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 EditoriaL

Candida spp. are among the most important human fun-
gal pathogens, with infections ranging from relatively benign, 
superficial manifestation to life-threatening deep-seated candi-
diasis and disseminated disease. Different mouse models have 
been developed to recapitulate the different forms of candidia-
sis and murine models are considered to be the gold standard to 
study pathogenesis and analyze efficacy of antifungal treatment. 
However, economical, logistical, and ethical considerations limit 
the use of mammals in infection experiments, especially when 
the question at hand requires analysis of a large number of fun-
gal strains. As an alternative approach, different invertebrate 
infection models have been developed, including Caenorhabditis 
elegans, Drosophila melanogaster, and larvae of the wax moth 
Galleria mellonella as hosts. G. mellonella are inexpensive to pur-
chase and do not require specialized facilities for maintenance. 
The relatively large size of the larvae facilitates easy handling, 
injection of a defined inoculum, and sampling for downstream 
analyses. Furthermore, in contrast to other invertebrate hosts, 
G. mellonella larvae can be maintained at temperatures up to 
37 °C, equivalent to the temperature in mammalian hosts.1 As 
temperature has been shown to affect expression of Candida 
virulence traits, this feature is important when assessing viru-
lence of Candida strains.2 In addition, the larval immune system 
shows functional and structural similarity to the mammalian 
innate immune system: Pathogens are recognized by pathogen 
recognition receptors and can be phagocytosed by the insects’ 
hemocytes, the functional equivalent to mammalian neutrophils. 
Similar to neutrophils, hemocytes use reactive oxygen species and 
lytic enzymes to eliminate microorganisms.3 Antimicrobial pep-
tides are produced by G. mellonella in response to infection and 
likely contribute to the host defense, as it has been shown for 
Candida epithelial infections using mammalian cells.4,5 Thus, it 
is not surprising that G. mellonella larvae are used increasingly 
as a model for Candida infections, for example to determine 
the virulence of genetically modified C. albicans strains6-11 and 
to determine the efficacy of antifungal treatment against both 
C. albicans and non-albicans Candida species.12-16

Host mortality after infection with a distinct dose or determi-
nation of the LD

50
 is commonly used as the primary parameter 

to assess virulence of microorganisms and to rank the relative 

virulence of species and strains. Using this approach with sys-
temically infected mice, C. albicans and C. tropicalis were found 
to be highly virulent while other Candida species such as C. gla-
brata, C. parapsilosis, and C. krusei induced no mortality,17 even 
in immunocompromised mice.18,19 The high virulence of C. albi-
cans in murine models correlates with the clinical situation, in 
which the majority of Candida infections are caused by C. albi-
cans. However, infections with non-albicans Candida species are 
emerging, including species such as C. glabrata and C. parapsi-
losis, which rarely cause lethal infections in mice. In the absence 
of mortality, fungal burden can be used to compare species and 
strains.17 However, fungal burden primarily reflects fitness and 
not necessarily virulence, as illustrated by a C. albicans mutant 
overexpressing the transcription factor NRG1: This mutant was 
highly attenuated in a systemic mouse model although fungal 
burden was comparable to the corresponding wild-type strain.20 
Comparison of the virulence potential of different Candida spp. 
has also been performed in G. mellonella, confirming C. albi-
cans and C. tropicalis as the most virulent species.16,21,22 In addi-
tion, these studies also revealed substantial virulence potential 
of C. parapsilosis in G. mellonella, leading to significant mortal-
ity of infected larvae. Although it is not clear why C. parapsilo-
sis infections are lethal in G. mellonella larvae but not in mice, 
this observation suggested that G. mellonella could serve as a 
model organism to study virulence on level of subspecies and 
strains. Thus, Gago et al. used mortality in the Galleria model 
as the primary parameter to investigate the virulence potential 
of the species within in C. parapsilosis complex, C. parapsilo-
sis, C. orthopsilosis, and C. metapsilosis.23 This study, published 
recently in Virulence, showed that C. parapsilosis and C. orthopsi-
losis induced larval mortality at a comparable rate while C. metap-
silosis was less virulent. These findings are strongly supported by 
a recent publication of Németh et al., who obtained comparable 
results using a different set of strains belonging to the C. parapsi-
losis complex in a G. mellonella infection model.24 The results are 
furthermore consistent with different in vitro approaches, that 
found C. metapsilosis to be the least virulent species of the parap-
silosis complex,25-27 and virulence in a vaginal mouse model.27

Why is C. metapsilosis less virulent than C. parapsilosis and 
C. orthopsilosis? The ability to secrete proteases and lipases has 
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been associated with virulence in C. albicans and C. parap-
silosis.28,29 Both Gago et al. and Németh et al. analyzed enzy-
matic activity in the different strains and found C. parapsilosis 
strains to more frequently express hydrolytic activity. However, 
as C. orthopsilosis and C. parapsilosis showed comparable viru-
lence in the Galleria model, additional factors must contribute 
to pathogenicity. Filament formation, mediating penetration of 
tissue and escape from immune cells upon phagocytosis, is a well 
described virulence attribute in C. albicans.30 Most C. parapsilosis 
and C. orthopsilosis strains were capable of forming pseudohy-
phae in vitro whereas all C. metapsilosis isolates analyzed pro-
duced yeast cells only, suggesting a link between pseudohyphae 
formation and virulence on the species level.23,24 On the strain 
level, however, individual C. orthopsilosis isolates displayed high 
virulence in the absence of pseudohyphae formation, suggest-
ing that additional factors are important. Interestingly, partial 
decoupling of filamentation and virulence has also been observed 
with defined C. albicans mutants in the G. mellonella model: A 
C. albicans tec1Δ mutant that still formed filaments exhibited 
reduced pathogenicity in G. mellonella model. Similarly, resto-
ration of filamentation in C. albicans flo8Δ by overexpression 
of TEC1 did not restore virulence, both in G. mellonella and in 
mice.7 As filament formation enables Candida to escape from 
immune cells, Gago et al. analyzed the hemocytes in infected 
G. mellonella larvae. Hemocytes numbers were significantly 
lower in larvae infected with C. parapsilosis and C. orthopsilosis 
compared with C. metapsilosis. Correlation of hemocytes num-
bers with survival after Candida infection has also been observed 
in other studies5,15,31-33 and hemocytes function has been clearly 
linked to the outcome of fungal infections in Galleria.34,35 Gago 
et al. speculated that pseudohyphae production by phagocytosed 
yeasts may damage hemocytes, thus contributing to the lower 
number of hemocytes observed. This hypothesis is supported by 
the results of Németh et al., who demonstrated a greater cyto-
toxic potential of C. parapsilosis and C. orthopsilosis against mam-
malian macrophages.24 However, it yet needs to be demonstrated 
that Galleria hemocytes are indeed damaged by pseudohyphae 
and that this process accounts for the lower number of hemocytes 
in vivo, and in consequence for higher virulence. In this con-
text, the higher rate of phagocytosis of C. metapsilosis by Galleria 
hemocytes might indicate reduced survival of this fungus in the 

host, a hypothesis which likewise still needs to be experimentally 
confirmed.

The study of Gago et al. illustrates the potential of G. mel-
lonella larvae as a model organism to assay Candida virulence and 
to study pathogenesis. However, many questions remain open, 
for example which kind of hemocytes respond to Candida infec-
tions, which fungal ligands do bind to what hemocyte receptors 
and whether an unbalanced immune response contributes to 
pathogenesis, as described in the murine model of disseminated 
candidiasis and human sepsis.36 To address these questions, it 
will be necessary to develop tools that allow investigating dif-
ferent interactions on the cellular and molecular level, as they 
are available for mice, humans, and other model organisms, such 
as Drosophila. Useful tools could include immortalized G. mel-
lonella cell lines, antibodies to allow differentiation of hemocytes 
populations, markers for hemocytes activation, genome data to 
facilitate development of microarrays and methods for genomic 
manipulation of G. mellonella. Furthermore, as recently elabo-
rated in other editorials in Virulence, defined G. mellonella lines 
and standardized protocols for propagation and maintenance are 
needed to fully develop the potential of G. mellonella larvae as 
model organisms to study fungal infections and to allow compar-
ison of results obtained in different laboratories.37 A better under-
standing of the pathogenesis of fungal infections in Galleria will 
likely yield important insights into the infection process that can 
be transferred to mammalian host. There will also be limitations 
and it is likely that pathogenesis differs in some aspects between 
different host species. For example, it remains to be elucidated 
why infection with C. parapsilosis is lethal in G. mellonella larvae 
but not in mice. These differences, however, if seen in the context 
of human infections, should not be merely considered a disad-
vantage of one model over the other. If interpreted with care, 
understanding both similarities and differences of pathogenesis 
and host defense in different model hosts will greatly aid in iden-
tifying mechanisms that can be transferred to human infections. 
In addition, it might furthermore help in elucidating specific 
defects that predispose human patients to infection and possibly 
allow identifying new approaches for treatment.
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