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Background
Most living organisms exhibit circadian rhythms, which are 
internal processes that drive biochemical and behavioral 
changes approximately every 24 hours.1 The rhythmicity of 
these processes is driven ultimately by rhythmically expressed 
transcripts, which are regulated by the molecular clock machin-
ery.2-8 Genetic or environmental disruptions can lead to altera-
tions in the rhythmicity of these transcripts, ultimately 
impacting downstream circadian outputs, including metabolic 
processes and behavior.9-14

To detect differences in rhythms between groups or condi-
tions in transcriptomic data sets, different approaches have 
been used. One option is Venn diagram analysis (VDA). In 
this approach, transcripts are independently categorized as 
either rhythmic or nonrhythmic under each condition using a 
rhythmicity detection algorithm with an arbitrary statistical 
threshold.15-19 Subsequently, transcripts that are categorized 
differently between conditions are recognized as differentially 
rhythmic. This approach offers a straightforward means of dis-
tinguishing transcripts that are rhythmic under 1 condition but 
not under the other. However, it presents several challenges: (1) 
the analysis is indirect; no statistical test is performed to reject 
the null hypothesis that there are no differences in rhythmicity 
between conditions, (2) this approach can only identify tran-
scripts that are rhythmic in 1 condition but not in the other 
and does not detect quantitative changes in their rhythms (eg, 

changes in amplitude or phase), and (3) this approach generally 
overestimates the number of differentially rhythmic transcripts 
because of the uncontrolled false discoveries from 2 individual 
rhythmicity tests.20-22 In fact, when artificial data with bench-
mark transcripts were used, VDA failed to identify these tran-
scripts as differentially rhythmic with high precision. The 
precision-recall performance of VDA did not improve with 
changes to the false discovery rate (FDR) or the amplitude 
thresholds.20

More recently, several algorithms have been developed to 
statistically compare rhythmicity between 2 or more condi-
tions. Even though these algorithms share the same goal, their 
approaches to detecting rhythmic transcripts and differentially 
rhythmic transcripts are different. In addition, the require-
ments for input data sets and the output information are also 
often different. Here, we focus on 7 of these algorithms pub-
lished in or before 2022: DODR,21 LimoRhyde/
LimoRhyde2,23,24 CircaCompare,25 compareRhythms,20 diff-
Circadian,22 dryR,26 and RepeatedCircadian,27 and perform a 
systematic comparison of their characteristics and performance. 
We highlight 3 features of these algorithms: (1) the require-
ments for input data, (2) the number of rhythmic and differen-
tially rhythmic transcripts detected, and (3) the differences in 
their outputs. We also analyzed the same RNA-seq data set 
with each approach to directly compare their performance.28 
We uncovered both notable differences and similarities across 
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these algorithms and our study will help guide future users in 
choosing the algorithm that best suits both the user’s data set 
and the desired output.

Materials and Methods
All analyses were performed in R (version 4.3.1), and all graphs 
were created with the ggplot2 (version 3.4.2), upsetR (version 
1.4.0), and corrplot (version 0.92) R packages. Pearson correla-
tion analysis was performed using the cor() function from 
Hmisc package (version 5.1-0). The circular version of Pearson 
correlation analysis was performed using the cor.circular() 
function from the circular package (version 0.4-95). The exact 
same settings were used for each algorithm throughout the 
paper, including MetaCycle, and a fixed period of 24 hours was 
used to detect both rhythmic and differentially rhythmic 
transcripts.

Input data set

The RNA-seq data set (GSE253826)28 was used for all analy-
ses. Reads were mapped to the mouse mm10 genome 
(GENECODE: GRCm38.p6.genome.fa) and transcripts per 
million (TPM) and reads per kilobase per million mapped 
(RPKM) were quantified with HOMER (V4.11.1)29 using the 
gencode.vM25.annotation.gtf with the option of con-
denseGenes. Transcripts with mean TPM < 0.25 (averaged 
across all time points and conditions) were removed from the 
analysis, resulting in a total of 11 313 transcripts. We assessed 
the rhythmicity of these 11 313 transcripts with LimoRhyde, 
diffCircadian, CircaCompare, and dryR using the RPKM data. 
Rhythmicity of RPKM data was independently assessed by 
MetaCycle (v 1.2.0), which was run using the following param-
eters: minper = 24, maxper = 24, and cycMethod = c(“ARS,” 
“JTK, “LS”). Transcripts with Benjamini-Hochberg-adjusted 
q-values (B.H. q) < 0.25 were considered rhythmic. 866 tran-
scripts that had B.H. q < 0.25 with MetaCycle in either condi-
tion were used as the input to identify differentially rhythmic 
transcripts in all 6 algorithms (DODR, LimoRhyde, 
CircaCompare, compareRhythms, diffCircadian, and dryR).

Differential rhythmicity algorithms

The DODR R package (version 0.99.2)21 was downloaded 
from https://cran.r-project.org/src/contrib/Archive/DODR/ 
and manually installed in R from the tar file, since this package 
is no longer available from CRAN. DODR was run with the 
RPKM data and used the following parameters: norm = TRUE, 
period = 24, and method = “robust.” The function p.adjust() 
from the stats R package with method = “BH” option was used 
to transform the P values into FDR-corrected q-values (B.H. 
q) using the Benjamini-Hochberg procedure.30,31

The LimoRhyde R package (version 1.0.1)23 was run using 
the RPKM data with period = 24. The rhythmic transcripts 
under the control condition were identified using the 

limorhyde() function followed by limma R package (version 
3.56.2)32,33 with the option of trend = TRUE for the function 
eBayes(), and the default options were used for other functions. 
The function p.adjust() from the stats R package with 
method = “BH” option was used to transform the P values into 
FDR corrected q-values (B.H. q) using the Benjamini–
Hochberg procedure.30 The LimoRhyde2 R package (version 
0.1.0)24 was run using the RPKM data with the option of 
period = 24, and sinusoid = TRUE for the function of getMod-
elFit(), and the default options were used for other functions. 
The peak-to-trough amplitude was divided by 2 to convert it 
into the peak-to-mesor amplitude.

The CircaCompare R package (version 0.1.1)25 was run 
using the RPKM data with the option of period = 24 and other 
default options. The output P values of amplitude and phase 
differences were converted into FDR corrected q-values (B.H. 
q) using the Benjamini-Hochberg procedure using the func-
tion p.adjust() from the stats R package with the method = “BH” 
option.30 Transcripts with either significantly different ampli-
tudes or phases were defined as differentially rhythmic. The 
circa_single() function was used to detect the rhythmicity of 
transcripts from the control condition.

The compareRhythms R package (version 0.99.3)20 was run 
using the RPKM data with the options of method = “mod_sel,” 
“just_classify = FALSE,” period = 24 and default parameters. 
Transcripts classified as having “gain,” “loss,” or “change” of 
rhythmicity were defined as differentially rhythmic. The peak-
to-trough amplitude was divided by 2 to convert it into the 
peak-to-mesor amplitude.

The diffCircadian R package (version 0.0.0)22 was run using 
the RPKM data with the options of period = 24, and 
method = “LR.” The function p.adjust() from the stats R pack-
age with method = “BH” option was used to transform the P 
values into FDR corrected q-values (B.H. q) using the 
Benjamini-Hochberg procedure.30

The dryR R package (version 1.0.0)26 was run with the 
RPKM data using the drylm() function with the parameter of 
period = 24. Transcripts whose best fitting model was either 2 
(rhythmic only in control), 3 (rhythmic only in Bmal1 knock-
down), or 5 (rhythmicity changed between the 2 conditions) 
were defined as differentially rhythmic. The peak-to-trough 
amplitude was divided by 2 to convert it into the peak-to-
mesor amplitude. The f_24() function with the parameter of 
period = 24 was applied to detect the rhythmicity of transcripts 
from the control condition.

Results
Characteristics of algorithms for detecting 
differential rhythmicity

We analyzed the 7 algorithms that are the focus of this study 
and summarized their characteristics in Table 1. We first com-
pared the input data requirements, as they differ in the types of 
data they can analyze (Table 1). Our focus centered on several 

https://cran.r-project.org/src/contrib/Archive/DODR
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critical characteristics including the algorithm’s ability to use 
untransformed count data (eg, read counts), deal with uneven 
sampling intervals, handle missing samples or missing values 
for individual transcripts, and fit nonsinusoidal rhythm pat-
terns. We also identified options to adjust the rhythm’s period 
and whether the algorithm required data with repeated meas-
urements. We found that LimoRhyde2, compareRhythms, and 
dryR can accept untransformed count data, while all the other 
algorithms require normalized data (eg, Reads Per Kilobase of 
transcript per Million mapped reads (RPKM), Counts per 
Million (CPM), or log-transformed expression values). All 
algorithms can accept data sets with uneven sampling intervals 
(ie, time points not evenly distributed) and missing 1 or more 
entire samples (eg, missing 1 or more replicas) or time points 
(eg, the data for specific time points are absent). Except for 
compareRhythms and diffCircadian, the algorithms also accept 
missing values for individual transcripts in individual samples 
(eg, 1 or more RNA expression data points can be blank or 
NA). Only LimoRhyde and LimoRhyde2 have the option to 
fit nonsinusoidal curves since these 2 algorithms have the 
option to fit both cosinor and periodic spline regression mod-
els. RepeatedCircadian is only compatible with data sets with 
repeated measurement experimental designs that have multiple 
measurements from the same sample over a time period (eg, 
measurement of blood pressure at different time points within 
a circadian cycle of the same individual), and not measure-
ments from different independent samples at each time point 
(eg, data sets from liver samples collected from different mice 
at different times).

We also compared the output from each algorithm (Table 
1). Most algorithms use hypothesis testing approach and pro-
vide P values based on the differences in the overall shape of 
the rhythms (DODR, LimoRhyde, compareRhythms except 
model selection option, diffCircadian, and RepeatedCircadian), 
or the difference in specific rhythm parameters, such as ampli-
tude and phase (CircaCompare and diffCircadian). Another 
approach uses model selection approach (compareRhythms 
with the model selection option and dryR) and compares how 
well models with different patterns of rhythmicity (no rhythms, 
same rhythms, different rhythms) fit the data. Then, it reports 
the model that best fits the data by using Bayesian Information 
Criterion (BIC) or Akaike Information Criterion (AIC) which 
indicates the degree of certainty that the selected model best 
fits the data. If the best model includes differences in rhythms, 
the transcript is defined as differentially rhythmic. The com-
pareRhythms package is a collection of separate algorithms, 
rather than a single approach, and includes options for both 
model selection and hypothesis testing approaches. Unlike 
other algorithms, LimoRhyde2 does not perform any statistical 
tests. Rather, it focuses on quantifying rhythm parameters and 
the magnitude of differences of the parameters between condi-
tions.34 Thus, this algorithm emphasizes biological relevance 
over statistical significance. In addition to their statistical test 

results, most algorithms also return calculated circadian param-
eters (amplitude and phase) for each condition, while 
LimoRhyde2 and CircaCompare additionally report calculated 
differences in parameters between the 2 conditions.

Testing algorithm performance with RNA-seq data

To compare these algorithms’ performance side-by-side, we 
first analyzed the same transcriptomic data set from mouse 
fibroblast NIH3 T3 cells.28 This data set consists of 2 condi-
tions, control and the knockdown of the core circadian clock 
gene, brain and muscle Arnt-like protein 1 (Bmal1 knock-
down). Bmal1 is one of the core circadian clock genes, and 
knockdown or knockout of Bmal1 dramatically reduces the 
number of rhythmic transcripts in various mouse tissues and 
cells.35,36 For each condition, samples were collected every 2 
hours throughout 1 circadian cycle (ie, 24 hours) after serum 
shock. To analyze these data sets, we selected the model selec-
tion option for compareRhythms to directly compare with 
dryR, which is another algorithm that uses the model selection 
approach. We did not include RepeatedCircadian in the down-
stream analysis, as it requires data with repeated measurement 
experimental design.

Comparison of the performance in detecting 
rhythmic transcripts

To compare the performance of each algorithm, we used a 
fixed period of 24 hours in all downstream analyses to ensure 
that the rhythmicity and differential rhythmicity detected by 
each algorithm would be comparable. However, all the algo-
rithms allow users to select the range of periods (Table 1). To 
detect differences in rhythmicity under different conditions, 
transcripts have to be rhythmic in at least 1 condition a pri-
ori. Four algorithms (LimoRhyde, CircaCompare, diffCirca-
dian, and dryR) perform a statistical test to define the 
rhythmicity of each transcript under each condition (Table 1: 
Basic info), however, the specifics of the statistical analyses 
are not fully described.22,23,25,26 The hypothesis testing 
approaches (“dodr,” “limma,” “voom,” “deseq2,” “edger,” and 
“cosinor”) report which genes are rhythmic under each con-
dition, although only “dodr” includes a P value for each con-
dition. For the model selection option, compareRhythms 
does not provide a separate rhythmicity test, although rhyth-
micity in each condition can be inferred from which model 
best fits the data. In contrast, DODR does not include a 
rhythmicity test, and it is recommended to use other pack-
ages, such as MetaCycle18 and RAIN,19 to preidentify rhyth-
mic transcripts.

We therefore compared the performance of the 4 algorithms 
that provide rhythmicity tests for individual conditions first. 
Using the control condition samples, we found that 
CircaCompare detected the highest number of rhythmic tran-
scripts, with 5474, 3630, and 1321 transcripts detected using 
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cutoff values of Benjamini-Hochberg-adjusted P-value (B.H. 
q) < 0.25, 0.15, and 0.05, respectively (Figure 1A). LimoRhyde 
detected the second highest number of rhythmic transcripts 
with the least stringent cutoff (B.H. q < 0.25), followed by dif-
fCircadian and dryR, all of which still detected over 2000 
rhythmic transcripts (Figure 1A). With the most stringent cut-
off (B.H. q < 0.05), 1902 transcripts were commonly detected 
as rhythmic by all 4 algorithms (Figure 1B, Table S1). As a 
reference, MetaCycle,18 another algorithm that detects rhyth-
micity, detected 794, 631, and 344 rhythmic transcripts with 
B.H. q cutoffs < 0.25, 0.15, and 0.05, respectively. The number 
of rhythmic transcripts detected by MetaCycle was lower than 
the number detected by the 4 algorithms from this study at all 
3 significance thresholds.

Comparison of algorithm performance in detecting 
differentially rhythmic transcripts

Next, we compared the performance of all the algorithms in 
detecting differentially rhythmic transcripts (except for 
LimoRhyde2 which does not perform any statistical tests). 
Since a transcript must be rhythmic in at least 1 condition as a 
prerequisite for testing for differential rhythmicity, and differ-
ent algorithms yielded different numbers of rhythmic tran-
scripts (Figure 1), we used the same set of rhythmic transcripts 
as an input to directly compare their performance. To this end, 
we preselected 866 transcripts that were detected as rhythmic 
(B.H. q < 0.25) by MetaCycle in either control or Bmal1 
knockdown cells (781 in control only, 73 in knockdown only, 
and 13 in both). To make comparisons as direct as possible, we 

Figure 1.  Rhythmic transcripts detected by CircaCompare, LimoRhyde, dryR, and diffCircadian in the control samples. A total of 11 313 transcripts (see 

Materials and Methods for more details) were tested for rhythmicity. Normalized (RPKM) data were used for CircaCompare, LimoRhyde, diffCircadian, 

and dryR. (A) Number of rhythmic transcripts with B.H. q cutoffs of 0.05, 0.15, and 0.25. (B) Overlap in transcripts identified as rhythmic by the 4 

algorithms. Gray bars on the left represent the number of rhythmic transcripts detected by each algorithm. Dark red bars represent the number of 

transcripts commonly identified as rhythmic by the algorithms connected by the blue line, but not identified as rhythmic by the other algorithms. 

Transcripts were considered rhythmic if B.H. q < 0.25.

also used RPKM values, specified a 24-hour period, and fit 
sinusoidal curves for all the algorithms.

Among the algorithms using the hypothesis testing 
approach and testing for changes in overall rhythmicity, we 
found that DODR identified more differentially rhythmic 
transcripts between control and Bmal1 knockdown cells than 
LimoRhyde and diffCircadian with B.H. q cutoffs < 0.25 and 
0.15 (Figure 2A). However, LimoRhyde and diffCircadian 
detected slightly more transcripts than DODR with the most 
stringent cutoff at B.H. q < 0.05 (Figure 2A). For the model 
selection approaches that also assess the changes in overall 
rhythmicity, the recommended BICW threshold to compare 2 
conditions is 0.6.20,26 With BICW cutoffs of 0.6, 0.75, and 0.9, 
dryR identified 354, 231, and 103 transcripts, while compare-
Rhythms identified 338, 224, and 100 transcripts that are dif-
ferentially rhythmic (Figure 2B). For CircaCompare, we 
defined differentially rhythmic transcripts as those that show 
statistically significant differences (B.H. q < 0.25, 0.15, or 
0.05) in either amplitude or phase. Under this condition, 
CircaCompare identified 177, 144, and 79 differentially rhyth-
mic transcripts, respectively (Figure 2C). Because of differences 
in methodology and the necessity of choosing arbitrary cutoff 
values to define rhythmicity differences, the results cannot be 
directly compared among these 3 groups of algorithms.

Overlaps of differentially rhythmic transcripts

Next, we analyzed how many transcripts were commonly 
detected as differentially rhythmic across different algorithms. 
Because they perform statistical tests differently, we first 
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focused on the overlaps among the algorithms that are compa-
rable with each other (Figure 2). Among the algorithms that 
use hypothesis testing approach and detect overall differential 
rhythmicity (DODR, LimoRhyde, and diffCircadian), a total 
of 209 transcripts were commonly detected as differentially 
rhythmic in all 3 when using B.H. q < 0.25 (Figure 3A). More 
transcripts overlapped between DODR and LimoRhyde, com-
pared with those between DODR and diffCircadian or 
LimoRhyde and diffCircadian (Figure 3A). We also compared 
the algorithms based on the model selection approach (dryR 
and compareRhythms) with BICW > 0.6 as a cutoff. We found 
that 338 differentially rhythmic transcripts identified by com-
pareRhythms were also detected by dryR, while dryR detected 
an additional 16 transcripts as differentially rhythmic. We also 
compared the overlaps among the 6 algorithms, even though 
these results are not technically comparable. We found that 32 
transcripts were commonly identified as differentially rhythmic 
by all 6 algorithms (Figure 3B).

We also compared their performance without preidentify-
ing rhythmic transcripts. This would test each algorithm’s 
internal functions for both rhythmicity and differential rhyth-
micity, except for DODR which can directly test differential 
rhythmicity without preidentifying rhythmic transcripts 
(DODR recommends using preidentified rhythmic transcripts 
as an input) (Table 1). When the 11 313 transcripts were used 
as the input (the same as Figure 1), a lower number of differen-
tially rhythmic transcripts was commonly detected by all 6 
algorithms (27 in Figure 4 vs 32 in Figure 3B). While the over-
lap unique to LimoRhyde and DODR was much higher (951 

in Figure 4 vs 8 in Figure 3B) and more transcripts were identi-
fied as differentially rhythmic by diffCircadian only (465 in 
Figure 4 vs 128 in Figure 3B). These differences derive from 
the method of how each algorithm defines rhythmic transcript 
(Figure 1), as the only difference between these 2 analyses  
is whether transcripts were preidentified as rhythmic by 
MetaCycle or not. This further emphasizes that any difference 
in overall performance can come from both how to define the 
rhythmicity and differential rhythmicity.

Are differences in amplitude and phase detected  
by each algorithm similar?

Five algorithms (LimoRhyde2, CircaCompare, compare-
Rhythms, diffCircadian, and dryR) also report circadian 
parameters (ie, phase and amplitude) for each transcript (Table 
1), allowing us to compare the differences in these parameters 
between conditions. We used peak-to-mesor as amplitude 
hereafter as this is the definition of amplitude,37 even though 
LimoRhyde2, compareRhythms, and dryR use peak-to-trough 
as amplitude. Because compareRhythms, diffCircadian, and 
dryR only calculate each parameter for each condition, we 
manually calculated the difference in phase or amplitude by 
subtracting the value for the control condition from that of the 
Bmal1 knockdown condition. We then compared these values 
with the differences calculated directly by CircaCompare and 
LimoRhyde2. We found 21 transcripts that were commonly 
identified as differentially rhythmic by all 5 algorithms with 
the least stringent cutoff (ie, B.H. q < 0.25 or BICW > 0.6; 

Figure 2.  Number of differentially rhythmic transcripts detected by (A) DODR, LimoRhyde, and diffCircadian, (B) dryR and compareRhythms, and (C) 

CircaCompare. A total of 866 transcripts (rhythmic in either the control or Bmal1 knockdown condition defined by MetaCycle B.H. q < 0.25) were used as 

input. Normalized (RPKM) data were used for all the algorithms. B.H. q cutoffs of 0.05, 0.15, and 0.25 (A, C) or BICW cutoffs of 0.9, 0.75, and 0.6 (B) were 

applied to determine the number of differentially rhythmic transcripts (see Materials and Methods for more details).
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Figure 3.  The number of overlapping transcripts identified as differentially rhythmic. A total of 866 transcripts (rhythmic in either the control or Bmal1 

knockdown condition defined by MetaCycle B.H. q < 0.25) were used as input. (A) The number of overlapping transcripts identified as differentially 

rhythmic among diffCircadian, LimoRhyde, and DODR with B.H. q cutoff of 0.25. (B) The number of overlapping transcripts identified as differentially 

rhythmic among the 6 algorithms (B.H. q < 0.25 or BICW > 0.6). Gray bars on the left represent the number of differential rhythmic transcripts detected by 

each algorithm. Dark red bars represent the number of transcripts commonly identified as differentially rhythmic by the algorithm(s) connected by the blue 

lines.

Figure 4.  The number of overlapping transcripts identified as differentially rhythmic among the 6 algorithms. A total of 11 313 transcripts (see Materials 

and Methods for more details) were used as input. Gray bars on the left represent the number of differentially rhythmic transcripts detected by each 

algorithm. Differentially rhythmic transcripts were defined as B.H. q < 0.25 (DODR, LimoRhyde, CircaCompare, diffCircadian) or BICW > 0.6 

(compareRhythms, dryR). Dark red bars represent the number of transcripts commonly identified as differentially rhythmic by the algorithm(s) connected 

by the blue lines.
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LimoRhyde significance test results were used in place of 
LimoRhyde2) (Figure 5A and B). All 5 algorithms also identi-
fied these transcripts as rhythmic under both conditions 
(P < 0.05). To assess the similarities in the changes of phase 
and amplitude, we conducted a pairwise correlation analysis of 
their respective outputs (Figure 5C and D). We found that the 
phase and amplitude differences measured by all 5 algorithms 
are positively correlated with each other (Pearson: P < 1.9 × 
10−8) (Figure 5C and D). The correlation is particularly strong 
(correlation coefficient = 1) among CircaCompare, compare-
Rhythms, diffCircadian, and dryR for both phase and ampli-
tude. These indicate that the changes in phase and amplitude 
measured by these 5 algorithms were remarkably similar for 
these 21 transcripts.

We also compared the differential phase and amplitude out-
put from the 5 algorithms, regardless of whether each tran-
script was defined as differentially rhythmic. We used the 866 
rhythmic transcripts as the input (MetaCycle B.H. q < 0.25, 
either in Control or Bmal1 knockdown samples, the same input 
used in Figures 2 and 3). 606 transcripts were first removed 
from the downstream analysis, because they were considered 
arrhythmic in one of the conditions at least by 1 algorithm and 
the phase and amplitude could not be calculated and compared. 
Note that these transcripts can be “differentially rhythmic” 
especially when the algorithm defines them as arrhythmic. 
From the 260 remaining transcripts, we removed the 21 tran-
scripts commonly detected as differentially rhythmic (Figure 
5). When we compared the differential phase or amplitude of 

Figure 5.  Comparison of the changes in phase or amplitude of differentially rhythmic transcripts commonly detected by 5 algorithms. Differences in (A) 

phase or (B) peak-to-mesor amplitude. Orange: LimoRhyde2, Green: CircaCompare, Purple: dryR, Yellow: diffCircadian, and Blue: compareRhythms. 

Each dot represents a measurement for a transcript from one of the algorithms, and each line represents each transcript. (C, D) Heatmap displaying 

pairwise Pearson correlation analysis of the differences in (C) phase or (D) peak-to-mesor amplitude. Blue and red denoted positive and negative 

correlation, respectively. The correlation coefficient and P value (number in brackets) are shown in each box.
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the remaining 239 transcripts, we found that the output was 
again identical between CircaCompare and diffCircadian and 
between compareRhythms and dryR for both phase and ampli-
tude (Figure 6A and B). The pairwise correlation analysis sup-
ported this, and the correlation coefficients were 1.00 for both 
phase and amplitude between CircaCompare and compare-
Rhythms, and between diffCircadian and dryR (Figure 6C and 
D). The correlation between these pairs was not as high, espe-
cially for the amplitude, whereas the correlation between 
CircaCompare/diffCircadian and LimoRhyde2 was very high 
for both phase and amplitude even though they use different 
methods to calculate the differential phase and amplitude 
(CircaCompare/diffCircadian: estimated from modified cosine 
curve,22,25 LimoRhyde 2: multivariate adaptive shrinkage 
(Mash))38 (Figure 6C and D).

Discussion
In this study, we compared 7 algorithms designed to detect dif-
ferential rhythmicity between transcriptomic data sets. These 
algorithms show distinct features and use different approaches 
in defining the rhythmicity of transcripts as well as in identify-
ing differences in rhythmicity between different conditions 
(Table 1). They also report different numbers of rhythmic tran-
scripts and differentially rhythmic transcripts even with the 
same statistical threshold (Figures 1 and 2). These differences 
most likely derive from (1) how each algorithm defines rhyth-
micity (Figures 1 and 4), (2) how each algorithm calculates the 
phase and amplitude of each transcript (Figures 5 and 6), (3) 
how each algorithm compares rhythmicity (eg, overall rhyth-
micity vs changes in phase or amplitude) (Figure 2), (4) the type 
of statistical test (or lack thereof ) used to define differential 

Figure 6.  Comparison of the changes in phase or amplitude of transcripts across 5 algorithms. Differences in (A) phase or (B) peak-to-mesor amplitude 

detected by the 5 algorithms. Orange: LimoRhyde2, Green: CircaCompare, Purple: dryR, Yellow: diffCircadian, and Blue: compareRhythms. Each dot 

represents a measurement for a transcript from one of the algorithms, and each line represents each transcript. (C, D) Heatmap displaying pairwise 

Pearson correlation analysis of the differences in (C) phase or (D) peak-to-mesor amplitude calculated by the 5 algorithms. Blue and red denoted positive 

and negative correlation, respectively. The correlation coefficient and P value (number in brackets) are shown in each box.
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rhythmicity (eg, model selection vs hypothesis testing) (Figure 
2, Table 1), and (5) how the statistical threshold is chosen for 
both rhythmicity and differential rhythmicity. Nevertheless, we 
still detected large overlaps in the sets of differentially rhythmic 
transcripts detected by each algorithm (Figures 3 and 4), and 
the phase and amplitude differences measured by each algo-
rithm for the set of commonly detected transcripts also showed 
high similarities (Figure 5).

These algorithms provide important and substantial 
advancements over VDA.20-22 However, they also face several 
key limitations. Successfully detecting a change in rhythmicity 
depends heavily on statistical power, and this is affected by the 
amount of noise in the data, the magnitude of the change, and 
the number of data points (eg, number of sampling time points, 
number of replicates).26 Different studies with different 
amounts of data noise or different experiment designs can have 
large differences in statistical power, potentially resulting in 
large differences in the number of differentially rhythmic tran-
scripts that are detected.39,40 Another important consideration 
is that statistical significance does not always indicate biologi-
cal significance. LimoRhyde2 attempts to address this by 
focusing on estimating rhythm parameters and effect sizes, and 
the magnitude of rhythm differences. However, establishing a 
direct link between the amplitude (or change in amplitude) of 
a rhythm and its biological significance remains challenging. 
Follow-up work will likely be necessary to uncover if differ-
ences in rhythms are biologically relevant. Finally, these algo-
rithms are only designed to compare rhythms between data 
sets that share the same scale. Data with different units or 
scales, for instance, comparing rhythms between transcrip-
tomic data and proteomics data, or between transcriptomic 
data and RNA synthesis or degradation rates,28 cannot be 
effectively analyzed using these algorithms. Venn diagram 
analysis, in this case, can be used as it evaluates rhythmicity 
under each condition independently. However, it still has the 
issues of indirect analysis, uncontrolled FDRs, and a lack of 
sensitivity to quantitative circadian changes. The development 
of algorithms capable of detecting differential rhythmicity in 
such data sets would represent a valuable and much-needed 
contribution to the field.

As users, we found several features helpful when analyzing 
data and recommend that developers include them in their 
future algorithms and R packages. First, we prefer algorithms 
that exhibit wide applicability and have the flexibility to 
accept a wide range of data types and experiment designs, as 
this would benefit a diverse range of users. Second, we advo-
cate for a complete and detailed description of the  
algorithm, presented in a way that nonstatisticians can 
understand what the algorithm does and interpret the results 
correctly. For instance, clearly describe the hypotheses being 
tested by a statistical test, or the steps used for model fitting. 
Thorough code documentation and “vignettes” with worked 
examples are also important for users learning how to run 
the analysis. Third, it is important that algorithms offer 

explicit and comprehensive information regarding the input 
data requirements, including formatting requirements and 
any other characteristics (eg, do the data need to have 
Gaussian-distributed residuals?). As for output, it is prefera-
ble for algorithms to provide calculated statistical values (eg, 
P values or BICW) rather than applying statistical threshold 
filtering within the code and only returning qualitative results. 
Finally, algorithms that allow users to specify the output they 
require have broader applicability. This flexibility is particu-
larly useful when dealing with large data sets or computation-
ally intensive tasks, as it can significantly reduce both time 
and computational load or memory requirements.

In addition to transcriptomic data, a wide variety of circa-
dian time series data should be analyzable by one or more of 
these approaches as long as the data sufficiently meets the 
assumptions of the underlying regression model and other 
algorithm components. In addition to the requirements listed 
in Table 1, nontranscriptomic data can be analyzed with any of 
the algorithms in this study if they have residuals (the differ-
ence between each data point’s actual value and the regression 
model’s predicted value) with a Gaussian distribution and con-
stant variance and lack problematic outlier data points. The 
only exception is RepeatedCircadian, which should only be 
used for repeated measurement experiments. For input data 
featuring non-Gaussian distributions or outliers, there are sev-
eral options. For example, DODR can accommodate data with 
non-Gaussian distributions as long as the distribution is the 
same between the 2 groups being compared.21 Positive integer 
count data that have similar characteristics to RNA-seq read 
counts (negative binomial residual distribution and variance 
that changes with the mean of the data) can be analyzed with 
LimoRhyde2, compareRhythms, and dryR. However, in this 
case, users should select an option designed for RNA-seq read 
count data (eg, voom, DESeq2, or edgeR based method).20,24,26 
Alternatively, data can potentially be transformed before analy-
sis so that the residuals have a Gaussian distribution with con-
stant variance, then analyzed using one of the Gaussian-assuming 
approaches listed above.22 If there are outliers in the data, 
DODR can be used.21 RNA-seq data sets contain data on 
thousands of features (eg, thousands of transcripts), yet it is 
common for other types of circadian studies to measure only 
one or a few features. In this case, DODR, CircaCompare, 
dryR (drylm), and RepeatedCircadian are the most straight-
forward to use.

Overall, we hope our study will help future users in selecting 
the algorithm that is most suitable for their data and specific 
research goals. Understanding the characteristics of these algo-
rithms is a critical first step toward this, and thus our analysis 
will contribute to improved analyses of differential rhythmicity 
in transcriptomic data.
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