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TherapeuTic advances in 
drug safety

Joint use of population pharmacokinetics 
and machine learning for optimizing 
antiepileptic treatment in pediatric 
population
Ivana Damnjanović , Nastia Tsyplakova, Nikola Stefanović, Tatjana Tošić,  
Aleksandra Catić-Đorđević and Vangelis Karalis

Abstract
Purpose: Unpredictable drug efficacy and safety of combined antiepileptic therapy is a major 
challenge during pharmacotherapy decisions in everyday clinical practice. The aim of this 
study was to describe the pharmacokinetics of valproic acid (VA), lamotrigine (LTG), and 
levetiracetam (LEV) in a pediatric population using nonlinear mixed-effect modeling, while 
machine learning (ML) algorithms were applied to identify any relationships among the 
plasma levels of the three medications and patients’ characteristics, as well as to develop a 
predictive model for epileptic seizures.
Methods: The study included 71 pediatric patients of both genders, aged 2–18 years, on 
combined antiepileptic therapy. Population pharmacokinetic (PopPK) models were developed 
separately for VA, LTG, and LEV. Based on the estimated pharmacokinetic parameters 
and the patients’ characteristics, three ML approaches were applied (principal component 
analysis, factor analysis of mixed data, and random forest). PopPK models and ML models 
were developed, allowing for greater insight into the treatment of children on antiepileptic 
treatment.
Results: Results from the PopPK model showed that the kinetics of LEV, LTG, and VA were 
best described by a one compartment model with first-order absorption and elimination 
kinetics. Reliance on random forest model is a compelling vision that shows high prediction 
ability for all cases. The main factor that can affect antiepileptic activity is antiepileptic drug 
levels, followed by body weight, while gender is irrelevant. According to our study, children’s 
age is positively associated with LTG levels, negatively with LEV and without the influence of 
VA.
Conclusion: The application of PopPK and ML models may be useful to improve epilepsy 
management in vulnerable pediatric population during the period of growth and development.

Plain language summary 
Pharmacokinetics and machine learning in epilepsy

Abstract: Nowadays, combined antiepileptic therapy is the best option for a number 
of pediatric patients. Furthermore, there are no standard procedures in the therapy 
management of this complex treatment. Besides therapeutic monitoring, the population 
pharmacokinetic (PopPK) approach and machine learning (ML) are useful sources of 
information regarding the optimization of therapy. The aim of this study was to describe 
the pharmacokinetics of valproic acid (VA), lamotrigine (LTG), and levetiracetam (LEV) in 
a pediatric population using nonlinear mixed-effect modeling, while ML algorithms were 
applied to identify any relationships among the plasma levels of the three medications and 
patients’ characteristics. The study included 71 pediatric patients of both genders, aged  
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2–18 years, on combined antiepileptic therapy. Population pharmacokinetic (PopPK) 
models were developed separately for VA, LTG, and LEV. Based on the estimated 
pharmacokinetic parameters and the patients’ characteristics, three ML approaches were 
applied (principal component analysis, factor analysis of mixed data, and random forest). 
According to our study, children’s age is positively associated with LTG levels, negatively 
with LEV and without influence from VA. However, the gender of patients has no influence 
on drug plasma concentration. Findings demonstrated that the application of PopPK 
and ML models may be useful to improve epilepsy management in vulnerable pediatric 
population during the period of growth and development.

Keywords: factor analysis of mixed data, lamotrigine, levetiracetam, machine learning, 
population pharmacokinetics, principal component analysis, random forest, therapy 
optimization, valproic acid

Received: 30 January 2023; revised manuscript accepted: 22 May 2023.

Introduction
Successfully managing combined pharmacother-
apy in pediatric patients with epilepsy is still a 
major challenge for clinician because of unpre-
dictable drug efficacy, adverse effects, and a 
lack of information regarding optimal dosage 
regimen. Therefore, there is the need for effec-
tive and practical decision-making tools to assist 
clinicians to provide personalized treatment.1,2 
Unfortunately, failure in the seizures control with 
antiepileptic drug (AED) monotherapy is seen in 
17–40% of children with epilepsy. Combined 
antiepileptic therapy is advised when monother-
apy remains well tolerated but with poor or sub-
optimal clinical response, or in the presence of 
idiosyncratic reaction evidence.3

Everyday clinical practice includes therapeutic 
drug monitoring (TDM) as part of personalized 
epilepsy management regarding obvious clinical 
benefits, considerable morbidity, mortality, and 
quality of life.4 However, it also has limitations as 
drug concentrations often do not correlate with 
improved clinical outcome.1 Pharmacometrics 
approaches and mathematical simulation tools 
may be crucial step to improve personalized epi-
lepsy management in vulnerable pediatric popu-
lation.2 In addition to population pharmacokinetics 
(PopPK), a lot of attention has recently been paid 
to application learning-based algorithms that can 
be used as a flexible approach to handle complex 
and high-dimensional data sources.5

Machine learning (ML) combines patient’s per-
sonal information to predict the outcomes of 

AEDs treatment and, hence, support clinical 
decision-making.6 According to the fact that sta-
tistical methods may have limited capacity to 
handle vast quantities of data obtained from the 
research, and according to this, a growing interest 
in other techniques such as factor analysis.7 
Compared with conventional modeling methods, 
simulation has indubitable better accuracy and 
advantages in dealing with real-world data, 
because of more complex and deeper insight, and 
interactive clinical settings.8,9 A combined PopPK 
and ML approach may have more accurate pre-
dictions, facilitate therapy individualization, and 
improve clinical outcome.10

The aim of this study was to describe the pharma-
cokinetics of valproic acid (VA), lamotrigine 
(LTG), and levetiracetam (LEV) in a pediatric 
population using nonlinear mixed-effect mode-
ling. Also, ML was applied to identify any rela-
tionships among the plasma levels of the three 
medications and patients’ characteristics, as well 
as to construct a predictive model for epileptic 
seizures. The three ML methods utilized in this 
study refer to principal component analysis 
(PCA), factor analysis of mixed data (FAMD), 
and random forest (RF).

Methods

Clinical unit – laboratory analysis
This prospective study was conducted at the 
Clinic of Pediatric Internal Medicine, Department 
of Pediatric Neurology (University Clinical 
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Center of Nis, Serbia). Data were collected over a 
12-month period, starting in May 2020. The 
study involved 71 patients with diagnosed epi-
lepsy. Inclusion criteria were as follows: diag-
nosed epilepsy (G40); patients of both genders 
aged 2–18 years on dual antiepileptic therapy 
modalities: VA/LTG, VA/LEV, and LTG/LEV. 
Poor renal and liver function and other serious 
disease states were exclusion criteria. The data 
were collected from medical records and during 
face-to-face interviews with the patient or his par-
ents or guardians. To protect patient data, each 
patient was assigned a code at the beginning of 
the study. The following data were collected: 
demographic characteristics [gender, age, body 
weight (BW)]; therapy characteristics (drug for-
mulation, administered dose, dosing interval, 
plasma drug concentration, dose-adjusted con-
centration, adverse drug effects); and frequency 
of seizure control data. All patients have reached 
the steady-state condition for each of the AEDs 
included in the therapy. Regarding correspond-
ence with trough levels, all blood samples were 
collected before the next dose in the morning.

Population pharmacokinetics
A pharmacokinetic analysis of the C-t data col-
lected for LEV, LTG, and VA was performed 
using nonlinear mixed-effects modeling imple-
mented in Monolix™ 2021R2. The number of 
compartments describing the LEV, LTG, and 
VA dispositions was initially clarified. One-, two-, 
and three-compartment models were investi-
gated. The pharmacokinetic parameters were 
assumed to have a lognormal distribution, and an 
exponential model was utilized to represent inter-
individual variability. Several error models of 
residual variability were tested, such as the con-
stant, proportional, and combination constant 
and proportional models.

Since there was only one measurement available 
(trough levels) for each patient, it was not feasible 
to allow the algorithm to search for the maximum 
likelihood estimates of all parameters. Thus, a 
stepwise procedure was followed, where initially 
only one variable was freely estimated while the 
others were fixed to the values reported in the lit-
erature or followed maximum a posteriori estima-
tion. When a robust estimate was found, another 
pharmacokinetic parameter was allowed to vary. 
Several combinations for the sequences of estima-
tions were tried, and the one leading to the best 

fitting results and physiological soundness of the 
estimates was finally chosen.

Along with the selection of the base model, the 
effect of several covariates on the model phar-
macokinetic parameters was studied. These 
included demographic factors such as BW, age 
(in years), additional antiepileptic medications 
coadministered (therapeutic regimen), daily 
dose of the drug, and the presence or absence 
of epileptic seizures. Covariate analyses were 
carried out utilizing a combination of stepwise 
forward and backward selection. The influence 
of continuous factors was examined using allo-
metric or linear relationships, either untrans-
formed or centered on their ‘mean’ value. 
Using fixed exponents, allometric scaling was 
applied to the apparent volumes of distribution 
(V) and clearance (Cl) parameters (1 for V and 
0.75 for Cl). For the continuous and categori-
cal factors, the Pearson correlation test and 
one-way ANOVA were performed. The Wald 
test was performed to determine whether the 
covariates could explain the variation in the 
final model’s parameters. The significance 
level was set at 5% in all analyses. The choice 
of covariates was further made by evaluating 
the decrease in the −2LL (−2 log likelihood) 
values, the accuracy of the parameters (in terms 
of relative standard error), the decrease in 
inter-individual variability estimates, and each 
covariate’s physiological soundness on the 
pharmacokinetic parameter.

The final model was selected using statistical and 
graphical goodness-of-fit criteria, which allowed 
potential biases or issues in the structural model 
to be identified. The precision of parameter esti-
mates was also evaluated using relative standard 
errors (RSE%). Models were compared using 
numerical statistical significance criteria, such as 
log-likelihood, Akaike, and Bayesian information 
criteria, for selecting non-hierarchical models. 
Plots of predicted versus observed values, weighted 
residuals versus concentrations or time, and indi-
vidual fits were used to evaluate the goodness of 
fit graphically. Visual predictive check charts, cre-
ated using 1000 Monte Carlo simulations and 
90% confidence intervals, were also utilized to 
evaluate the model’s predictive performance, sta-
bility, and robustness. The complete modeling 
exercise was carried out using Monolix™ 2021R2 
software (Lixoft, Simulation Plus Inc., Lancaster, 
CA, USA).
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Machine learning
ML methods were used to uncover any underly-
ing relationships among the children’s character-
istics and pharmacotherapy. The application of 
ML techniques, a subfield of artificial intelli-
gence, is a powerful tool for detecting correlations 
between numerous variables.

The phrase ‘machine learning’ refers to the ‘learn-
ing’ process, and there are several ways that can 
be applied. ML algorithms are broadly catego-
rized into four types: supervised, unsupervised, 
self-supervised, and reinforcement learning. The 
two most commonly used ML methods are 
‘supervised learning’, in which algorithms are 
trained using labeled input and output data, and 
‘unsupervised learning’, in which the algorithm is 
not given labeled data and must find structure in 
the input data. In this study, three ML algorithms 
were used: PCA, FAMD, and RF.

PCA was chosen since it allows identifying rela-
tionships among numerical variables, and in our 
study, we have several variables of this type, like 
age, BW, and the levels of several drugs. PCA has 
several advantages since it is easy to compute 
method, it can handle large amount of data (high-
dimensional), and can speed up other ML tech-
niques. Although PCA is a rather powerful 
technique, it has the limitation of being able to 
analyze only numerical characteristics. For this 
reason, FAMD was further used since it allows 
the concomitant investigation of numerical, ordi-
nal, and categorical data. Thus, the use of FAMD 
allowed us to further validate the PCA findings 
and extend them using additional variables like 
gender, epileptic status, etc. The third approach, 
RF, was selected because it can be used as a clas-
sification technique, using both numerical and 
dummy variables. Thus, RF allows finding pre-
dictive models for a child’s having seizures or not. 
Also, RF modeling allows quantifying the contri-
bution of all other characteristics (e.g. drug levels, 
gender, age, BW) on the response variable, which 
in our case was the existence of seizures or not. 
Thus, the use of these three ML methods gave us 
the ability to exploit as much as possible of the 
information offered by the collected dataset. The 
entire ML work was done by writing the appro-
priate codes in Python v. 3.10.8. 

PCA. PCA is a statistical process for summarizing 
the information content of huge data tables using 

a smaller collection of ‘summary indices’ that may 
be more easily viewed and examined. PCA seeks 
lines, planes, and hyperplanes in K-dimensional 
space that best reflect the data in terms of least 
squares. A least squares approximation of a set of 
data points is a line or plane that maximizes the 
variance of the coordinates on the line or plane. 
The dataset is ready for computation of the first 
summary index, the first principal component 
(PC), after mean-centering and scaling to unit 
variance. In K-dimensional variable space, the 
second PC is represented by an orthogonal line to 
the first PC. This line also crosses through the 
average point, improving the X-data approxima-
tion as much as feasible. The coordinate values of 
the observations on this plane are referred to as 
scores, and so visualizing such a projected con-
figuration is referred to as a score plot. The pri-
mary component loadings express the orientation 
of the model plane in the K-dimensional variable 
space geometrically. The cosine of the angles a1, 
a2, and a3 gives the direction of PC1 in reference 
to the original variables. These numbers represent 
how the initial variables x1, x2, and x3 ‘load’ (or 
contribute to) PC1. As a result, they are referred 
to as loadings. The ‘biplot’ is the standard method 
for examining the loadings and scores together.

The choice of the number of components was 
based on a scree plot. The primary goal of a scree 
plot is to illustrate the results of the component 
analysis and to locate the apparent change in 
slope (the elbow). In a scatter plot, the eigenvalue 
is shown against the PCs. The proportion of vari-
ance explained by a component is calculated by 
dividing its eigenvalue by the total of eigenvalues. 
The first component typically explains a signifi-
cant percentage of the variability, the successive 
components explain a moderate portion, and the 
final components explain only a small portion of 
the total variability. The adequacy of a PCA 
model is reflected in the total variability explained 
by the finally selected principal components as 
well as from a visual inspection of the biplot.

The PCA analysis in this study was performed 
with Python v.3.10.8. To create statistical graphs, 
the package ‘matplotlib’ was utilized, and the 
PCA analysis was implemented using the libraries 
‘seaborn’, ‘sklearn’, and ‘bioinfokit’.

FAMD. FAMD is a technique for analyzing 
numerical and categorical variables that combines 
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I Damnjanović, N Tsyplakova et al.

journals.sagepub.com/home/taw 5

PCA with multiple correspondence analyses 
(MCA). The utilization of both quantitative and 
qualitative variables is referred to as ‘mixed’. 
FAMD functions roughly as a PCA analysis for 
quantitative variables and as an MCA for qualita-
tive variables. FAMD analyzes data using a com-
bination of PCA and MCA algorithms. FAMD 
produces a lower-dimensional space by taking 
into account both continuous and categorical 
data. The results can be summarized in a biplot, 
like in PCA, as previously described. The valida-
tion of an FAMD model is performed similar to 
that of PCA models, namely, through biplot 
observation, the construction of a scree plot, and 
the assessment of the total variability explained by 
the selected principal components.

The FAMD code was written in Python v.3.10.8 
using, among others, the libraries ‘pandas’, 
‘numpy’, ‘sklearn’, ‘matplotlib’, ‘kneed’, and 
‘tqdm’.

Random forest. A RF is made up of a huge 
number of independent decision trees that work 
together as an ensemble. Each individual tree in 
the RF produces a class prediction, and the class 
with the most votes becomes the prediction of 
our model. It is a usual practice to partition the 
original dataset into two pieces, ‘train’ and ‘test’, 
to make the model more robust. The training 
dataset is used to train the model, and the test 
dataset is used to assess the model’s perfor-
mance. The confusion matrix can be used to 
evaluate the performance of a model in a classi-
fication problem (i.e. where the target variable is 
categorical). When using RF, it is also possible 
to examine the feature importance to see how 
each feature contributes to the prediction of the 
target variable. In this study, the RF analysis 
was applied to predict epileptic seizures based 
on the remaining characteristics of the children, 
such as age, BW, and drug levels. The response 
variable was set to either 0 (no seizures) or 1 (at 
least one epileptic seizure during the observa-
tion period).

Before training, the hyper-parameters were 
established for RF implementation. In general, 
hyper-parameter tuning was done through trial 
and error. The number of decision trees in the 
forest and the number of classes into which the 
response variable was classified are examples of 

hyper-parameters. The Gini impurity was the 
default criterion (loss function) used to assess 
model classification. It should be noted that 
numerous settings were tested, but the ones that 
were ultimately selected are those listed above. 
The dataset was split into training and test sets, 
with the latter accounting for 33% of the data 
(the remaining 67% being from the training 
set). Following the split, the model was trained 
on the training set before making predictions on 
the test set. The RF code was written in Python 
v.3.10.8 using the libraries ‘sklearn’, ‘matplot-
lib’, ‘kneed’, ‘tqdm’, ‘math’, and ‘seaborn’, 
among others.

Results
During the investigation period, we did not record 
exclusions from the study because there were no 
signs of serious side effects. Absolute numbers are 
used to represent descriptive data, demographic 
information, and pharmacotherapy characteris-
tics of respondents: mean values, standard devia-
tions, center (median) values, and interquartile 
difference (Table 1). The median age was 
10.9 years (interquartile range, 11 years), with 
girls accounting for 56.3% (N = 40) and boys 
contributing for the remaining 43.7% (N = 31). 
The median BW was 37.1 kg (interquartile range: 
21 kg). Table 1 also shows the pharmacotherapy 
characteristics of the children participating in the 
study. All patients were on dual antiepileptic ther-
apy, which included the following therapeutic 
regimens and modalities: VA/LTG, VA/LEV, and 
LTG/LEV. A total of 59.1% of children received 
the combination of VA and LTG (45.2% boys 
and 54.8% girls). The therapeutic regimen of VA/
LEV was administered to 28.2% of children 
(40.0% boys and 60.0% girls). Finally, 12.7% of 
children received the LTG/LEV combination 
(44.4% boys and 55.6% girls). In the conducted 
study, it was observed that 93.55% VA, 86.27% 
LTG, and 68.97% LEV measured concentrations 
during combined antiepileptic therapy were in the 
reference range. The highest number of concen-
trations below the reference range was recorded 
in the group of patients who used LEV as a part 
of combined therapy, 27.59% (Supplemental 
Figure S1). The factors that influence the phar-
macokinetic variability of the selected AEDs and 
are thought to contribute to concentrations out-
side the therapeutic range were also studied.
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Population pharmacokinetics
The pharmacokinetics of LEV, performed in 
Monolix™ 2021R2, was best explained by a one-
compartment model with first-order oral absorp-
tion and elimination. Table 2 displays the 
pharmacokinetic parameter estimates, as well as 
their RSE (%) for each parameter in the final best 
model. Given that the collected LEV steady-state 
trough plasma concentration data did not provide 
information about the extent and rate of absorp-
tion processes, the absorption rate (Ka) was fixed 
at 2.6 h−1 according to the values in the existing 
literature. The constant error model produced 
the best residual variability performance of any 
residual error model studied. During stepwise 
covariate modeling, two statistically significant 
(p > 0.001) covariates were identified: BW on V 
and Cl).

The accuracy and reliability of the parameter 
estimates were reflected in the RSE (%) values 
(Table 2). The predictive performance and 
robustness of the model were confirmed by the 
relevant predicted versus observed concentra-
tion plot (Figure 1(a)) and the individual model 
predictions overlaid with the observations 
(Figure 2(a)).

Figure 1 shows the individual predicted versus 
observed concentration data for the final models 
of the LEV, LTG, and VA.

In this study, there was only one sampling point 
for each person’s steady-state trough plasma con-
centration. This meant that five doses had to be 
considered before the last dose reached steady 
state and is shown in the graph. Figure 2 shows 

Table 1. Demographic, pharmacotherapy characteristics, and epileptic condition of the children participating in the study.

A. Demographics

Characteristic Value

Gender

 Boys 31 (43.7%)

 Girls 40 (56.3%)

Age (years)

 Mean 10.9

 Median 11

 Interquartile range 7

Body weight (kg)

 Mean 37.1

 Median 35

 Interquartile range 21

B. Pharmacotherapy and epileptic condition

Therapeutic regimen Number (%) Male (%) Female (%) Without 
epileptic seizure

With epileptic 
seizure

VA/LTG 42 (59.16) 19 (45.24) 23 (54.76) 37 (88.1) 5 (11.9)

VA/LEV 20 (28.17) 8 (40) 12 (60) 14 (70) 6 (30)

LTG/LEV 9 (12.67) 4 (44.44) 5 (55.56) 5 (55.6) 4 (44.4)

LEV, levetiracetam; LTG, lamotrigine; VA, valproic acid.
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Table 2. Population parameters of the final pharmacokinetic model of the three antiepileptic drugs of the 
study: (a) levetiracetam, (b) lamotrigine, and (c) valproic acid.

A. Levetiracetam

 Parameter SE RSE (%) p Value

Fixed effects

 Ka 2.6 – –  

 V 25.01 5.65 22.6  

 beta_V_logBW 1 – – <0.001

 Cl 1.51 0.27 18.1  

 beta_Cl_logBW 0.75 – – <0.001

Between-subject variabilities

 omega_V 0.84 0.16 19.1  

 omega_Cl 0.59 0.10 17.2  

Correlations

 corr_V_Cl 0.86 0.18 21.4  

Residual error parameters

 a 3.82 0.96 25.0  

B. Lamotrigine

 Parameter SE RSE (%) p-value

Fixed effects

 Ka 1.57 – –  

 V 5.15 1.18 22.9  

 beta_V_logBW 2.83 0.52 18.4 <0.001

 Cl 0.15 0.02 13.3  

 beta_Cl_DailyDose 0.0056 0.0007 13.0 <0.001

 beta_Cl_Regimen –0.61 –0.13 22.2 <0.001

Between-subject variabilities

 omega_V 0.32 0.07 23.4  

 omega_Cl 0.28 0.07 22.7  

 Residual error parameters

 b 0.15 0.03 19.8  

(Continued)
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C. Valproic acid

 Parameter SE RSE(%) p-Value

Fixed effects

 Ka 1.68  

 V 15.61 4.84 31.0  

 beta_V_Age 0.07 0.016 23.3 0.032

 beta_V_logBW 1 – – <0.001

 Cl 0.12 0.013 10.4  

 beta_Cl_VA 0.0012 0.0001 9.7 <0.001

 Between-subject variabilities

 omega_V 0.33 0.081 24.5  

 omega_Cl 0.089 0.024 26.7  

Residual error parameters

 b 0.14 0.037 27.1  

a, the constant component of the residual error model; b, the proportional component of the residual error model; 
beta_Cl_DailyDose, factor for the relationship between Cl and lamotrigine daily dose; beta_Cl_logBW, allometric 
exponent for the relationship between body weight and Cl; beta_Cl_Regimen, factor for the relationship between Cl and 
therapeutic regimen (whether existence of valproic acid); beta_V_Age, factor for the relationship between age and volume 
of distribution; beta_V_logBW, allometric exponent for the relationship between body weight and V; BW, body weight; Cl, 
clearance; corr_V_Cl, correlation coefficient between V and Cl; F, bioavailability fraction; omega_Cl, between-subject 
variability for Cl; omega_V, between-subject variability for V; V, volume of distribution.

Table 2. (Continued)

the individual fittings to the experimental concen-
tration–time data of the three analyzed AEDs.

A one-compartment model with first-order 
absorption and elimination kinetics best charac-
terized the kinetics of LTG (Table 2). Given that 
the gathered LTG steady-state trough plasma 
concentration data did not give information 
regarding the extent and rate of absorption pro-
cesses, the absorption rate was set at 1.57 h−1 
based on literature values. The residual variabil-
ity was estimated using a proportional error 
model. Three statistically significant (p < 0.001) 
covariates were identified during the stepwise 
covariate modeling: BW on apparent V (using a 
weight-centered individual model), daily dose on 
apparent Cl, and coadministration of LTG and 
VA on Cl (denoted as ‘Regimen’ in Table 2). 
The relevant predicted versus observed concen-
tration plot (Figure 1(b)) and the individual 
model predictions overlaid with the observations 

proved the model’s predictive ability and resil-
ience (Figure 2(b)). Figure 1(b) shows that there 
are no outliers and that the distribution of the 
observations is relatively symmetrical around the 
appropriate projected values. The indicative fits 
(Figure 2(b)) from randomly selected people 
demonstrate the model’s capacity to effectively 
anticipate LTG trough levels. As in the case of 
LEV, since there was only one sampling point for 
each child’s steady-state trough plasma levels, 
five LTG doses were simulated before the last 
dose achieved steady state and is depicted in the 
graph.

A one-compartment model with first-order 
absorption and elimination kinetics best charac-
terized the VA kinetics (Table 2). Given that the 
VA steady-state trough plasma concentration 
data collected did not provide information about 
the amount and pace of absorption processes, Ka 
was set at 1.68 h−1 based on the literature Ka 
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Figure 1. Individual predicted versus observed concentration data for the models of the three drugs: (a) 
levetiracetam, (b) lamotrigine, and (c) valproic acid.

values. The residual variability was estimated 
using a proportional error model. There were 
three statistically significant covariates found. 
BW on apparent V (with an allometric exponent 
of 0.75; p < 0.001) and daily dose on Cl 
(p < 0.001) were the most influential factors. Age 
was also found to have a significant positive 
impact on distribution V (p-value = 0.032). The 
predictive performance of the model, as well as its 
robustness, was validated by the relevant plot of 
predicted concentration versus observed con-
centration (Figure 1(c)), as well as by the indi-
vidual model predictions that were superimposed 
with the observations (Figure 2(c)).

Machine learning
PCA. PCA was carried out to extract information 
about the children (such as their ages and BWs) 
and investigate how these factors are related to 
LEV, LTG, and VA levels (Figure 3).

In the plane formed by the two PCs, the observa-
tions (study participants) are represented as dots, 
while the lines represent the vectors of the varia-
bles. These variables include age, BW, leveti-
racetam concentration (Lev_Conc), lamotrigine 
concentration (LTG_Conc), and valproic acid 
concentration (VA_Conc). Scree plots were 
developed in order to determine the most appro-
priate number of primary components (plots are 
not shown due to space limitations). The first two 
PCs account for 76.3% of the total variance in the 
data, with the first component explaining 47.2% 
and the second component accounting for 29.1%, 
respectively. An examination of Figure 3 reveals 
that age and BW are located in close proximity to 
one another on the left side of the plot, not far 
from the second PC. While the vector represent-
ing LEV concentration is located in the upper 
right-hand corner of the plane, the vector repre-
senting VA concentration is somewhat near the 
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Figure 2. Individual fittings to the experimental concentration–time data of the three drugs: (a) levetiracetam, 
(b) lamotrigine, and (c) valproic acid. Due to space limitations, three random subjects were chosen for each 
drug.

negative side of the second PC. The only distinc-
tion is that the vector of LTG concentration.

These findings indicate that LEV concentration is 
negatively affected by age and BW, a finding that 
is in agreement with those from the PopPK. It is 
observed in Table 2 that the apparent V and Cl 
increase with BW. Thus, increases in BW would 
lead to higher V and Cl values, which, in turn, 
result in lower LEV values. This conclusion also 
derives from the PCA analysis (Figure 3), where 
the BW and LEV concentrations lie on opposite 
sides of the plot in terms of the first component. 
The loadings for BW and Lev_Conc are −0.54 

and 0.38, respectively. Since age is very closely 
related to BW, the same effect on LEV levels is 
also expected with age.

For LTG, the PCA findings are in line with those 
derived from the PopPK. BW and LTG_Conc 
were found to lie on different parts of the scale 
with respect to the second PC (Figure 3), imply-
ing a negative contribution of BW to LTG levels. 
The finding that therapeutic regimen influences 
LTG Cl can also be depicted from the PCA, since 
a slight positive relationship can be seen between 
VA and LTG levels, while the LEV concentra-
tions seem to negatively affect LTG levels. In the 
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Figure 3. PCA of the plasma levels of the three antiepileptic drugs, age, and BW. (a) Biplot of the two PC 
showing the individual scores and the loadings (blue lines) of the pharmacokinetic parameters. (b) Loading 
values for the two initial PCs.
Lev_Conc, levetiracetam concentration; LTG_Conc, lamotrigine concentration; PC, principal components; PCA, principal 
component analysis; VA_Conc, valproic acid concentration.

case of VA, the negative value of ‘beta_V_Age’ 
(i.e. equal to −0.07, Table 2) can be observed as 
the placement of the VA concentration and age 
vectors in opposite directions in terms of the sec-
ond PC.

It should be noted that PCA was also applied to a 
dataset where the daily doses of the three drugs 
were included as variables. The results of this 
PCA analysis are shown in Supplemental Figure 
S2. Other characteristics, like the daily dose of 
each drug, could not be assessed using ML tech-
niques due to the limited sample size.

FAMD. Figure 4 presents the results after apply-
ing FAMD which allowed us to verify the find-
ings outlined above in the case of Figure 3 and 
allowed us to also explore the impact of other 
characteristics, like the occurrence of an epileptic 
seizure and gender.

Figure 4 depicts the completed FAMD model’s 
biplot, score, and loading plot. The total percent-
age of the variability described by the first two 
main components was 72.8% (41.9% for the first 
and 30.9% for the second). A visual examination 
of the FAMD data reveals that the common fea-
tures are compatible with PCA (see loading 
matrix results in Supplemental Table S1). Age 
and BW, for example, are directly opposite each 
other on the left side of the figure (Supplemental 

Table S1). The arrangement of the LEV, LTG, 
and VA vectors is very similar to that observed in 
the PCA. The loading scores for the two gender 
values (i.e. either boy or girl) are both very close 
to zero (0.053 for boys and −0.053 for girls), 
implying that gender has minimal or no influence 
on the blood levels of any of the three drugs. In 
the same context, the FAMD plot (Figure 4) 
reveals that there is no association between gen-
der and epileptic activity. Besides, the fact that 
the LEV concentration and the epileptic activity 
(Epil_1.0) vectors are heading in the same direc-
tion may imply that higher LEV concentrations 
are associated with epileptic activity. Also, the 
FAMD plot shows that high levels of LTG and 
VA are more likely to be linked to low epileptic 
activity.

Random forest. The RF technique was used to 
identify the predictors of epileptic seizures in 
children on antiepileptic therapy. To prevent bias 
during the creation of the RF model, it was 
important to apply RF to datasets that were bal-
anced in terms of the number of children who 
had and did not have epileptic seizures. Thus, a 
randomly chosen subset of 30 children was 
selected, consisting of 15 children with epileptic 
seizures and 15 without. The mean age of the 
participants in this dataset was 10.1 years, and 
the mean BW was 33.7 kg. The ratio of girls to 
boys was 9:6 for both groups.
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Figure 4. FAMD for the plasma levels of the three antiepileptic drugs, age, BW, existence of epileptic seizures, 
and gender.
BW, body weight; Epil_0.0, no seizures; Epil_1.0, seizures; FAMD, factor analysis of mixed data; Gender_1.0, boy; 
Gender_2.0, girl; Lev_Conc, levetiracetam concentration; LTG_Conc, lamotrigine concentration; VA_Conc, valproic acid 
concentration.

Figure 5(a) shows the importance of the varia-
bles included in the analysis, ordered from high-
est to lowest contribution to the occurrence of 
an epileptic seizure. The highest contribution 
comes from LTG levels (29.1%), followed by 
LEV concentration (22.0%). Age, BW, and VA 
levels all played a smaller role in the epileptic 
condition, accounting for 15.5%, 14.8%, and 
14.5%, respectively. Gender appeared to have 
no effect on the response since the contribution 
of either being a girl (Gender_2.0) or boy 
(Gender_1.0) was in the range of 1–2%. A con-
fusion matrix was designed to express how many 
of a RF classifier’s predictions were correct and 
when they were incorrect (i.e. when the RF clas-
sifier became ‘confused’; Figure 5(b)). The 
overall accuracy of the RF model was 80.0% 
(75.0% for true negatives and 83.3% for true 
positives).

The classification performance of the RF model 
was also assessed. Based on the classification 
values shown in Figure 5, the performance cri-
teria were as follows: sensitivity (75.0%), speci-
ficity (83.3%), precision (81.8%), negative 
predictive value (76.9%), and model accuracy 
(79.2%).

Discussion
From a clinical standpoint, establishing an ade-
quate therapeutic regimen capable of achieving 
the fundamental goals of epilepsy treatment, as 
reflected in optimal control and reduction of the 
number of seizures, with the least risk of adverse 
effects,11–13 is a real challenge. While there are no 
specific rules or criteria for selecting AEDs for 
combination therapy, there is a need for a tool to 
assist physicians in clinical practice.

The choice of combined therapy applied in the 
conducted research is in accordance with the 
literature data and presented by the following 
therapeutic modalities: VA/LTG (59.16%), 
VA/LEV (28.17%), and LTG/LEV (12.67%; 
Table 1).13,14

The TDM of AEDs is an important step in the 
cascade of decisions related to the optimization of 
epilepsy therapy, relying on the significant phar-
macokinetic variability of these drugs, which is 
particularly pronounced in the pediatric popula-
tion.15 We found that 93.55% of the VA, 86.27% 
of the LTG, and 68.97% of the LEV measured 
concentrations were within the reference range 
(administered doses of VA, LTG, and LEV were 
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I Damnjanović, N Tsyplakova et al.

journals.sagepub.com/home/taw 13

in accordance with leading recommendations, 
with no seizure recorded during the study) 
(Supplemental Figure S1).16 More than 30% of 
LEV concentrations were outside the therapeutic 
range (12–46 mg/L), indicating the importance of 
clinical pharmacokinetic considerations.17 The 
most prominent result, in terms of concentrations 
that are within the reference range, was recorded 
for VA (93.55%), which was the most commonly 
used antiepileptic drug, and TDM performed 
routinely, while clinical practice did not recom-
mend routine monitoring for LTG and LEV.

Results from the PopPK model for LEV obtained 
during stepwise covariate modeling showed BW 
as statistically significant on V and Cl (Table 2). 
Previously published PopPK modeling results for 
LEV in the pediatric population emphasized BW 
as an important covariate, which is in accordance 
with our findings (Supplemental Table S2).18–20 
According to this, our results support the use of a 
weight-based LEV dosing regimen and provide a 
basis for a recommended pediatric dosage regi-
men. Toublanc et al. findings confirmed BW, 
dosage regimen, and AED inductors, but they 
also highlighted age.19 They showed that children 
under 10 years have a 30–40% higher Cl, there-
fore requiring higher doses to achieve optimal 
concentrations. Their results indicated a lower 
effect of BW on CL than on V, resulting in a 
longer half-life among patients with greater BW.19 
This can probably be explained by the natural 

maturation of the renal function during child-
hood.20 Johannessen Landmark et al. found that 
age and comedication had an effect on AEDs.21 
The impact of VA and LTG coadministration on 
LEV levels was further investigated; however, no 
statistically significant findings were observed.

For LTG published PopPK models in the pediat-
ric population confirmed the influence of VA on 
LTG pharmacokinetic variability (Supplemental 
Table S3).22–25 In our model, the covariates for Cl 
were BW and VA that emphasize an individual 
approach to patients on combined AEDs therapy. 
The pharmacokinetics of LTG is complex and 
varies significantly among individuals, and they 
can be affected by various factors, including age, 
body BW, concomitant medication, or genetic 
variations.26 Lamotrigine pharmacokinetics in 
children is different from adults due to the lower 
expression and activity of UDP-glucuronosyl 
transferase (UGT) and developmental growth.23 
Furthermore, coadministration of AEDs influ-
ences LTG pharmacokinetics variability in chil-
dren also (VA inhibits UGT). Our results are 
consistent with results that showed covariates 
related to LTG Cl were BW and coadministra-
tion of inhibitors.25,27 A significant effect of VA on 
lamotrigine clearance was identified (see Table 
2). It was found that the coadministration of VA, 
which is an inhibitor, decreases LTG clearance. 
The latter is in line with literature findings show-
ing that VA inhibits LTG clearance.27 Patients 

Figure 5. Variable importance scores (a) and confusion matrix (b), from the RF analysis, predicting the 
existence or not of epileptic activity. The features parameters were levetiracetam concentration (Lev_Conc), 
valproic acid concentration (VA_Conc), lamotrigine concentration (LTG_Conc), gender (1.0 for boys, 2.0 or 
girls), and BW.
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who have undergone LTG/VA treatment with 
LTG concentrations above the therapeutic range 
(according to guidelines, the reference range is 
3–15 mg/ml) require additional clinical monitor-
ing with a focus on the occurrence of side effects 
and subsequent reduction of LTG dose.28

Similarly, we found BW and age as covariates in 
the population V model for VA (Table 2). Any 
influence from the coadministration of the other 
two drugs, LEV and LTG, was not found to be 
statistically significant. Gender, carbamazepine 
dosage, BW, UGT, and cytochrome P450 geno-
type are all factors that have been studied.22 
Considering the large number of data available 
for model development, special attention needs 
to be paid to pharmacokinetic changes according 
to age-related physiological maturation in pediat-
ric patients.29–31 In fact, the parameter estimates 
for the first-order absorption rate constant, 
apparent Cl, and V were very close to those 
reported in other PopPK studies, such as those 
performed for LEV, LTG, VA (Supplemental 
Tables S2–S4). The BW has been well known as 
an important covariate in drug dosing regimens 
for pediatric patients. Ding et al. imply that both 
age and BW determine drug management simul-
taneously in children younger than 2 years, 
whereas BW is the most important factor in older 
children.29

It should be mentioned that all population phar-
macokinetic models (for LEV, LTG, and VA) 
were found to adequately describe the experi-
mental data (Supplemental Figures 1 and 2). 
Additional validation plots are shown in 
Supplemental Figures S3–S5. Also, the combina-
tion use of all three drugs (LEV, LTG, and VA) 
was explored in this study by incorporating as a 
covariate the type of regimen (e.g. monotherapy, 
two-drug therapy, or three-drug therapy). 
However, only in the case of LTG, a significant 
effect of VA on clearance was observed.

In epilepsy, ML has been used for seizure detec-
tion, detection of epileptogenic lesions, differ-
entiating epileptic seizures, and outcome 
prediction for medical and surgical manage-
ment.32–36 In this study, three ML algorithms 
(PCA, FAMD, and RF) have been carefully 
evaluated to uncover any underlying relation-
ships among the children characteristics and 
pharmacotherapy.

PCA was applied to identify possible associations 
among the model parameters.9,37 PCA results 
revealed that LTG levels were unaffected by VA 
concentration. A small negative association was 
observed between LEV and LTG or VA concen-
tration values. Also, an increase in LTG concen-
trations was observed with age (Figure 3). 
Besides, there appears to be no association 
between VA levels and age. The opposite perfor-
mance is observed for LEV, where an increase in 
age is accompanied by a decrease in LEV levels. 
Published results by Zhang et al. have proven that 
the efficacy of LEV on newly diagnosed patients 
with epilepsy could be predicted using a support 
vector machine model.38

Aimed to possible influence of gender, concomi-
tant medications, and epileptic activity, a factor 
analysis of mixed data was performed in this 
study.39 Results of FAMD showed that gender has 
no influence on the levels of any of the three drugs 
and is not associated with epileptic activity (Figure 
4). The epileptic activity vectors indicated that 
high LEV levels increase the chance of epileptic 
activity (3.45% of LEV concentrations were above 
the therapeutic range). This finding can seem con-
tradictory at first, but it may refer to the situation 
where higher LEV doses are needed to control 
patients with non-responding epileptic seizures. 
Also, FAMD showed that high LTG and/or VA 
are more associated with low epileptic activity. 
There are a small number of studies that have used 
ML for LTG or AEDs combinations; yet, the 
results of our FAMD analysis may confirm the 
potential importance of this analytical approach to 
pediatric patients’ dose adjustment.40

RF made it possible to rank the importance of the 
characteristics and made a ‘decision tree’ stronger 
to help with clinical procedures.37,41 The main 
factor affecting antiepileptic activity was high 
AEDs levels, followed by age, BW, and VA levels. 
It appears that LTG concentrations are inde-
pendent of VA levels. Our results showed a small 
negative association between LEV levels and 
LTG or VA concentrations (Figure 5). According 
to our findings, therapeutic outcomes were not 
influenced by gender. Delen et al. 42 demon-
strated promising results in a study aimed at pre-
dicting at-risk patients using ML techniques. 
Besides, future research is necessary and should 
include a larger number of patients, external vali-
dation, standardization of reporting, and a 

https://journals.sagepub.com/home/taw
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prospective evaluation of the ML model on 
patient outcomes.

This study has several limitations. Initially, the 
sample size is relatively small to allow identifying 
relationships among patients’ characteristics and 
the pharmacokinetic parameters. Possibly, addi-
tional influence from covariates could be identi-
fied if the sample size was larger. In addition, there 
was only a single measurement (trough levels) of 
the drug levels for each patient. As a result, there 
may be ambiguity about the nature of the observed 
variability, namely, whether it corresponds to 
inter-individual or intra-individual variability. If 
more measurement points were available, it would 
allow to describe more precisely and more easily 
the pharmacokinetic parameter estimates. Also, 
more sampling points and a larger sample size 
would possibly allow identifying the impact of 
more covariates on the pharmacokinetic estimates. 
However, in regular antiepileptic TDM, it is com-
monly assumed that the antiepileptic drug con-
centrations measured will be those at minimal 
steady-state, that is, trough concentrations. The 
latter becomes even more important in the case of 
children and adolescents, as in our study, where 
there are additional ethical and practical reasons 
prohibiting the research from having more rich 
sampling schedules.

In conclusion, the application of popPK and 
ML models may be useful to improve seizure 
control and risk management. Reliance on the 
RF model is a compelling vision that shows high 
prediction ability for all cases. The main factor 
that can affect antiepileptic activity in children 
is AED levels, followed by BW, while gender 
appears to be of minor importance. According 
to our study, children’s age is positively associ-
ated with LTG levels, negatively with LEV and 
without influence from VA. More prospective, 
multicenter studies with large sample sizes 
should be conducted to develop certain predic-
tive models, that can be widely accepted in the 
field of combined AEDs treatment to improve 
epilepsy management in vulnerable pediatric 
populations.
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Tatjana Tošić: Data curation; Investigation.
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