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The immune system protects the host from a plethora of microorganisms and toxins through
its unique ability to distinguish self from non-self. To perform this delicate but essential task, the
immune system relies on two lines of defense. The innate immune system, which is by nature
fast acting, represents the first line of defense. It involves anatomical barriers, physiological
factors as well as a subset of haematopoietically-derived cells generically call leukocytes.
Activation of the innate immune response leads to a state of inflammation that serves to both
warn about and combat the ongoing infection and delivers the antigenic information of the
invading pathogens to initiate the slower but highly potent and specific second line of defense,
the adaptive immune system. The adaptive immune response calls on T lymphocytes as well
as the B lymphocytes essential for the elimination of pathogens and the establishment of the
immunological memory. Reactive oxygen species (ROS) have been implicated in many
aspects of the immune responses to pathogens, mostly in innate immune functions, such as
the respiratory burst and inflammasome activation. Here in this mini review, we focus on the
role of ROS in adaptive immunity. We examine how ROS contribute to T-cell biology and
discuss whether this activity can be extrapolated to B cells.
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INTRODUCTION

Reactive oxygen species (ROS) include both radical and non-radical species and are formed by the partial
reduction of oxygen. The radical species, e.g., superoxide anion (O2-.), hydroxyl radical (.OH), and nitric
oxide (NO), have unpaired electrons (1, 2). In contrast, the non-radical products, e.g., hydrogen peroxide
(H2O2), hypochlorous acid (HOCl), and peroxynitrite (ONOO-), do not have unpaired electrons but
remain powerful oxidizing agents (1). Interestingly, cellular enzymatic systems such as the nicotinamide
adenine dinucleotide phosphate hydrogen (NADPH) oxidases, the myeloperoxidases, the nitric oxide
synthases (NOS), the monooxygenase activity of cytochrome P450, xanthine oxidase, monoamine
oxidase (MAO) and the mitochondrial respiratory chain are sources of the primary radical species (O2-.,
NO, and H2O2) (1, 3). At low concentrations, which can be handled by the cellular antioxidant system,
O2-., NO and H2O2 are necessary for signal transduction, cell migration, cell differentiation, cell
proliferation, vasoconstriction, inflammation, senescence and aging (4–14). This can be explained, in
part, by the fact that to some extent primary species reactions with biomolecules are reversible and they
are easily controlled by enzymatic and non-enzymatic antioxidant molecules of the cell antioxidant
machinery (15–18).
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Interestingly, although even at high concentrations O2-., NO
and H2O2 are not directly damaging to cells, they react with
themselves or with metal ions to produce the extremely toxic
secondary reactive species.OH, ONOO- and HOCl. These
secondary species are poorly controlled and rapidly and
irreversibly react with virtually all classes of biomolecules
causing oxidative damage. The accumulation of ROS can lead
to a state of oxidative stress when the endogenous antioxidant
machinery of the cell is overwhelmed (19–24). Consequently, the
cells accumulate oxidative damage within the DNA, lipids and
proteins, causing cellular dysfunction and cell death (19–23).
Excessive ROS production plays a major role in the initiation and
amplification of cell death by modulating many signaling
pathways. Consequently, ROS levels are contributing
determinants for various forms of cell death, including
apoptosis, necrosis/necroptosis, ferroptosis, pyroptosis and
autophagic cell death (25–32).

The immune system has the unique ability to distinguish self
from non-self to protect the host organisms from a plethora of
microorganisms and toxins (33–35). It eliminates foreign entities
(pathogens and toxins) but tolerates the self (host’s own tissues) and
its associated microbiota (33, 36, 37). The innate immune system,
the components of which are already present before any pathogenic
intrusion, is fast acting. It relies on anatomical barriers (the skin and
the mucosa lining the respiratory, gastrointestinal and urogenital
tracts) to prevent foreign entities from entering the organism (33,
34). These anatomical barriers are reinforced by soluble factors
(complement system, pentraxins, collectins and the defensins
antimicrobial peptides) as well as by leukocytes (macrophages,
dendritic cells, mast cells, neutrophils, eosinophils, natural killer
[NK] cells) that neutralize pathogens or kill the infected cells (33,
34). The innate immune system is activated by the recognition of
antigenic determinants common to a wide spectrum of microbes
(the pathogen associatedmolecular patterns [PAMP]) and leads to a
state of inflammation to alert and combat the ongoing infection
(33, 34, 38). Importantly, the activated innate immune system
delivers the antigenic information of the invading pathogens to
activate the slower but highly potent and specific second line of
defense known as the adaptive immune system. The adaptive
immune response calls on T lymphocytes and B lymphocytes as,
respectively, the effectors of the cellular adaptive immune response
and as the antibody-producing cells with the essential functions of
eliminating pathogens and establishing immunological memory
(35, 39, 40).

ROS have been implicated in many aspects of the immune
response to pathogens mainly related to innate immunity. Indeed,
they have been proposed to be the common determinant of
inflammasome activation, which is critical in the inflammatory
process and thus necessary for an efficient immune response. ROS
are also essential for pathogen killing by phagocytic cells, as
illustrated in chronic granulomatous disease (CGD), an inherited
disorder of NADPH oxidase characterized by recurrent and severe
bacterial and fungal infections as phagocytes from these patients
cannot do the respiratory burst. Here in this mini review, we focus
on the role of ROS in adaptive immunity. We examine how ROS
contribute to T-cell biology and briefly discuss whether these
activities can be extrapolated to B cells.
Frontiers in Immunology | www.frontiersin.org 2
ROS AND LYMPHOCYTE ACTIVATION

The engagement of the B-cell receptor (BCR) or T-cell receptor
(TCR) provides the specific signal 1, which in association with
signal 2 coming from the co-costimulatory receptors, triggers
intracellular phosphorylation cascades (Figure 1). This results in
activation of the transcription factors activator protein 1 (AP1),
nuclear factor (NF)-kB, nuclear factor of activated T cells
(NFAT), Oct binding factor (OBF)-1/OCA-B (OCA-B/OBF-1
and Pip/interferon regulatory factor (IRF)-4, which are critical
for T and B lymphocyte activation (Figure 1) (35, 41–45). Early
research demonstrated that ROS scavengers such as N-acetyl
cysteine (NAC) inhibit NF-kB activation following exposure to
phorbol 12-myristate 13-acetate, tumor necrosis factor (TNF)-a,
or interleukin-1 (IL-1), indicating that ROS are involved in
physiological activation pathways (46, 47).
ROS CONTRIBUTE TO TCR SIGNALING

Actually, within minutes of TCR stimulation, there is a production
of bothO2-. andH2O2, which seems tooriginate fromdifferent TCR
signaling pathways (48). Specifically, studies in Jurkat T cells
showed that ROS increase the phosphorylation and activity of
p56lck, ZAP-70, protein kinase C (PKC) and intracellular Ca2+

levels (Figure 1) (49–51). This results in a phosphoinositide-3
kinase (PI3K)/AKT/mTOR-, Myc- and ERRa-dependent
augmentation of the global metabolism (52–56). It was further
demonstrated that T cells from p47phox-deficient mice do not
undergo TCR-induced H2O2 production, whereas TCR-induced
O2-. is unaffected following TCR stimulation in these cells,
indicating that H2O2 originates from a lymphocyte-encoded
NADPH oxidase (NOX) (57). Additionally, using superoxide
scavenger treatments or superoxide deficiency in OT-II.Ncf1m1J

micehavingCD4Tcell-specific superoxidedeficiency, itwas shown
that superoxide is necessary forTh1 responses aswell as IL-12Rand
proinflammatory chemokine ligand expression in CD4 T cells (58,
59). In fact, in T cells, ROS contribute not only to proximal but also
to distal signaling pathways and modulate the activities of
transcription factors NFAT, AP-1, and NF-kB to induce gene
expression (60, 61). Activated T cells take up large amounts of
glucose and produce lactate, indicating that they are primarily
glycolytic (61, 62). Interestingly, during CD4 T-cell stimulation,
mitochondrial oxygen consumption increases as an indication that
mitochondrial function is also important for T-cell activation not
only to support the glutamine requirement of these cells but also as a
source of ROS (Figure 1) (61, 63). It was even shown that
mitochondrial ROS specifically from respiratory chain complex
III are required for CD4+ and CD8+ T cell expansion in vivo (61).
Deletion of the Rieske iron sulfur protein (RISP), a subunit of
mitochondrial complex III in T cells, resulted in a lack of oxidative
phosphorylation and complex III-dependent ROS production and
no expression of IL-2 upon CD3/CD28 stimulation (61). This
phenotype was rescued by the addition of exogenous H2O2,
clearly demonstrating the ROS requirement for full activation of
the CD4 T cells (61). In this context, mitochondrial ROS were
downstream of the TCR-mediated cytosolic and mitochondrial
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calcium increase, in agreement with the calcium dependency of
mitochondrial TCA cycle dehydrogenases that fuel the electron
transport chain (ETC) to increase mitochondrial membrane
potential and ROS production (64, 65). Interestingly,
mitochondrial ROS are also necessary for CD8 T-cell activation,
as inhibition of the respiratory chain complex I decreases the
production of H2O2, calcium flux, and ERK1/2 phosphorylation
and impairsCD8T-cell activationandproliferation (66).Complex I
inhibition not only decreases activation of naive cells but also
decreases interferon (IFN)-g and TNF-a production as well as
degranulation of effector and memory CD8+ T cells isolated from
lymphocytic choriomeningitis virus-infected mice (66).

It is worth noting that some studies suggest mitochondria more
than NADPH oxidase are the essential source of ROS involved in
Frontiers in Immunology | www.frontiersin.org 3
the activation process (61–66). This apparent discrepancy could
come from the activation status (naïve/primed) or developmental
state (CD8/CD4, T helper 1/2/9/17 or regulatory CD4 T cells)
considered, which might have different ROS requirements for full
activation (67). Nevertheless, collectively these results showed that
ROS play a role in the activation and maturation of both CD8 and
CD4 T cells (57, 61, 66, 68, 69). Mechanistically, by inhibiting
phosphatases, ROS might tilt the balance toward phosphorylation,
ultimately potentiating the activation of kinase cascades and
transcription factors such as NFAT, which is critical for IL-2
production (61).

Interesting, although they are required, ROS levels must be
kept in check by the glutathione-dependent antioxidant machinery
(70, 71). Indeed, preventing glutathione (GSH) production impairs
FIGURE 1 | Endogenous ROS contribute to T and B cell receptor signaling. The engagement of the B-cell receptor (BCR) or T-cell receptor (TCR) and their
respective co-receptors CD28 and CD19/CD21 triggers intracellular phosphorylation signaling cascades resulting in the activation of transcription factors AP1, NF-
kB, NFAT, OCA-B/OBF-1 IRF-4, which are critical for T and B lymphocyte activation. In T cell, dark grey, TCR/CD28 stimulation induces the phosphorylation and
activation of the kinases p56lck (LCK) and ZAP-70, the phospholipase Cg (PLCg). CD28 recruits growth factor receptor bound protein 2 (Grb2), which docks the
complex formed by SH2 domain containing leukocyte protein of 76kDa (SLP-76)/Linker for activation of T-cells (LAT)/signal transducer protein Vav1. The latter
complex recruitment closer to the membrane facilitating its activation by ZAP70. PLCg generates inositol 3 phosphate (IP3) to mobilize intracellular Ca2+ stores
resultingin the activation of the phosphatase calcineurin. PLCg also generates diacylglycerol (DAC) to activate protein kinase C (PKC), c-Jun N-terminal Kinase (JNK)
and mitogen-activated protein kinase/extracellular signal-regulated kinases (MEK/ERK) cascade. Calcineurin dephosphorylates nuclear factor of activated T cells
(NFAT), allowing its nuclear translocation. PKC allows NF-kB nuclear translocation by removing of the inhibitor (IkB), while JNK and ERK activate AP1. In B cells, light
grey, BCR/CD19/CD21 stimulation initiates a phosphorylation cascade starting with the activation of the kinases Lyn and SYK, leading to the activation of B cell
linker protein (BLNK), B Cell adaptor molecule for phosphoinositide 3-Kinase (PI3K) (BCAP) and PLCg, ultimately resulting in PKC, JNK and ERK activation. Both
TCR and BCR signaling potentiate mitochondrial respiration and activate metabolic pathways through their action on the complex formed by PI3K, protein kinase B
(PKB/AKT) and mammalian target of rapamycin (mTOR). These signaling cascades are potentiated by ROS (H2O2 and O2-.) from NADPH oxidases (NOX/DUAOX)
and from the mitochondria (red arrows). In some instances, NOX triggers the oxidative modification of ZAP70 and LCK to precipitate their degradation and blunt
activation (dashed bloc red line).
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T-cell activation, as the energy and anabolic demands of these cells
can no longer be met (72). GSH deficiency alters mammalian target
of rapamycin (mTOR) and Myc activation, preventing the
metabolic switch to glycolysis and glutaminolysis in an adenosine
monophosphate–activated protein kinase (AMPK)-dependent
manner (62, 73). Paradoxically, it was reported that ROS can also
downregulate T-cell activation by regulating the degradation
of signaling molecules and the activation of cytoskeletal proteins
(74, 75). To prevent excessive ROS from triggering the
mitochondrial permeability transition pore (PTP) opening and
causing cell death, CD4 T cells upregulate microRNA (miR)-23a,
which targets peptidylprolyl isomerase F (PPIF or Cyclophilin D), a
key regulator of the PTP. The reduction in PPIF is expected to keep
the mitochondrial PTP closed and reduce the escape of ROS,
preserving CD4+ T-cell survival during the early hypermetabolic
and inflammatory state of the activation process (76).
ROS CONTRIBUTE TO BCR SIGNALING

Unlike that of T cells, B-cell metabolism is less well characterized.
However, it was recently demonstrated that energy demand is
elevated during antigen (Ag)-driven proliferation and
differentiation (77, 78). B-cell stimulation with lipopolysaccharide
(LPS) or anti-immunoglobulin M (IgM) antibodies drastically
increases glucose import, although increased mitochondrial
respiration still occurs, suggesting that here again mitochondrial
function is important (Figure 1) (79, 80). Interestingly, ROS
production in response to BCR stimulation occurs in two waves.
An early NADPH oxidase 2-dependent ROS increase take place
withinminutes of BCR stimulation, and a second wave of increasing
ROS levels from the mitochondria occurs at later time point (81). B
cells deficient in early Nox2-dependent ROS production have no
defects in proximal BCR signaling, cell activation or the ability to
mount an antibody response following T cell-dependent Ag
stimulation (81). However, preventing the later ROS increase
attenuates BCR-dependent signaling, leading to defective
activation, proliferation and response to BCR stimulation (81).
These results indicate that the continuous production of
mitochondrial ROS at later times during the activation process is
critical for BCR signaling and optimal Ag-induced B-cell activation
and proliferation, in agreement with findings from gene set
enrichment analysis showing upregulation of OXPHOS and the
TCA cycle in activated B cells (79, 81).

Lymphocyte activation clearly requires ametabolic reprograming
for a diversification of the source of energy and biosynthetic building
blocks (62, 82, 83). Therefore, one could wonder whether the
observed increase in ROS during cell activation could be a
consequence of this metabolic reprograming and reciprocally any
genetic manipulation of the ROS input could also alter the
metabolism of these cells, questioning the real significance of the
ROS in the activation process? This latter possibility is readily
excluded by the fact that exogenous H2O2 can rescue lymphocyte
activation in the context of genetic ablation of complex III (61, 66, 79,
81). Taken together, these results clearly demonstrate that cell
intrinsic ROS signaling participates in the activation processes of
both B and T lymphocytes.
Frontiers in Immunology | www.frontiersin.org 4
ROS AND LYMPHOCYTE VIABILITY

We have seen that one of the proximal events following TCR
signaling is an increase in ROS production both in the form of
O−

2 and H2O2. One direct consequence of the increase in these
ROS in the context of T cell blasts is the initiation of activation-
induced cell death (AICD) following the induction of FasL
expression (84, 85). In fact, downstream of the TCR
engagement, activated ZAP70 phosphorylates liker of activated
T cells (LAT), which docks phospholipase Cg1 that generates
inositol 3 phosphate (IP3) and diacylglycerol (DAG) (84). DAG
activates protein kinase Cq (PKCq) and its translocation into the
mitochondria to enhance the production of ROS in a
mitochondrial complex I-dependent manner, which is
necessary for the expression of the ligand of the death receptor
Fas (FasL) (84). FasL engages Fas receptor and triggers apoptotic
cell death, a process where mitochondrial ROS further play a
role, as it was later shown that caspase 3 can induced a ROS-
dependent cell death by cleaving the respiratory chain complex I
subunit NDUFS1 (30). We have also shown that ROS potentiate
the apoptotic cascade by amplifying the release of apoptogenic
factor from the mitochondria and increasing oligonucleosomal
DNA fragmentation (86). Moreover, exposure to exogenous
H2O2 differentially affects T-cell viability, according to their
subset and maturation status. Central memory and effector
memory T cells are more sensitive to H2O2 followed by naïve
T cells, among which the CD8+ effector memory T-cell
compartment is more sensitive to even low doses of H2O2

(Figure 2) (87, 88). In this context, exogenous H2O2 exposure
triggers cell death in a mitochondrial pathway-dependent
manner (87, 89). T cells treated with H2O2 experience the
opening of the mitochondrial permeability transition pore
(PTP), a rapid decrease in the mitochondrial transmembrane
potential DYm, and the release of cytochrome C (89). Blocking
the mitochondrial PTP opening or interference with the
respiratory electron transport chain with rotenone or
menadione abrogated H2O2 cytotoxicity (89). Interestingly,
antimycin A, a respiratory chain complex III inhibitor that
increases the release of mitochondrial ROS, enhanced
apoptosis, while overexpression of Bcl-2 and the viral anti-
apoptotic proteins BHRF-1 and E1B 19K counteracted H2O2-
induced T-cell apoptosis (89). Furthermore, inhibition of the
transcription factor NF-kB protected cells from H2O2-induced
cell death in a process that likely relies on the expression of a
death effector gene such as p53 (89). Paradoxically, T regulatory
cells, which have lower intracellular ROS levels, are particularly
protected from H2O2-dependent inhibition of suppressive
function and H2O2-induced death (90). Taken together,
the higher sensitivity of effector memory CD8 T cells
combined with the reduced susceptibility of T regulatory cells
to H2O2-induced death suggest that the oxidized tumor
microenvironment (TME) may be a particularly inhospitable
site for CD8 T cells and detrimental to T cell-based adoptive cell
transfer therapies. This is even more critical as effector memory
T cells are the primary phenotype of cells administered during
such therapeutic protocols. Thus, research is needed to
determine the effect of the TME of chimeric antigen receptor
November 2021 | Volume 12 | Article 755856
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(CAR)-T cell therapies. Beyond apoptosis, ROS critically regulate
T-cell viability through the induction of ferroptosis. Both Ag-
specific CD8+ and CD4+ T cells deficient for glutathione
peroxidase 4 (Gpx4) are unable to expand or protect against
viral and parasitic infection (91). This phenotype can be rescued
by dietary vitamin E supplementation, indicating that lipid
peroxidation-dependent ferroptosis plays a critical role in the
T-cell depletion during these antigenic challenges (91).

Exposure of B cells to relatively massive doses (100–250 µM)
of H2O2 has little effect on cell viability in the short term (30
minutes). However, 5 days later, half of the cells have died, even
in the presence of CD40 stimulation (92). These doses of H2O2

although massive are still in the physiological range, as it was
estimated that in the proximity of activated neutrophils and
macrophages the H2O2 concentration can reach the 100s of µM
(93–95). Moreover, this exogenous H2O2 exposure completely
suppresses the ability to CD40 stimulation to trigger antibody
production (Figure 2) (92). In fact, exogenous H2O2 exposure
dissociates TRAF2 from CD40, leading to inefficient IKK
phosphorylation, IkBa degradation, and NF-kB activation,
which altogether severely compromises B-cell activation (92).
ROS-MEDIATED LYMPHOCYTE
DYSFUNCTION

As serial killers, cytotoxic T lymphocytes and NK cells must
recognize, engage, kill, and detach from the first target cell before
moving to the next (96–98). Detachment of the effector cell from its
target requires its repolarization through the reorganization of its
cytoskeleton for the disassembly of the first immunological synapse
(99). Effector killer cells are quite sensitive to the redox status of their
immediate environment (100–102). Oxidizing reagents curb killer
cell degranulation, consequently inhibiting their cytotoxicity (102,
103). Interestingly, it was reported that oxidized low-density
lipoprotein (ox-LDL), used as oxidizing agent, inhibits killer cell
degranulation (102). Pretreatment of NK cells or co-incubation of
NK/target cell conjugates with non-cytotoxic doses of ox-LDL
markedly and significantly reduces the NK cytotoxic activity
against U937 tumor cells (102). This reduced NK cell cytotoxicity
is not the consequence of their inability to engage the target cells,
Frontiers in Immunology | www.frontiersin.org 5
because the number of NK:target cell conjugates was not affected nor
were the expression levels of CD11a, CD11b, CD18, CD2, and
CD62L, key adhesion molecules involved in the effector–target cell
interaction (102). Mechanistically, ox-LDL triggers a partial
depolarization of the microtubule network that is critical for the
polarization of the cytotoxic granules toward the immunological
synapse formed between the effector and target cells. Similarly,
exposure of mitogen-stimulated peripheral blood mononuclear
cells (PBMCs) to ox-LDL reduces their production of TNF-a, IFN-
g and IL-12 (102). Likewise, exogenous and endogenous nitric oxide
(NO) inhibits degranulation of lymphokine activated killer (LAK)
cells (103). NO inhibits LAK cell exocytosis in part by decreasing the
expression of RAS, a critical component of the exocytic signaling
cascade, following destabilization of RAS mRNA (103). NO acts by
interfering with the mRNA-stabilizing factor HuR, which binds and
stabilizes AU-rich elements of the mRNA 3’-untranslated region
(104). Itwas further demonstrated thatROS induced oxidation of the
C-terminal portion of the TCRz chain, and the membrane proximal
domain of p56(lck) and cofilin promote their degradation or
inactivation, suggesting that ROS can also curb the TCR signaling
cascade (74, 75). Similarly, increasing evidence suggests that the
dynamics of the immunological synapse can be regulated by ROS
through their direct or indirect effects via plasma membrane
polarization on calcium signaling and effector cell cytoskeletal
reorganization (99, 102, 105–107). As stated earlier, activation of
the lymphocytes after engagement of their receptor initiates a
phosphorylation cascade, resulting in, among other things, the
mobilization of intracellular Ca2+ stores, which is essential for
the gene expression crucial for lymphocyte activation and the
development of adaptive immunity (99, 108–111). Depletion of
Ca2+ stored in the endoplasmic reticulum triggers store-operated
Ca2+ entry (SOCE).Compared toOrai1, theCa2+ channel involved in
SOCE, Orai3 lacks the redox-sensitive cysteine 195 and therefore is
redox-insensitive. Co-expression ofOrail3 withOrai1 reduces SOCE
sensitivity toROS inhibition. Consequently, it is not surprising that T
lymphocytes display upregulated Orai3 expression during their
differentiation into effector T cells. This means that the modulation
of the Orai1:Orai3 ratio could be a possible mechanism by which
effector T lymphocytes preserve some responsiveness in oxidized
environments, such as the hypoxic TME or inflamed tissues
(106, 112).
FIGURE 2 | Exogenous ROS modulate lymphocyte effector functions and viability. At low doses of microenvironmental ROS, both B and T lymphocytes have
normal effector function (smiley face lymphocytes). Exposure to mild doses of exogenous ROS affects the lymphocyte effector functions (weary face lymphocytes),
while acute exposure to high doses affects their viability. The threshold between mild and acute exposure strongly depends upon the lymphocyte subset and
maturation status.
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ROS also regulate the effector function of B cells. Overexpression
of a phosphorylation-defective mutant of succinate dehydrogenase
A to model excessive mitochondrial ROS production suppresses Ig
production, germinal center (GC) formation, and GC B-cell
proliferation following an encounter with T cell-dependent Ag.
Excessive mitochondrial ROS production also suppresses Ig
production against T cell-independent Ag (113) as well as BCR-
dependent Lyn, Btk, and PLCg2 phosphorylation and CD19
expression. From these collective results, it was hypothesized that
excessive mitochondrial ROS dampen B-cell activation most likely
by reducing CD19 expression (113). Overall, it seems that mild to
moderate exposure to exogenous ROS affects the lymphocyte
effector functions, while acute exposure affects their viability
(Figure 2). The situation is complicated by the fact that the
threshold between mild, moderate and acute exposure strongly
depends upon the lymphocyte subset and maturation status.
ROS IN IMMUNE CELL DYSFUNCTION:
THE CASE OF AUTOIMMUNITY

As we have discussed earlier, endogenous ROS contribute to
lymphocyte activation; however, depending of the lymphocyte
activation and/or differentiation status, exogenous ROS can affect
their effector function and viability. Thus, we also would like to
discuss whether ROS could play a role in the pathogenesis of
immune-related disorders such as autoimmunity where the wrath
of the immune response mistargets self-antigens (autoantigens). For
instance, abnormal functions of T helper (Th)-17 cells, which in a
normal setting are essential to fight against extracellular bacteria
(114–116), are involved in multiple chronic inflammatory disorders
such as psoriasis, multiple sclerosis (MS), inflammatory bowel
disease (IBD), Sjögren’s syndrome and rheumatoid arthritis (114).
Interestingly, using sublethal doses of oligomycin A, an inhibitor of
the respiratory chain ATP synthase/complex V, it was shown that
mitochondrial oxidative phosphorylation (OXPHOS) plays a
pivotal role in for Th17-mediated autoimmunity (117).
Oligomycin treatment abolished Th17 pathogenicity by altering
the expression of Th17 pathogenic signature genes, such as
transforming growth factor beta 3 (TGFb3), interleukin 23
receptor (IL-23R), signal transducer and activator of transcription
4 (Stat4), and G protein-coupled receptor 65 (Gpr65), while genes
inversely associated with Th17 pathogenicity such as suppressor of
cytokine signaling 3 (Socs3) and IL-10R subunit alpha (IL-10Ra)
were upregulated (117). Although the authors did not directly test
this possibility, it is very likely that mitochondrial ROS could be
involved in this process, as in their experimental condition the
oligomycin treatment severely suppresses the basal mitochondrial
oxygen consumption rate, which could result in a severe reduction
inmitochondrial ROS, indicating that ROS could protect against the
pathogenicity of Th17 cells (117). This agrees with previously work
by Tse and coworkers showing that prevention of O−

2 production by
macrophages and T cells skews T-cell polarization toward Th17
(118). Although they used a model of NOX-deficiency, collectively
these results agree that the absence of ROS alters T-cell lineage
commitment, pointing to a role for superoxide in the modulation
Frontiers in Immunology | www.frontiersin.org 6
Th17 versus Th1 T cell responses (118). From a more clinical stand
point, it was shown that the hypomorphic allele of the Ncf1 gene
encoding for p47phox, a subunit of NOX2, is one of the strongest
genetic predispositions for autoimmune arthritis, autoimmune
encephalomyelitis and systemic lupus erythematosus (SLE), which
are associated with increased numbers of autoreactive T cells (119–
122). Interestingly, results from two clinical trials, one using N acetyl
cysteine the other Sirolimus to modulate respectively cellular GSH
content and mTOR activity resulted in the improvement of SLE
condition suggesting that modulation of the mitochondrial ROS
output could also contribute to regulate pro inflammatory T cell
development (123, 124). Furthermore, by downmodulating the
efficacy of antigen processing, ROS may further contribute to
limiting the activation of autoreactive lymphocytes. In this regard,
in the early stage of the processes, ROS should not simply be
considered as effectors to eliminate invading pathogens, but also as
modulators to fine-tune the inflammatory response depending on
the timing, the site and the level of their production (125, 126). By
contrast, in the context of dysregulated and prolonged chronic
inflammation, the local microenvironment is characterized by a low
nutrient levels, increased lactate production, decreased pH, hypoxia
and an increase level of ROS, which collectively lead to excessive
tissue destruction. At this later stage, this excessive tissue destruction
could promote the accessibility to cryptic neoantigens favoring the
progression and exacerbation of autoimmunity (126).
ROS IN THE PROCESS OF CYTOTOXIC
LYMPHOCYTE KILLING

Cytotoxic lymphocytes are particularly efficient at eliminating target
cancer cells and virally infected cells. Theymainly used the cytotoxic
granule pathway relying on the degranulation of the pore forming
protein perforin and a family offive serine proteases call granzymes
in human (127–129). Although the granzymes trigger very distinct
cell death pathways, we found that granzyme A and B (GA and GB)
share the ability to induce ROS-dependent cell death. It was
demonstrated that GA induces ROS-dependent death that is
independent of the mitochondrial outer membrane
permeabilization (MOMP) and insensitive to BCL2 but has all the
morphological features of apoptosis (127, 130–133). We also
showed that ROS are necessary for the rapid cell death induction
by GB. We found that K562 cells treated with a sublytic
concentration of perforin (P) and GB undergo a rapid increase in
ROS production and cell death that is inhibited in the presence of
the well-characterized antioxidants N-acetyl cysteine (NAC),
superoxide scavenger MnTBAP, or the mitochondrial targeted
superoxide scavenger MitoQ (134). Moreover, GB and P-induced
ROS and cell death are completely absent in pseudo rho cells
deficient for mitochondrial DNA (mtDNA) and therefore lacking a
functional respiratory chain (134). Both GA and GB induce ROS
release from isolated intact mitochondria in the absence of
cytoplasmic fraction S100 (130). Using organelle proteomics and
bioinformatics, we found that GA and GB cleave NDUFS3,
NDUFV1, NDUFS1 and NDUFS2 iron-sulfur (Fe-S) cluster-
containing subunits of the respiratory chain complex I (86, 130,
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132, 135). Cleavage of complex I subunits exposes iron sulfur
clusters and dramatically increases electron leak from the
respiratory chain, leading to a rapid and sustained mitocentric
ROS production, loss of complex I, II, and III activities,
disorganization of the respiratory chain, mitochondrial respiration
impairment, and loss of mitochondrial cristae junctions (86, 130,
132, 135, 136). It is worth noting that another study has also
suggested the contribution of NOX as source of ROS during GB-
mediated cell death (137). However, we found that, GB-mediated
killing of mouse embryonic fibroblasts (MEFs) from NOX-deficient
animals proceeds as in wild-type MEFs (86). GB induction of
mitocentric ROS promotes apoptogenic factor release and
oligonucleosomal DNA fragmentation (138, 139). Although
granzymes do not express a mitochondrial targeting signal, they
enter the mitochondria independently from the TOM40 complex,
the organelle entry gate, and use instead the SAM50 channel
(136, 140). SAM50 is the core channel of the mitochondrial
sorting and assembly machinery dedicated to the insertion of de
novo b-barrel proteins into the mitochondrial outer membrane
(141–144). Preventing the entry of granzymes into the target cell
mitochondria alters their cytotoxicity. Using a model of human
glioma, a very aggressive primary brain tumor for which there is no
cure, we showed that granzyme mitochondrial entry is also essential
for the reduction of tumor burden in vivo (136, 140). Collectively,
these interesting results also indicated that respiratory chain
complex I is at the crosstalk of GA, GB and caspase 3, three
different cell death pathways. Complex I targeting is also conserved
across phylum from bacteria to mammals. In collaboration with the
Walch's group we showed GA- and GB-mediated disruption of
bacterial complex I is also a necessary step for bacterial death (145).
The central role of complex I alteration during cell death suggests
that it is a very important step whose full range of function has yet to
be unraveled. For more about the antimicrobial action of the
granzymes, we refer readers to the review of the oxidative and
non-oxidative antimicrobial activities of the granzymes by Marilyne
Lavergne on this same research topic.
CANCER, OXIDATIVE STRESS, AND
CYTOTOXIC LYMPHOCYTES

Uncontrolled proliferation and neoplastic transformation come
with enormous demands for energy and macromolecule building
blocks. These demands impose a severe metabolic stress, requiring a
striking reprogramming of the cancer cell metabolism (146, 147).
The resulting altered metabolism combined with the hypoxic nature
of the TME is accompanied by marked production of ROS (148–
151). This overproduction of ROS activates the cellular antioxidant
response based on enzymatic and non-enzymatic antioxidant
molecules, which is under the transcriptional control of the
transcription factor nuclear factor (erythroid-derived 2)-like 2
(NRF2). Three isoforms of superoxide dismutase (SOD), cytosolic
CuZn-SOD (SOD1), mitochondrial Mn-SOD (SOD2), and
extracellular EC-SOD (SOD3), are involved in the rapid
dismutation of O2- into H2O2 (15, 16). The homotetrameric
catalase converts H2O2 into water using NADPH as a cofactor
Frontiers in Immunology | www.frontiersin.org 7
(15, 17). The glutathione peroxidases (GPx) use glutathione (GSH)
and reduce H2O2 and lipid hydroperoxides (15, 18). H2O2 removal
also involves thioredoxin (TRX), thioredoxin reductase (TRR),
thioredoxin peroxidase (PRX) and glutaredoxins (15). The most
abundant non-enzymatic antioxidant molecule in the cell is GSH,
which participates in the reduction of H2O2 into H2O andO2, and is
thereby oxidized to form GSSG. GSSG is then recycled into GSH by
glutathione reductase still using as electron donor NAD(P)H. GSH
also maintains aqueous and lipophilic levels of the antioxidant
ascorbic acid (vitamin C) and a-tocopherol (vitamin E),
respectively. Nevertheless, when this antioxidant system is
overwhelmed, the pro-oxidant/anti-oxidant equilibrium is lost,
and a state of oxidative stress is reached where the cells
accumulate oxidative damage in all type of macromolecules,
including DNA, RNA, lipids and proteins, which could lead to
cell death (152–154). Oxidative DNA modifications generate 8-
hydroxy-2′-deoxyguanosine, which contributes to the accumulation
of mutations that enhance aging and carcinogenesis (155).
Consequently, transformed cells adapt and reach new redox
balance, and paradoxically, ROS instead of killing, stimulate
tumor development and progression by promoting cell
proliferation through their mitogenic action as activator of
extracellular-regulated kinase 1/2 (ERK1/2). This induces ligand-
independent receptor tyrosine kinase (RTK) activation, activating
Src kinase, NF-kB and phosphatidylinositol-3 kinase (PI3K)/Akt, to
enable evasion of apoptosis and anoikis as well as to induce
metalloproteinase (MMP) release in the extracellular matrix to
favor invasion and promote angiogenesis (156–161). ROS also
contribute to epithelial to mesenchymal transition (EMT), an
important process in the metastatic dissemination of cancer cells
(2). Importantly, in the TME, cancer cells reprogram other cells,
such as cancer-associated fibroblasts (CAFs), endothelial cells and
cancer-associated macrophages (CAMs), in a ROS-dependent
manner to favor tumor progression. CAFs contribute to tumor
growth by promoting the tumor angiogenesis by secreting VEGF
and angiopoietin, by generating anti-apoptotic factors and by the
secretion of chemokines (CCL2 and CCL5) and MMPs to promote
the dissemination while blocking the immune response through the
secretion of immunosuppressive cytokines IL-6, IL-10 and TGF-b
(162–164). This marked production of ROS also alters the
phenotype of innate immune cells infiltrating the tumor
parenchyma, contributing to the noxious nature of the TME
(165–168). Interestingly, it is worth noting that a direct link exists
between the environmental ROS of the TME and inflammation
(169). Intracellular ROS may regulate EMT in a NF-kB– and
hypoxia-inducible factor 1 (HIF-1a)–dependent manner in a
process requiring the activity of cyclooxygenase-2 (COX-2), the
first enzyme in the synthesis of prostaglandins, prostacyclin and
thromboxanes including prostaglandin E2 (PGE2). This suggests
that this oxidized microenvironment favors a state of chronic
inflammation in the TME. As stated earlier cytotoxic lymphocytes
(NK cells and cytotoxic T lymphocytes) play an essential role in the
immune response against cancer (97, 170–177). It is therefore not
surprising that harnessing the power of these innate and adaptive
cytotoxic immune cells during immune check point blockage (ICB)
or CAR-T/NK cell immunotherapies has produced very
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encouraging results (178–180). As we have discussed earlier, NK
cells and CD8+ effector memory T cells are particularly sensitive to
even low doses of H2O2 while the T regulatory cells are protected
from H2O2-dependent inhibition of their suppressive function and
H2O2-induced death (87, 88, 90). Accordingly, tumor-infiltrating
lymphocytes must adapt to this oxidized microenvironment among
other things by modulating the ratio ORAI1:ORAI3 expression
(106, 112). Despite these adaptation mechanisms, as we have seen
earlier, exposure to exogenous ROS can severely dampen
lymphocytes’ effector function, making the TME particularly
hostile to infiltrating lymphocytes (181). Interestingly and counter
intuitively, the inflamed nature of the TME further contributes to
making the TME hostile for lymphocytes and NK cells. Indeed, it
was recently reported that tumor-derived PGE2 achieves immune
evasion by inhibiting NK cell-mediated remodeling of the TME and
unleashing of cytotoxic T cells (173). Interestingly, F2-isoprostanes
(F2-IsoPs) and isolevuglandins (IsoLGs), which are oxidized
derivatives of PGE2, are extremely relevant disease biomarkers, as
they are directly involved in the pathological processes (induction of
Frontiers in Immunology | www.frontiersin.org 8
inflammatory pathways, modulation of immune response, and
induction of cell death) (182–184). Since inflammation is closely
linked to ROS production, whether the oxidized form of PGE2
contributes to this immune evasion needs to be investigated.
Collectively, the evidence supports that the oxidized nature of the
TME is likely to affect the efficiency of infiltrating anti-tumor
lymphocytes and the development of strategies to enable
lymphocytes to withstand the oxidized nature of the TME could
improve immunotherapies (Figure 3).
CONCLUDING REMARKS

Based on the available evidence, both NOX- and mitochondrial-
derived ROS play critical roles in lymphocyte activation,
development, effector function, cytotoxicity, viability but also
dysfunction. To this regard ROS directly contribute to both
physiological and pathological adaptive immune responses.
FIGURE 3 | ROS in the tumor microenvironment. The metabolic stress imposed by the neoplastic transformation and uncontrolled proliferation combined with the
hypoxic nature and marked production of ROS contribute to the chronic inflammation state of the tumor microenvironment (TME). The oxidative nature of the TME is
exacerbated by its infiltration with immune cells with altered phenotypes [neutrophils, macrophages and myeloid derived suppressor cells [MDSCs)]. NK cells and
CD8+ effector memory T cells are particularly sensitive to even low doses of H2O2, while the T regulatory cells are protected from H2O2-dependent inhibition of their
suppressive function and H2O2-induced death. Taken together, this supports that the oxidized TME may be a particularly inhospitable site for NK cells and CD8 T
cells and detrimental to T cell-based adoptive cell transfer therapies.
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ROS from both sources contribute to the activation process of
lymphocytes, however, based on strong genetic evidence relying
on hypomorphic allele of the Ncf1 gene encoding for p47phox, it
is tempting to suggest that NOX-derived ROS would have a
preponderant role as modulators to fine-tune the inflammatory
response depending on the timing, the site and the level of their
production. But more investigations are still required to seal this
case. Moreover, since ROS also participate in innate cell function
by potentiating the killing ability of phagocytes, an essential step
in the antigen processing and presentation function of these
phagocytes, ROS also indirectly contribute to adaptive immunity
though the interplay between innate and adaptive immunity.
Further characterization of the complex functions of ROS in
lymphocyte biology will bring new insight for understanding the
Frontiers in Immunology | www.frontiersin.org 9
pathological conditions in which lymphocyte function is either
detrimental or beneficial.
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