CnoITNðpÞ ¼
CChagas �

a0I�r
a0I�r þ a

� �

�
d

dþ a

� �

; p < pHI;

0; p � pHI;

8
><

>:
ð46Þ

where the herd immunity level of ITN use, pHI, is given in (45).

Dependence of CnoITN on p
Here we show that CnoITN(p) is decreasing in p; this is illustrated in Fig 2.

By (46)
@CnoITN

@p ¼
@CnoITN

@I�r
�
@I�r
@p . Since

@CnoITN

@I�r
> 0 and, as seen below,

@I�r
@p < 0, we will get that

@CnoITN

@p < 0. By (37),

E�h ¼
a0

aþ d
�

Nr 1 � pð Þ

1þ
m�

s
þ Nr

1 � pð Þa0

a

� � �
m� m� þ sð Þa

s 1 � pð Þb0d 1þ
m�

s
þ Nr

1 � pð Þa0

a

� �
ð47Þ

and the first term is increasing in (1 − p) and thus decreasing in p while the second term is

decreasing in (1 − p) and thus increasing in p. Thus,
@E�h
@p < 0.

Consequently, by (38),
@I�h
@p < 0. Now, for the contradiction, assume that

@I�r
@p > 0. By (41),

@E�r
@p > 0. Since S�r ¼ N�r � E�r � I�r and

@N�r
@p ¼ 0, we get

@S�r
@p < 0. By (24), E�r ¼

ð1� pÞboS�r I
�
h

mþsþmsN�r
and thus,

as S�r and I�h are decreasing in p, E�r should be decreasing in p, contradiction with an already

established fact that
@E�r
@p > 0.

Nash equilibria

When the ITN use p is such that CnoITN(p) = CITN, the ITN use is at Nash equilibrium, pNE;

this means that no individual has an incentive to deviate from their current ITN usage.

Because CnoITN(p) is decreasing in p, pNE is in fact a convergently stable Nash equilibrium

which indicates that the population will evolve toward it, see [71]. When p< pNE, it is benefi-

cial for the individual to use the ITN (the cost of using the ITN is smaller than the expected

cost of infection); when p> pNE, it is beneficial for the individual not to use the ITN (the cost

of the net is larger than the expected cost of infection).

Results, sensitivity analysis and model validation

The values of pHI and pNE are close together, see Figs 2 and 3. For the parameters as in Table 1,

the model predicts pHI = 0.5026 and pNE = 0.5017.

More than 50% of the households in endemic areas of Colombia use bednets (although

some were not insecticide treated) [73]. In Nicaragua, 34.2% households had bednets [19];the

use of bednets is highest for the infants (45.8%) and decreases to 31.8% for children aged 1–4

years [19].

Our model predicts the annual incidence rate, the number of new infections per year,

i ¼ 1 � pð Þa0IrSh d

aþd

� �
, to be about 4.72 person per year per 100,000 individuals when ITN use

is at Nash equilibrium, see Fig 4. This agrees with the annual incidence rate due to vector

transmission in Latin America and Mexico, both at 5 person per year per 100,000 individuals

[74]. When we assume CITN = 4.5, to more closely match the price in Colombia, our model

predicts incidence rate around 8.37 person per year per 100,000 individuals, again in close
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agreement with the real incidence rate of 11 person per year per 100,000 individuals [74]. This

all indicates that individuals behave rationally as predicted in general by [21]. Our findings

also agree with [75] whose results showed that peoples’ acceptance of ITN use is related to the

perception of an immediate protective effect against vectors.

Our crucial result is that the incidence rate is essentially linear and increasing with the cost

of the ITNs, see Fig 4A. It follows that to reduce the incidence of Chagas disease, one should

reduce the cost CITN as much as possible.

Fig 4B shows how the incidence rates depend on the number of triatomines at home (Ks).

When Ks is small, the incidence rate is 0. Once Ks increases above a certain threshold, the inci-

dence rate increases rapidly, but then it decreases in Ks. This agrees with [39]; they showed

that it is best to have no dogs in the household (low Ks) but that once there are dogs in the

Fig 2. The expected cost of not using ITN (solid) as a function of ITNs use in the population. Parameters are as in Table 1. Herd immunity is achieved

when the expected cost reaches 0. The Nash equilibrium ITN use is achieved at the intersection with the dotted line (the cost of the ITN). It follows that pNE <

pHI, but also pNE� pHI.

https://doi.org/10.1371/journal.pntd.0008833.g002
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house, human infection declines with the number of dogs (i.e. with increasing Ks), allowing

the dogs to sufficiently divert vectors away from the humans. In [11] they also conclude that

reducing the population of triatomines and keeping domestic animals out of the households is

the best way to decrease the risk of human infections.

Table 2 shows the sensitivity indices of pHI, pNE, the difference pHI − pNE and the incidence

i on model parameters. Since pNE and pHI are very close to each other, their sensitivity indices

are almost identical. We note that, if we disregard human birth rate, α, that cannot be easily

individually adjusted, the herd immunity level pHI is most sensitive to the vector birth rate β,

Fig 3. Dependence of pHI (solid) and pNE (dotted) on different parameter values. Unless varied, the parameter values are as

specified in Table 1. For those parameters, pHI = 0.5026 and pNE = 0.5017.

https://doi.org/10.1371/journal.pntd.0008833.g003
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settlement carrying capacity Ks and the transmission rates a0 and b0. In all cases, the sensitivity

index is about 0.5 (or − 0.5 in the case of β), meaning that 1% increase of the parameter causes

pHI to increase (decrease in the case of β) by about 0.5%. Since pNE increases (decreases) slightly

more than pHI, the sensitivity index of pHI − pNE and of the incidence rate have reverse signs.

The incidence rate is most sensitive to the cost of the ITNs, CITN, and the vector birth rate, β. A

decrease of the ITN cost causes the incidence rate to decrease. The dependence of β is more

complex. The disease is endemic only for medium values of β 2 (0.009, 0.068); there are not

enough vectors for low β (in fact no vectors for β< μ) or not enough infected vectors for high

β. In the endemic state, there is a critical birth rate β0� 0.018 = μ + ω where reducing β below

β0, while still having it above 0.009, may actually increase the incidence rate. See Fig 4C.

Conclusions and discussion

In this paper, we modeled Chagas disease dynamics using the compartmental model developed

in [44]. We parameterized the model based on values found in literature. We applied a game-

theoretical approach, developed by [23], and determined the optimal voluntary use of

Fig 4. The incidence rate in person per year per 100,000 individuals when individuals use of ITN is optimal (at Nash equilibrium). Unless varied, the

parameters are as in Table 1.

https://doi.org/10.1371/journal.pntd.0008833.g004

Table 2. The sensitivity analysis. The sensitivity index SIy of a variable y on a parameter x was calculated as ðxyÞ �
@y
@x

� �
, see for example [72]. The numbers were rounded to

the three decimal places. Parameters are as specified in Table 1. The sensitivity index − 0.5 means that a 1% increase of a parameter value x will result in the 0.5% decrease

of the variable y.

Parameter SIpHI
SIpNE

SIðpHI � pNEÞ SIi
a0 0.496 0.498 −1.007 −0.502

b0 0.496 0.498 −1.007 −0.523

α −0.493 −0.495 1.024 1.522

β −0.495 −0.497 1.007 0.522

μ −0.106 −0.106 0.243 0.121

δ 0.000 0.000 0.041 0.041

σ 0.117 0.117 −0.253 −0.133

Ks 0.511 0.514 −0.990 −0.488

Kp −0.002 −0.002 −0.030 −0.026

ω 0.003 0.003 0.042 0.036

CChagas 0 0.002 −0.977 −0.975

CITN 0 −0.002 1.044 1.042

https://doi.org/10.1371/journal.pntd.0008833.t002
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insecticide treated nets (ITNs) to prevent the spread of infection through vector bites. We vali-

dated our model by predicting incidence rates that closely track the real incidence rates in

Latin America, Mexico and Columbia. Our results confirm that individuals behave rationally

and weigh the risks of insect bites against the cost of ITNs.

Our model gives two main predictions. We show that to completely eradicate the vector

transmission through the voluntary use of ITNs, the cost of ITNs should be as low as possible.

We also show that coupling ITN use with other means of vector control to decrease the vector

presence in the households is very effective. On the other hand, in agreement with [39], if one

cannot reduce the vector’s presence (or the vector birth rate) in the household below a critical

threshold, increasing the vector presence may lead to a slightly lower incidence rate.

The use of ITNs has many advantages: it protects against multiple diseases such as malaria,

leishmaniasis, and dengue [18], and it can be easily integrated into community health work

[58, 76]. Compared to residual insecticide spraying, the use of ITNs does not require qualified

spraying teams and it also requires considerably less insecticide [77]. Moreover, [78] showed

that residual insecticide spraying was less effective than expected mainly because of moderate

insecticide resistance and the limited effectiveness of selective treatment of infested sites only.

The vectors can navigate past the nets; but most vectors that traversed the nets were early-stage

nymphs, which are less likely to carry T. cruzi [79]. Furthermore, the spread of triatomine

insects can be slowed down even if ITNs is used only on animal cages [79].

Our model can be extended in several ways. One can include disease related mortality

which was omitted here for the sake of simplicity. A disease related mortality could cause a

backward bifurcation and an existence of endemic equilibria even for R0 < 1 [80, 81]. One

can also relax the assumption about vector migration and allow the vectors to migrate from

the settlement. Finally, one can consider transmission other than between vectors and humans.

Yet the findings of our simple model agree with more complex models such as [11, 39, 42, 50]

which found that the best way to decrease risk of human infection is by decreasing the number

of triatomine in a given area and reducing the number of domestic animals.

Although every math model has many limitations, these models can help us to understand

diseases and implications of various control measures. We hope that this model helps to serve

as a tool in showing the importance of ITN use to prevent Chagas disease and to minimize the

domestic transmission in Latin America as stated by the London Declaration.

Supporting information

S1 Matlab Code. The matlab code used to generate the figures is available in S1 Matlab

Code.
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3. Tarleton RL, Gürtler RE, Urbina JA, Ramsey J, Viotti R. Chagas disease and the London declaration on

neglected tropical diseases. PLoS Neglected Tropical Diseases. 2014; 8(10). https://doi.org/10.1371/

journal.pntd.0003219 PMID: 25299701

4. WHO. Chagas disease (also known as American trypanosomiasis); 2020. https://www.who.int/news-

room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis).

5. Olivera MJ, Chaverra KA. New Diagnostic Algorithm for Chagas Disease: Impact on Access to Diagno-

sis and Out-of-Pocket Expenditures in Colombia. Iranian Journal of Public Health. 2019; 48(7):1379–

1381. PMID: 31497563

6. Tarleton RL, Reithinger R, Urbina JA, Kitron U, Gürtler RE. The challenges of Chagas disease—grim
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