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Abstract
Protein-nucleic acid interactions are central to various fundamental biological processes.

Automated methods capable of reliably identifying DNA- and RNA-binding residues in pro-

tein sequence are assuming ever-increasing importance. The majority of current algorithms

rely on feature-based prediction, but their accuracy remains to be further improved. Here

we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic

acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template

predictor SNBRFinderT. SNBRFinderF was established using the support vector machine

whose inputs include sequence profile and other complementary sequence descriptors,

while SNBRFinderT was implemented with the sequence alignment algorithm based on pro-

file hidden Markov models to capture the weakly homologous template of query sequence.

Experimental results show that SNBRFinderF was clearly superior to the commonly used

sequence profile-based predictor and SNBRFinderT can achieve comparable performance

to the structure-based template methods. Leveraging the complementary relationship

between these two predictors, SNBRFinder reasonably improved the performance of both

DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid

prediction reached competitive performance relative to our previous structure-based coun-

terpart. Our extensive and stringent comparisons show that SNBRFinder has obvious

advantages over the existing sequence-based prediction algorithms. The value of our algo-

rithm is highlighted by establishing an easy-to-use web server that is freely accessible at

http://ibi.hzau.edu.cn/SNBRFinder.

Introduction
Protein-nucleic acid interactions are central to various fundamental biological processes, espe-
cially those related to replication, transcription, and translation [1, 2]. Although the advanced
experimental techniques have accelerated our understanding of the mechanism of recognition
and binding between protein and DNA/RNA in the past twenty years, the principles governing
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protein-nucleic acid interactions remain to be further exploited. Computational prediction of
DNA- and RNA-binding residues might offer new insights into the elucidation of this
problem.

As the number of experimentally solved protein-nucleic acid complexes increases steadily, a
variety of structure-based algorithms have been proposed to predict DNA- or RNA-binding
residues. These approaches can roughly be partitioned into three classes: (i) the feature-based
class; (ii) the template-based class; (iii) the hybrid class. As for the first class, the predictors use
various structural features of the target residues in conjunction with their local contexts as the
inputs of different machine learning techniques or customized scoring functions to predict
their binding function [3–16]. As for the second class, the predictors utilize structure alignment
algorithm as searching engine to retrieve the reliable template of query protein and recognize
the binding residues with higher confidence based on the simulated complex structure [17–
20]. Unfortunately, not all the proteins can achieve reasonable templates to identity their bind-
ing residues. In these cases, the feature-based predictor might complement the shortcoming of
the template-based predictor. Based on this assumption, we recently built two hybrid predic-
tors DNABind and RBRDetector [21, 22], belonging to the third class, which respectively
improved DNA- and RNA-binding residue predictions by leveraging the complementary
nature of feature- and template-based approaches. Nevertheless, the major limitation of struc-
ture-based algorithms is that they can only be applicable to a relatively small range of proteins
whose structures are available. Due to the fact that the number of solved structures substan-
tially lags behind that of protein sequences, it is therefore more urgent to develop effective and
efficient computational tools for annotating nucleic acid-binding residues from protein
sequence.

Theoretically, the sequence-based approaches could also be divided into the three classes
similar to those of the structure-based counterparts. In particular, we expect that the integrative
prediction strategy can be extended to sequence-based prediction, which might have a broader
application in the real situation. However, the majority of current sequence predictors belong
to the first class [23–33]. To our knowledge, only the HomPRIP and RNABindRPlus algo-
rithms proposed by Wilia et al. [34] respectively utilize the template-based and hybrid strate-
gies to recognize RNA-binding residues in protein sequence. HomPRIP uses the sequence
alignment program BLAST [35] to retrieve the templates of query sequence with a relaxed
sequence identity constraint (95%), while RNABindRPlus is an integrative predictor that uses
logistic regression to merge the predictions from HomPRIP and another feature-based predic-
tor named SVMOpt. Wilia et al. [34] show that HomPRIP achieved promising performance
for the query sequences whose close homologs can be found and RNABindRPlus was superior
to SVMOpt due to the incorporation of HomPRIP. Despite their pioneering work, the method-
ology might be further improved from the following aspects. First, the template detection
based on protein sequence is actually the fold recognition problem. Zhao et al. [36, 37] recently
exploited two profile alignment tools SPARKS-X and HHblits, which showed better perfor-
mance than BLAST, to respectively distinguish RNA- and DNA-binding proteins from non-
binding proteins. Intuitively, the profile alignment algorithms could be more sensitive to
finding the templates (especially the remote ones) of nucleic acid-binding sequences, which is
definitely helpful for enhancing template-based prediction. Second, the relaxed sequence iden-
tity threshold used to remove homologs would result in overestimation of the template and
hybrid predictors. More stringent constraint such as the 30% cutoff should be applied to per-
formance evaluation, which can objectively reflect the usefulness and applicable range of the
proposed methods. Third, the feature-based module SVMOpt only uses sequence profile to
characterize each residue and disregards other residue properties related to protein-nucleic
acid interactions. Additional sequence descriptors that are complementary to sequence profile
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should be exploited for improving feature-based prediction. Fourth, if the proposed methods
work well for RNA-binding residue prediction, one might expect that the methodology can
also be applicable to DNA-binding residue prediction due to the similarities between them.

With this background, we attempted to develop a sequence-based hybrid algorithm for pre-
dicting nucleic acid-binding residues. To this end, using support vector machine algorithm, we
implemented a feature-based predictor termed SNBRFinderF whose inputs are composed of
comprehensive sequence-derived descriptors. Meanwhile, we built a template-based predictor
termed SNBRFinderT in which the profile hidden Markov models were used to retrieve the
optimal template of the query sequence. The extensive and stringent evaluation reveals that
SNBRFinderF was superior to the sequence profile-based predictor, and SNBRFinderT yielded
comparable performance to the template-based predictor established using structural align-
ment. By combining the individual methods, the hybrid predictor termed SNBRFinder remark-
ably improved the performance for both DNA- and RNA-binding residue predictions. Finally,
we demonstrate that SNBRFinder not only got comparable or superior performance in com-
parison with RNABindRPlus, but also outperformed the existing sequence-based feature pre-
dictors. This work suggests that our proposed methodology could be further applicable for
annotating other functional residues on a genome scale.

Materials and Methods

Datasets
DB312 and RB264. DB312 is a DNA-binding protein dataset including 312 chains, while

RB264 is an RNA-binding protein dataset composed of 264 chains. These two datasets were
generated in our earlier works [21, 22]. All the entries in DB312 (or BR264) satisfy the follow-
ing constraints: (i) the chain is extracted from the complex structure solved by X-ray crystallog-
raphy with a resolution better than 3Å; (ii) the chain is not shorter than 40 amino acids long
and includes at least five DNA-binding (or RNA-binding) residues; (iii) no two chains share
more than 30% sequence identity. Here a residue was considered as a binding residue if it con-
tains at least one heavy atom within 4.5Å of any atom in the bound DNA (or RNA) molecule.
Based on this definition, the DB312/RB264 dataset contains 8596/8995 binding residues and
65162/58541 nonbinding residues. We utilized these two datasets for cross-validation experi-
ments and for training the final prediction model in our web server.

DB123, DB232, DB374, RB106, RB144, and RB198. DB123, DB232, and DB374 are
three DNA-binding protein datasets including 123, 232, and 374 chains respectively, and
RB106, RB144, and RB198 are three RNA-binding protein datasets including 106, 144, and 198
chains respectively. These six datasets were established by the existing studies [21, 38–40]. The
maximum pairwise sequence identity of DB123 and DB374 is 25%, while the corresponding
measure of the remaining datasets is 30%. We also performed cross-validation on these data-
sets for demonstrating the robustness of our proposed algorithm. The binding residues in each
dataset were defined according to the original criterion in the references. More details about
these datasets are provided in S1 Table.

DB35 and RB36. In addition to sequence-based prediction, the structural model of a
given sequence can also be used to infer its binding regions. Dror et al. [41] collected 35 DNA-
binding proteins (DB35) and 36 RNA-binding proteins (RB36), where the chains share less
than 25% sequence identity. They produced the structural model of each chain by running the
I-TASSER program [42] with the 95% sequence identity cutoff. For these datasets, the binding
residues were generated using the same definition of DB312 and RB264. DB35 and RB36 were
used as independent datasets to estimate our sequence-based method, the performance of
which was to be compared with that of structural model-based prediction.
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DB33, RB49, and RB44. DB33, RB49, and RB44 are three well-established nucleic acid-
binding protein datasets, which include 33, 49, and 44 chains, respectively. DB33 and RB49
were built by Nagarajan et al. [43, 44] (the Dataset2 in their works) and RB44 was established
by Puton et al. [45]. The pairwise sequence identity of DB33 and RB49 is less than 30%, while
this measure of RB44 is not greater than 40%. Since these datasets have been used to compare
the existing approaches, we also considered them as independent datasets to estimate our
method. To make a direct comparison, we used the original criterion to define the binding resi-
dues in each dataset.

Sequence-Based Residue Representation
In the current work, we extracted various sequence signatures, such as sequence profile, residue
conservation scores, predicted structural features, physicochemical properties, interface pro-
pensity, sequential position, and global features, to quantitatively characterize each residue in a
query sequence. Details about these features are given in the following sections.

Sequence profile
Sequence profile is an effective indicator for measuring the evolutionary conservation of each
residue in a protein sequence. The position specific scoring matrix (PSSM) of each query
sequence was generated by conducting PSI-BLAST searches [46] against NCBI non-redundant
database with three iterations and the E-value threshold of 0.001. The elements of PSSM were
normalized using the standard logistic function as:

f ðxÞ ¼ 1

1þ e�x

where x is the raw element value of the PSSM.

Residue conservation scores
Besides sequence profile, the conservation of each residue was represented by the other three
features, such as Shannon entropy (SE) [47], relative entropy (RE) [48], and Jensen-Shannon
divergence score (JSD) [49]. They were calculated using the weighted observed percentages
derived from the multiple sequence alignment (MSA) generated by PSI-BLAST. Especially, the
RE and JSD measures further consider the background frequency of amino acids. The defini-
tion of these features is given as following:

SE ¼ �
X
a2AA

piðaÞlogpiðaÞ

RE ¼
X
a2AA

piðaÞlog
piðaÞ
qðaÞ

JSD ¼ l
X
a2AA

piðaÞlog
piðaÞ
ciðaÞ

þ ð1� lÞ
X
a2AA

qðaÞlog qðaÞ
ciðaÞ

where pi(α) denotes the weighted occurring frequency of residue type α in the ith column of the
MSA, q(α) denotes the background frequency that was derived from the overall amino acid dis-
tribution in the BLOSUM62 alignments, ci(α) is a combined frequency defined as ci(α) = λpi(α)
+ (1- λ) q(α), and λ is a prior weight and is set to 0.5.
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Predicted structural features
Predicted structural features could provide valuable information as the native structure of the
query protein is not available. For each residue, the predicted secondary structure, solvent
accessibility, and backbone dihedral angles were generated using the SPINEX software [50],
while the predicted disorder score was produced by the DISOPRED program [51]. The pre-
dicted solvent accessibility should be normalized by the maximum surface area [52], and the
predicted dihedral angles should be divided by 180.

Physicochemical properties
Physicochemical attributes of an amino acid might play important roles in protein-nucleic acid
interactions. To capture the specific properties of each residue type, we chose five amino acid
indices from the AAindex database [53], including hydrophobicity, hydrophilicity, number of
electrostatic charge, number of potential hydrogen bonds, and isoelectric points (S2 Table).
These attribute values were to be normalized using the standard logistic function.

Interface propensity
Interface propensity measures the relative importance of different amino acids in nucleic acid-
binding interface. We calculated the interface propensity of each residue type which is defined
as the ratio of the amino acid frequency in the binding interface to that in the whole protein
sequence. We then normalized the raw values using the following equation:

Pnorm
i ¼ Pi �Pmin

Pmax �Pmin

where Pi denotes the propensity of residue type i, and Pmax and Pmin denote the maximum and
minimum values among all the residue types, respectively.

Sequential position
Sequential position represents the relative location of each residue in a whole sequence. Two
features proposed by Chen et al. [54], termed as terminus indicator and secondary structure
segment indicators, were calculated in this study. For each residue, the terminus indicator was
assigned to 1 if this residue is located in the first or the last three positions in a sequence, other-
wise it was set to 0. The second measure, including the helix, strand, and coil indicators, is used
to annotate whether a helix/strand segment predicted by SPINEX was observed in the flanking
regions of the target residue. We assigned the helix/strand indicator of each residue as 1 if there
exists a helix/strand segment in its neighborhood, and the coil indicator is thus set to 0. More
details can be found in Chen et al.'s paper [54].

Global features
Global information of a query sequence was represented by two features in this work. One is
the sequence length and the other is the global amino acid composition of each protein
sequence. Note that the sequence length was to be divided by 1000 for normalization.

SNBRFinderF: A Sequence-Driven Feature Predictor
In this work, we established a feature-based predictor termed SNBRFinderF for identifying
DNA- or RNA-binding residues in a query sequence. We selected the support vector machine
(SVM) algorithm to establish the prediction model. A sliding window composed of the target
residue and its five flanking residues on each side was utilized to represent its sequential
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microenvironment. The window size was chosen based on our earlier studies. All the features
mentioned in the previous section were used as the inputs of the SVM algorithm. The LIBSVM
package [55] was utilized to implement this predictor and the radial basis function was selected
as the kernel. A probability score was assigned to each residue by LIBSVM. By conducting a
grid search, we find that as the values of C and γ were set to 10 and 0.1 in the kernel function,
our predictor can achieve optimal performance for both DNA- and RNA-binding residues.

SNBRFinderT: A Sequence-Driven Template Predictor
Besides SNBRFinderF, we developed an alignment-based method termed SNBRFinderT to rec-
ognize putative binding residues only using sequence information, in which the HHblits pro-
gram [56] was utilized to implement the prediction model. HHblits is a recently published fold
recognition algorithm that represents both query and database sequences by profile hidden
Markov models (HMMs). In our study, the query and template sequences were transformed
into the HMMs by searching them against the Uniprot20 database where the pairwise sequence
identity is around 20%. The query HMM was then compared with each HMM in the template
library. Default parameters were utilized in the HHblits program. For each query and template
pair, HHblits outputs a probability score, ranging from 0 to 100%, for evaluating the similarity
between the aligned HMMs. Based on this measure, the top-ranked template was chosen to
accomplish the alignment-based prediction. Concretely, one residue in the query sequence was
predicted to be a binding residue with a probability score of 1 if this residue was matched with
a binding residue in the optimal template, otherwise with a probability score of 0.

SNBRFinder: A Sequence-Driven Hybrid Predictor
The current work is motivated by our previous findings that both DNA- and RNA-binding res-
idue predictions can be remarkably improved by merging the structure-based feature and tem-
plate approaches [21, 22]. Here this strategy was extended to develop a sequence-driven
integrative algorithm, referred to as SNBRFinder, for identifying nucleic acid-binding residues.
As illustrated in Fig 1, if the query sequence can find a reasonable template using HHblits, we
considered the linear combination of the outputs from the feature and template predictors as
the final result. Otherwise, the prediction result was individually dependent on the output from
the feature predictor. We calculated the final probability score of each residue as following:

Cscore ¼ aFscoreþ (1�a)Tscore if HHscore � cutoff

Cscore ¼ Fscore Otherwise

(

whereHHscore denotes the similarity score between the query sequence and its best template,
Fscore and Tscore represent the outputs of SNBRFinderF and SNBRFinderT, respectively. By
thoroughly testing the parameters, we find that as the values of α and cutoff were assigned to
0.6 and 85%, SNBRFinder attained optimal performance for both types of binding residues.

Test Procedure and Evaluation Measures
In this study, we utilized cross-validation and independent test to evaluate the proposed predic-
tors. We first performed 5-fold cross-validation on the DB312 and RB264 datasets, respectively.
In this procedure, we randomly divided DB312/RB264 into five partitions. For each run, four sub-
sets were merged to construct the training set and template library, and the rest one was consid-
ered as the test set. Unlike our previous work, here we used all the negative samples (nonbinding
residues) to train the machine learning model, because this modification resulted in superior pre-
diction performance (shown later). Similarly, we checked our predictors using different datasets
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collected in the existing studies (e.g., DB123, DB232, DB374, RB106, RB144, and RB198) by 5-fold
cross-validation. In addition, we considered DB312/RB264 as the training set and template library,
and performed independent test on the remaining datasets used in this work (e.g., DB35, RB36,
DB33, RB49, and RB44). To avoid the bias induced by close homologs, we removed the chains in
DB312/RB264 sharing greater than 30% sequence identity with any chain in the independent
dataset. The prediction results were to be estimated in terms of two different ways, including resi-
due- and chain-based evaluations, the details of which can be found inWalia et al.'s paper [39]. In
agreement with our previous work, the commonly used evaluation measures, such as recall, preci-
sion, F1, accuracy (ACC), Matthews correlation coefficient (MCC), and the area under the
receiver operating characteristic curve (AUC), were applied to performance assessment.

Statistical Analysis
Statistical tests were conducted to evaluate the significance of performance difference between
a given pair of predictors. We calculated the MCC value of each chain for different predictors
and compared the corresponding paired MCC values. If these values come from a normal dis-
tribution, as suggested by the Shapiro-Wilk test, we utilized the paired t-test to evaluate signifi-
cance. Otherwise, we used the Wilcoxon signed-rank test. As the P-value<0.05, the
performance difference is significant.

Results and Discussion

Evaluation of Feature-Based Method by 5-fold Cross-Validation
In this section, an attempt was made to systematically evaluate the usefulness of different sequence
features proposed in our study. To this end, we first established a baseline predictor that only uti-
lized the PSSM feature as the inputs of the SVM algorithm, because this feature is most commonly
utilized in the existing studies. We then gradually added the other sequence features into the base-
line predictor and checked if the new predictors could achieve better performance.

Fig 1. Flowchart of our SNBRFinder algorithm. SNBRFinder is a sequence-based hybrid prediction algotirhm comprising a feature-based predictor
SNBRFinderF and a template-based predictor SNBRFinderT. SNBRFinderF was built using the support vector machine algorithm whose inputs include
comprehensive sequence descriptors and SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models.

doi:10.1371/journal.pone.0133260.g001
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Table 1 illustrates the performance of different SVM-based predictors on the DB312 and
RB264 datasets. According to the residue-based evaluation, we find that the baseline predictor
yielded similar performance for both DNA- and RNA-binding residues, with a F1 of around
0.49 and MCC of around 0.42. This result reveals that we can achieve acceptable performance
using the PSSM alone as suggested in most previous studies. When the residue conservation
scores and sequence-derived structural features were gradually integrated into the baseline pre-
dictor, the F1 and MCC measures were respectively raised by about 0.02 on both datasets, sug-
gesting that these features contain complementary information which is not included in the
PSSM. We further observe that progressive incorporation of the physicochemical properties,
interface propensity, and sequential position features can marginally improve the prediction
performance. Finally, when the global features were used, our feature-based prediction model
(SNBRFinderF) reached the optimal performance with a F1 of about 0.525 and MCC of about
0.460 for both types of binding residues. Based on these results, we summarize that the residue
conservation scores, predicted structural features, and global features played dominant roles in
improving the performance of PSSM-based predictor, and the remaining features can also help
to enhance the prediction although their contribution was not so remarkable. In comparison
with the baseline predictor, additionally, the AUC values of SNBRFinderF were raised from
0.835 and 0.811 to 0.862 and 0.845 on DB312 and RB264, respectively, demonstrating the supe-
riority of our feature-based predictor according to the overall performance assessment.

Furthermore, we utilized the chain-based evaluation to estimate the predictors mentioned
above. Focusing on the DB312 dataset, we see from S3 Table that the F1 and MCCmeasures of
each predictor calculated using chain-based way were slightly higher than those generated
using residue-based way, indicating that as regards DNA-binding residue prediction, all these
feature-based predictors were not sensitive to different evaluation types. By contrast, as these
predictors were applied to RNA-binding residues, there was a remarkable decrease in their per-
formance according to the chain-based evaluation measures. For instance, the F1 and MCC
measures of SNBRFinderF drastically dropped from 0.530 and 0.456 to 0.454 and 0.343 for the
RB264 dataset, respectively. Similar observations have been reported by previous studies [9,
39]. This might be due to the fact that the correctly predicted RNA-binding residues were clus-
tered in some query sequences such as those binding to ribosomal RNAs. Even so, SNBRFin-
derF consistently outperformed the PSSM-based predictor on both datasets. The AUC values
of the former were 0.852 and 0.760 for DB312 and RB264 respectively, whereas the measures
of the latter were 0.829 and 0.746. The statistical significance of performance differences is pro-
vided in S4 Table. These results confirm again the effectiveness of our additional sequence fea-
tures for predicting nucleic acid-binding residues.

Table 1. Residue-based evaluation of different feature-based predictors on DB312 (RB264).

Featurea Recall Precision F1 ACC MCC AUC

PSSM 0.500 (0.498) 0.478 (0.492) 0.488 (0.494) 0.878 (0.865) 0.420 (0.417) 0.835 (0.811)

PSSM+CS 0.506 (0.521) 0.495 (0.498) 0.499 (0.509) 0.882 (0.866) 0.433 (0.432) 0.845 (0.822)

PSSM+CS+PS 0.515 (0.524) 0.502 (0.510) 0.507 (0.516) 0.884 (0.870) 0.442 (0.441) 0.854 (0.830)

PSSM+CS+PS+PC 0.521 (0.527) 0.502 (0.508) 0.510 (0.517) 0.884 (0.869) 0.445 (0.442) 0.856 (0.833)

PSSM+CS+PS+PC+IP 0.522 (0.528) 0.501 (0.507) 0.511 (0.517) 0.884 (0.869) 0.445 (0.441) 0.857 (0.833)

PSSM+CS+PS+PC+IP+SP 0.532 (0.529) 0.496 (0.508) 0.512 (0.518) 0.882 (0.869) 0.446 (0.443) 0.858 (0.834)

PSSM+CS+PS+PC+IP+SP+GF 0.544 (0.549) 0.505 (0.513) 0.523 (0.530) 0.885 (0.871) 0.458 (0.456) 0.862 (0.845)

aPSSM: position specific scoring matrix, CS: residue conservation scores, PS: predicted structural features, PC: physicochemical properties,

IP: interface propensity, SP: sequential position, and GF: global features.

doi:10.1371/journal.pone.0133260.t001
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Impact of Different Machine Learning Techniques and Training Sets on
Feature-Based Prediction
As is well known, machine learning algorithm and training set are the major determinants of
feature-based prediction. Previous studies have exploited various machine learning models,
such as SVM, random forest (RF), neural networks (NN), and naive Bayes (NB), to recognize
DNA- or RNA-binding residues [3, 9, 11, 13, 14, 16, 23–33, 40, 57]. On the other hand, there
are two basic ways to establish the training set in the existing studies. One way is to build an
unbalanced training set using all the residues [9, 23], and the other way is to establish a bal-
anced training set by merging all the binding residues with the same number of randomly sam-
pled nonbinding residues [8, 21, 22]. In this work, to achieve an optimal feature predictor, we
combined four types of machine learning algorithms with two types of training sets to con-
struct eight predictors and systematically compared the performance of them by conducting
5-fold cross-validation on the DB312 and RB264 datasets.

As shown in Table 2, on the residue-based level, the SVM-based predictor produced the
best performance on both DB312 and RB264, followed by RF- and NN-based counterparts,
whereas the NB-based predictor attained the worst performance. For example, when the above
predictors were trained using the balanced positive and negative samples, the MCCmeasures
of them were 0.418/0.426, 0.363/0.415, 0.344/0.379, and 0.257/0.277 for the DB312/RB264
dataset, respectively. It is clear that the SVM algorithm has distinct advantages over the other
popular machine learning techniques. Furthermore, we observe that all these algorithms except
NB achieved the relatively higher F1 and MCC measures using the unbalanced training set
than using the balanced one. In particular, the SVM-based predictor yielded the F1 and MCC
values of 0.523/0.530 and 0.458/0.456 (unbalanced) in comparison with 0.489/0.506 and 0.418/
0.426 (balanced) on DB312/RB264. Obviously, the information loss induced by random sam-
pling weakened the prediction performance. However, it should be pointed out that we
achieved the better performance using all the training samples at the cost of taking much lon-
ger to train the prediction models. As the chain-based evaluation was considered, similar ten-
dency can be observed in S5 Table. As a consequence, the predictor based on the combination
of SVM and unbalanced training set (SNBRFinderF) is the optimal choice for both DNA- and
RNA-binding residue predictions.

Evaluation of Template-Based Predictor by 5-Fold Cross-Validation
Additionally, the alignment-based predictor named SNBRFinderT was tested on DB312 and
RB264. HHscore is an important indicator to measure the degree to which the template is

Table 2. Residue-based evaluation of different machine learningmodels and training sets on DB312 (RB264).

Training set Classifiera Recall Precision F1 ACC MCC AUC

Balanced NB 0.625 (0.575) 0.243 (0.291) 0.349 (0.386) 0.728 (0.755) 0.257 (0.277) 0.723 (0.708)

NN 0.482 (0.474) 0.384 (0.456) 0.426 (0.462) 0.849 (0.853) 0.344 (0.379) 0.813 (0.801)

RF 0.487 (0.535) 0.405 (0.465) 0.442 (0.497) 0.857 (0.855) 0.363 (0.415) 0.820 (0.822)

SVM 0.541 (0.533) 0.448 (0.481) 0.489 (0.506) 0.869 (0.862) 0.418 (0.426) 0.847 (0.832)

Unbalanced NB 0.586 (0.590) 0.252 (0.285) 0.351 (0.383) 0.748 (0.746) 0.257 (0.274) 0.717 (0.701)

NN 0.443 (0.489) 0.441 (0.479) 0.440 (0.482) 0.869 (0.860) 0.367 (0.403) 0.812 (0.799)

RF 0.468 (0.519) 0.429 (0.488) 0.447 (0.502) 0.865 (0.863) 0.372 (0.424) 0.806 (0.817)

SVM 0.544 (0.549) 0.505 (0.513) 0.523 (0.530) 0.885 (0.871) 0.458 (0.456) 0.862 (0.845)

aNB: naive Bayes, NN: neural networks, RF: random forest, and SVM: support vector machines.

doi:10.1371/journal.pone.0133260.t002
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actually homologous to the query. Fig 2 illustrates that DNA- and RNA-binding proteins
shared generally similar HHscore distribution, but the former can more readily attain a reliable
template. For example, 68% of the chains in DB312 found a template with HHscore larger than
90%, whereas only 59% of the chains in RB264 can retrieve such template. When the best tem-
plate was chosen, the putative binding residues can be predicted based on the alignment infor-
mation between the query and template. As demonstrated in Table 3, the higher template
availability of DNA-binding proteins resulted in the better performance for predicting their
binding residues. Concretely, in terms of the residue-based evaluation, SNBRFinderT achieved
a F1 and MCC of 0.479 and 0.447 on DB312, and 0.417 and 0.378 on RB264, respectively. We
also checked SNBRFinderT using the chain-based evaluation. Compared to the residue-based
measures, we attained the relatively lower chain-based measures on DB312, with a F1 and
MCC of 0.435 and 0.397. Unlike our feature-based prediction, the template-based method was
sensitive to different evaluation types for DNA-binding proteins. As for RB264, SNBRFinderT

yielded the remarkably worse F1 and MCC values (0.305 and 0.240), which was similar to the
tendency of SNBRFinderF. In summary, the HMM-based search can be effectively utilized to
capture the remote template of query sequence, which provides another approach to annotate
nucleic acid-binding residues only using sequence information.

Evaluation of Our Hybrid Predictor by 5-Fold Cross-Validation
Once the individual prediction models were established, we can use a piecewise function to
merge the outputs of them as suggested in Materials and Method section. Here we compared
the performance of our individual and hybrid approaches on DB312 and RB264. As shown in
Table 4, when the HHscore cutoff was assigned to 85%, we can retrieve 216 DNA-binding

Fig 2. HHscore distribution of optimal templates for DB312 and RB264. The HHscore produced by
HHblits ranges from 0 to 100% and is used to measure the similarity between the query sequence and its
optimal template.

doi:10.1371/journal.pone.0133260.g002

Table 3. Evaluation of our template-based predictor on DB312 (RB264).

Evaluation Recall Precision F1 ACC MCC

Residue-based 0.382 (0.321) 0.642 (0.594) 0.479 (0.417) 0.903 (0.880) 0.447 (0.378)

Chain-based 0.412 (0.287) 0.522 (0.379) 0.435 (0.305) 0.881 (0.817) 0.397 (0.240)

doi:10.1371/journal.pone.0133260.t003
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proteins (DB216) and 159 RNA-binding proteins (RB159), respectively. It is clear that our tem-
plate predictor attained good performance on both subsets, because most of these sequences
can find really homologous template for inferring their putative binding residues. The MCC
values of SNBRFinderT on DB216 and RB159 were 0.539 and 0.493, respectively. Meanwhile,
our feature predictor SNBRFinderF produced slightly lower performance, yielding the MCC
values of 0.506 and 0.471 for these two subsets. Accordingly, we propose that these sequences
belonged to the easy class, in which their binding residues, at least in part, can correctly recog-
nized by both template and feature methods. Compared to the component predictors, the
MCC values of SNBRFinder was improved to 0.563 and 0.544, suggesting that the prediction
results of SNBRFinderT and SNBRFinderF contained complementary binding signatures.

As for the remaining 96 DNA-binding proteins (DB96) and 105 RNA-binding proteins
(RB105), the MCC values of SNBRFinderT were 0.125 and 0.049, respectively. Obviously, the
template unavailability for most sequences in these subsets resulted in the poor prediction of
their binding residues. Focusing on the feature-based prediction, we find that the performance
on DB96/RB105 was clearly inferior to that on DB216/RB159, suggesting that the binding resi-
dues in these query sequences whose remote template cannot be found by HMM-based search
may be also more difficultly identified by feature-based method. Even so, SNBRFinderF output
an acceptable MCC value of 0.342 for DB96 and 0.423 for RB105, respectively. Due to the fact
that the performance of SNBRFinderT on these two subsets was close to a random guess, the
combined predictor SNBRFinder just relied on the outputs of SNBRFinderF. With regard to
the whole datasets, SNBRFinder also outperformed SNBRFinderF and SNBRFinderT, yielding a
MCC value of 0.498/0.502 against 0.458/0.456 and 0.447/0.378 for DB312/RB264. Revisiting
Table 1, we can see that, compared to the PSSM-based predictor, the MCC value of SNBRFin-
der for DNA- and RNA-binding residue prediction was increased by 0.072 and 0.085, respec-
tively, showing the distinguished advantage of our hybrid algorithm over the baseline
predictor. Similar tendency can be seen for chain-based evaluation measures in S6 Table. Nota-
bly, there still exists a distinct performance gap as SNBRFinder was estimated using different
evaluation types on RNA-binding proteins, but this phenomenon did not appear for DNA-
binding proteins. The above results suggest that the individual prediction model can indeed
provide additional information between each other and the complementary relationship
between them is helpful for improving sequence-based nucleic acid-binding residue prediction.

Evaluation of Proposed Prediction Models Using Various Datasets
To further check the effectiveness and robustness of our method, we tested our individual and
integrative predictors using a group of datasets prepared by previous studies (e.g., DB123,

Table 4. Residue-based evaluation of our individual and hybrid predictors on DB312 (RB264).

Group NO. of chains Method Recall Precision F1 ACC MCC AUC

HHscore � 85% 216 (159) SNBRFinderF 0.596 (0.548) 0.539 (0.530) 0.565 (0.537) 0.894 (0.882) 0.506 (0.471) 0.883 (0.849)

SNBRFinderT 0.513 (0.474) 0.666 (0.635) 0.580 (0.541) 0.915 (0.899) 0.539 (0.493) N/A (N/A)

SNBRFinder 0.641 (0.606) 0.591 (0.598) 0.614 (0.601) 0.907 (0.900) 0.563 (0.544) 0.900 (0.875)

HHscore < 85% 96 (105) SNBRFinderF 0.422 (0.550) 0.421 (0.485) 0.420 (0.514) 0.861 (0.843) 0.342 (0.423) 0.806 (0.830)

SNBRFinderT 0.074 (0.042) 0.383 (0.262) 0.123 (0.073) 0.877 (0.837) 0.125 (0.049) N/A (N/A)

SNBRFinder 0.437 (0.550) 0.416 (0.485) 0.424 (0.514) 0.859 (0.843) 0.345 (0.423) 0.806 (0.830)

All 312 (264) SNBRFinderF 0.544 (0.549) 0.505 (0.513) 0.523 (0.530) 0.885 (0.871) 0.458 (0.456) 0.862 (0.845)

SNBRFinderT 0.382 (0.321) 0.642 (0.594) 0.479 (0.417) 0.903 (0.880) 0.447 (0.378) N/A (N/A)

SNBRFinder 0.581 (0.586) 0.538 (0.555) 0.558 (0.570) 0.893 (0.883) 0.498 (0.502) 0.877 (0.863)

doi:10.1371/journal.pone.0133260.t004
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DB232, DB374, RB106, RB144, and RB198). The PSSM-based predictor was still considered
as the baseline. Note that the binding residues of each dataset were defined using the original
criterion in the reference. Detailed results about different datasets are shown in Table 5. As
regards the baseline predictor, we find that there exists obvious performance discrepancy
between the three DNA-binding protein datasets, while the three RNA-binding protein
datasets collected by the same research group shared largely similar performance. For all these
datasets, however, as our additional sequence features were incorporated into the baseline
predictor, the MCC value of the feature predictor SNBRFinderF can be raised by 0.03~0.06,
confirming again the usefulness of these features. Focusing on the template-based prediction,
we can see that the performances on these datasets were not as well as those on DB312 and
RB264, which is probably due to the relatively small size of the template library. Despite this
limitation, the MCC values of these datasets ranged from 0.258 to 0.415, further suggesting
that the sequence-based template approach can be utilized to predict both DNA- and RNA-
binding residues. Furthermore, when the individual predictors were integrated, SNBRFinder
achieved superior performance for each dataset. In particular, the AUC measures of SNBRFin-
der were around 0.045 higher than those of the PSSM-based predictor. In addition, as illus-
trated in S7 Table, the above tendency can be observed using chain-based evaluation as well as
using residue-based evaluation. Altogether, the comprehensive validation indicates that our
proposed algorithm can be effectively applied to different datasets.

Table 5. Residue-based evaluation of our proposed predictors on various datasets.

Dataset Method Recall Precision F1 ACC MCC AUC

DB123 PSSM 0.481 0.374 0.415 0.836 0.330 0.799

SNBRFinderF 0.532 0.416 0.465 0.853 0.386 0.831

SNBRFinderT 0.223 0.587 0.322 0.886 0.313 N/A

SNBRFinder 0.547 0.436 0.482 0.859 0.407 0.839

DB232 PSSM 0.499 0.288 0.365 0.871 0.313 0.812

SNBRFinderF 0.520 0.336 0.407 0.887 0.359 0.846

SNBRFinderT 0.251 0.477 0.329 0.924 0.310 N/A

SNBRFinder 0.544 0.353 0.428 0.892 0.382 0.855

DB374 PSSM 0.418 0.499 0.453 0.931 0.419 0.846

SNBRFinderF 0.507 0.492 0.499 0.930 0.461 0.881

SNBRFinderT 0.373 0.541 0.440 0.935 0.415 N/A

SNBRFinder 0.517 0.538 0.526 0.936 0.492 0.889

RB106 PSSM 0.540 0.518 0.527 0.819 0.416 0.803

SNBRFinderF 0.574 0.531 0.551 0.824 0.442 0.823

SNBRFinderT 0.179 0.602 0.272 0.825 0.258 N/A

SNBRFinder 0.630 0.571 0.599 0.841 0.501 0.852

RB144 PSSM 0.529 0.511 0.518 0.820 0.409 0.801

SNBRFinderF 0.578 0.533 0.554 0.830 0.450 0.829

SNBRFinderT 0.261 0.605 0.363 0.834 0.319 N/A

SNBRFinder 0.644 0.553 0.594 0.839 0.497 0.849

RB198 PSSM 0.491 0.475 0.482 0.844 0.391 0.795

SNBRFinderF 0.517 0.501 0.509 0.852 0.422 0.825

SNBRFinderT 0.274 0.618 0.380 0.867 0.350 N/A

SNBRFinder 0.566 0.547 0.556 0.866 0.477 0.848

doi:10.1371/journal.pone.0133260.t005
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Comparison with Other Sequence- and Structure-Based Predictors
In addition to the HMM-based predictor, we established several other template predictors
using the existing sequence or structure alignment programs, such as BLAST [35], TMalign
[58], and SPalign [18]. Once we acquired the optimal template of the query protein using these
alignment tools, the putative binding residues can be determined in terms of the sequence or
structure alignment between the query and template. These predictors were also evaluated
using DB312 and RB264. As shown in Table 6, the F1 and MCC values of the BLAST-based
predictor were around 0.32 and 0.31 for both datasets based on the residue-based evaluation,
which were clearly worse than those of our HMM-based method (Table 4). The major reason
might be that the profile alignment (HHblits) can more effectively retrieve the remote template
than the simple sequence alignment (BLAST). With respect to the structure-based predictors,
TMalign/SPalign attained the F1 and MCC values of 0.474/0.488 and 0.434/0.447 on the
DB312 dataset, and 0.366/0.432 and 0.317/0.381 on the RB264 dataset, respectively. It is clear
that HHblits was comparable to SPalign and superior to TMalign. On the chain-based level (S6
and S8 Tables), HHblits achieved similar performance to TMalign, and was slightly worse than
SPalign. These suggest that we could replace structure alignment with HMM alignment for
template-based binding residue prediction.

We next applied the structure-based feature predictors proposed in our previous study to
the current datasets. The evaluated predictors contain NBRFeatureSEQ, NBRFeatureSTR, and
NBRFeature, where SEQ and STR represent the sequential and structural microenvironment
respectively, and NBRFeature is a hybrid feature predictor. More details can be found in our
earlier publication [22]. As given in Tables 4 and 6, for both DB312 and RB264, the perfor-
mance of our sequence-based predictor SNBRFinderF was slightly better than that of NBRFea-
tureSTR, but was relatively worse than that of NBRFeatureSEQ. From these results, we can
propose that the sequential window was more effective for characterizing the neighborhood of
a target residue compared to the structural window, and that the performance of NBRFeature-
SEQ might be the upper limit of nucleic acid-binding residue prediction based on sequence fea-
tures. Additionally, it can be observed that the MCC value of SNBRFinderF (Table 4) was
around 0.04 lower than that of NBRFeature for both datasets. Even though our sequence-based
feature predictor was relatively inferior to the structure-based counterpart, it could be consid-
ered as an alternative solution if the structural characteristics of query protein are not available.

Table 6. Residue-based evaluation of other sequence- and structure-based predictors on DB312 (RB264).

Type Methoda Recall Precision F1 ACC MCC AUC

Template BLAST 0.222 (0.218) 0.577 (0.613) 0.321 (0.322) 0.891 (0.878) 0.311 (0.315) N/A (N/A)

TMalign 0.389 (0.284) 0.606 (0.516) 0.474 (0.366) 0.900 (0.869) 0.434 (0.317) N/A (N/A)

SPalign 0.407 (0.350) 0.611 (0.566) 0.488 (0.432) 0.901 (0.878) 0.447 (0.381) N/A (N/A)

Feature NBRFeatureSEQ 0.588 (0.601) 0.525 (0.515) 0.555 (0.554) 0.890 (0.871) 0.493 (0.482) 0.879 (0.865)

NBRFeatureSTR 0.595 (0.556) 0.435 (0.501) 0.502 (0.526) 0.863 (0.867) 0.432 (0.450) 0.858 (0.852)

NBRFeature 0.607 (0.594) 0.525 (0.539) 0.563 (0.564) 0.890 (0.878) 0.502 (0.495) 0.888 (0.872)

Hybrid SNBRFinderBLAST 0.539 (0.554) 0.520 (0.541) 0.528 (0.547) 0.888 (0.878) 0.466 (0.477) 0.867 (0.854)

NBRDetectorTMalign 0.650 (0.606) 0.542 (0.580) 0.591 (0.592) 0.895 (0.889) 0.534 (0.528) 0.900 (0.886)

NBRDetector 0.654 (0.615) 0.545 (0.586) 0.594 (0.599) 0.896 (0.891) 0.538 (0.537) 0.902 (0.889)

aNBRFeature: a structure-based feature predictor in our previous work, NBRDetector: the combination of NBRFeature and SPalign, NBRDetectorTMalign:

the combination of NBRFeature and TMalign, and SNBRFinderBLAST: the combination of SNBRFinderF and BLAST.

doi:10.1371/journal.pone.0133260.t006
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We further constructed several hybrid prediction models based on the aforementioned pre-
dictors. As SNBRFinderF and BLAST were merged, the performance of this sequence-based
hybrid predictor was slightly improved compared to that of SNBRFinderF, yielding a F1 and
MCC of 0.528 and 0.466 for DB312, and 0.547 and 0.477 for RB264, respectively. All these
measures were around 0.03 lower than the corresponding measures of SNBRFinder (Table 4).
Despite the fact that we achieved an acceptable performance using BLAST alone, the outputs
of BLAST were just marginally complementary to those of SNBRFinderF. As a component
predictor, HHblits also showed its advantage over BLAST. Focusing on the structure-based
prediction, we observe that the NBRDetector algorithm (the combination of NBRFeature and
SPalign) outperformed SNBRFinder by around 0.035 in terms of the F1 and MCC measures
for both datasets. The chain-based evaluation measures for these predictors are provided in S8
Table, and the statistical significance of performance differences is given in S9 Table. Because
NBRDetector is one of the best structure-based algorithms and the performance discrepancy
between SNBRFinder and NBRDetector was relatively small, we believe that our sequence-
based hybrid strategy paves a novel way for accurately predicting DNA- and RNA-binding
residues.

Comparison with Structural Model-Based Prediction
Given a query sequence, another way for annotating its nucleic acid-binding residues is to
leverage the information from its structural model. To this end, the predicted structures of
35 DNA-binding proteins (DB35) and 36 RNA-binding proteins (RB36) prepared by Dror
et al. [41] were used as independent datasets to test our previous structure-based predictors,
the results of which were to be compared with those of our sequence-based predictors. From
Table 7, it can be seen that our sequence-based hybrid algorithm consistently outperformed its
component predictors for both DNA- and RNA-binding proteins. For example, the MCC val-
ues of SNBRFinder, SNBRFinderF, and SNBRFinderT were 0.491, 0.457, and 0.375 for DB35,
and 0.498, 0.461, and 0.290 for RB36, respectively. When the native structures were used, as
expected, the structure-based individual and hybrid predictors (except the template predictor
tested on DB35) were generally superior to their sequence-based counterparts. For instance,
the MCC values of NBRDetector, NBRFeature, and NBRTemplate were 0.530, 0.500, and 0.370
for DB35, and 0.516, 0.480, and 0.330 for RB36, respectively. These results further indicate that
our sequence-based predictors can achieve competitive performance in comparison with the
state-of-the-art algorithms depending on structural information. If the native structures were

Table 7. Residue-based evaluation of sequence- and structural model-based predictions on DB39 (RB36).

Typea Method Recall Precision F1 ACC MCC AUC

Structure NBRFeature 0.606 (0.659) 0.543 (0.538) 0.573 (0.593) 0.874 (0.817) 0.500 (0.480) 0.887 (0.848)

NBRTemplateb 0.326 (0.297) 0.578 (0.599) 0.417 (0.397) 0.873 (0.818) 0.370 (0.330) N/A (N/A)

NBRDetector 0.639 (0.665) 0.563 (0.579) 0.598 (0.619) 0.881 (0.835) 0.530 (0.516) 0.893 (0.865)

Model NBRFeature 0.553 (0.673) 0.509 (0.510) 0.530 (0.581) 0.864 (0.804) 0.451 (0.463) 0.851 (0.843)

NBRTemplate 0.300 (0.292) 0.553 (0.561) 0.389 (0.384) 0.869 (0.812) 0.342 (0.307) N/A (N/A)

NBRDetector 0.582 (0.684) 0.524 (0.548) 0.552 (0.609) 0.869 (0.823) 0.476 (0.501) 0.860 (0.857)

Sequence SNBRFinderF 0.568 (0.644) 0.508 (0.523) 0.536 (0.577) 0.864 (0.810) 0.457 (0.461) 0.844 (0.832)

SNBRFinderT 0.312 (0.279) 0.607 (0.545) 0.412 (0.369) 0.876 (0.808) 0.375 (0.290) N/A (N/A)

SNBRFinder 0.591 (0.666) 0.539 (0.556) 0.564 (0.606) 0.873 (0.825) 0.491 (0.498) 0.861 (0.854)

aStructure: native structure, Model: structural model, and Sequence: protein sequence.
bNBRTemplate: the template predictor implemented with SPalign.

doi:10.1371/journal.pone.0133260.t007
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replaced with the simulated structures generated by the I-TASSER software, the performance
of structure-based prediction for DNA-binding residues degraded remarkably, whereas the
performance for RNA-binding residues just slightly decreased. In this case, the MCC values of
NBRDetector, NBRFeature, and NBRTemplate were 0.476, 0.451, and 0.342 for DB35, and
0.501, 0.463, and 0.307 for RB36, respectively. It is clear that our sequence-based prediction
yielded better performance than the prediction based on structural models for DNA-binding
proteins, and attained comparable performance for RNA-binding proteins. Similar observation
can be found for the chain-based evaluation in S10 Table. The statistical tests further confirm
the aforementioned results (S11 Table). Additionally, a distinct disadvantage of the structural
model-based prediction is that it might spend too much time on the structure prediction for
query sequence, but our proposed sequence-based approach dose not suffer this problem.
Thus, the SNBRFinder algorithm is an effective and efficient tool for finding nucleic acid-bind-
ing residues in query sequence.

Comparison with Existing Sequence-Based Methods
In this section, we compared our proposed predictors with the existing sequence-based
approaches for DNA- and/or RNA-binding residue prediction. Three datasets collected in the
recent review articles (e.g., DB33, RB49, and RB44) were respectively used as independent data-
set to compare different algorithms. For each dataset, we utilized the evaluation measures pro-
posed in the original work to estimate our method. As a result, the performance on DB33 and
RB49 was evaluated using the chain-based way, whereas the performance on RB44 was assessed
using the residue-based way.

From Fig 3A, we find that the combination of our template- and feature-based outputs
resulted in the degraded performance as our predictors were tested on DB33. The MCC values
of SNBRFinderT, SNBRFinderF, and SNBRFinder were 0.21, 0.36, and 0.34, respectively. The
reason might be that the HMM-based prediction on this dataset was relatively worse and thus
the prediction results were not complementary to those of our feature-based predictor. Even
so, our hybrid predictor showed distinct superiority over the existing approaches. For instance,
the MCC value of SNBRFinder was about 0.06 higher than that of BindN+ and BindN-RF,
which achieved the best performance among the competing algorithms. Furthermore,
SNBRFinderF and SNBRFinder yielded the higher Accuracy1 and Accuracy2 measures. The
results suggest that the combination of our sequence features is more effective for detecting
DNA-binding residues compared to the feature sets used in the existing studies.

Fig 3B shows the performance of different RNA-binding residue predictors on RB49. Our
hybrid strategy adequately showed its effectiveness on this dataset. The MCC values of
SNBRFinderT, SNBRFinderF, and SNBRFinder were 0.27, 0.30, and 0.36, respectively. Similar
to SNBRFinder, RNABindRPlus is also composed of a feature-based predictor (SVMOpt) and
a template-based predictor (HomPRIP). To make a fair comparison, the 30% sequence identity
threshold was used to discard the close homologs in HomPRIP. The MCC values of HomPRIP,
SVMOpt, and RNABindRPlus were 0.12, 0.28, and 0.32, respectively. It is evident that our tem-
plate predictor remarkably outperformed the corresponding counterpart of RNABindRPlus.
This is probably due to the fact that HomPRIP chose BLAST as the search engine which could
not sensitively recognize the remote templates for most queries in RB49. In comparison, the
HMM-based search performed relatively well on this dataset. Our feature-based predictor also
showed slightly better performance than SVMOpt which only uses PSSM as the inputs. This
might be due to the usefulness of our additional sequence features. As expected, the superiority
of our component predictors resulted in the better performance of SNBRFinder. In Fig 3B, we
also observe that the Accuracy1, Accuracy2, and MCCmeasures of SNBRFinder were superior
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to those of other feature-based algorithms (e.g., BindN+ and RNABindR v2.0), further showing
the advantage of our method over the current state-of-the-arts. It should be pointed out that
the performance of existing methods on DB33 and RB49 could be overestimated, because

Fig 3. Comparison of our algorithms and existing approaches on three datasets. (A) DB33, (B) RB49,
(C) RB44. In (A) and (B), Accuracy1 = (TP+TN)/(TP+TN+FP+FN) and Accuracy2 = (Sensitivity+Specificity)/2.
In (C), the AUC values of SNBRFinderT, HomPRIP, and PRBR are not provided, because the outputs of
these three predictors are binary values. With the exception of SNBRFinder and RNABindRPlus (including
the component predictors), the evaluation measures of the other approaches are derived from the recent
review articles.

doi:10.1371/journal.pone.0133260.g003
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Nagarajan et al. [43, 44] did not use a stringent sequence identity cutoff such as 30% to remove
the redundancy between the test set and the training sets (private communications).

The RB44 dataset prepared by Puton et al. [45] was further used to check our method. The
comparison with other predictors on this dataset is shown in Fig 3C. The MCC values of
SNBRFinderT, SNBRFinderF, and SNBRFinder were 0.308, 0.439, and 0.479, respectively, while
the corresponding measures of HomPRIP, SVMOpt, and RNABindRPlus were 0.306, 0.425,
and 0.492, respectively. According to the residue-based evaluation, RNABindRPlus was slightly
better than SNBRFinder. When the chain-based way was used, however, SNBRFinder achieved
relatively higher performance compared to RNABindRPlus (S12 Table). The statistical signifi-
cance of performance differences between them is provided in S13 Table. On the other hand,
in terms of the MCC measure, our hybrid predictor SNBRFinder not only beat the existing fea-
ture-based predictors (e.g., PiRaNhA, BindN+, and PPRInt), but also outperformed the meta-
predictor composed of them. Furthermore, SNBRFinder generated the highest AUC value
(0.843) among all the evaluated predictors. The better performance attained by our approach
mainly resulted from two aspects: (i) the HMM-based search was specifically utilized to find
the weakly homologous template of nucleic acid-binding sequences, which laid a solid founda-
tion for our sequence-based template and hybrid algorithms; (ii) the comprehensive feature
descriptors proposed in our study can reasonably capture the sequence pattern of the binding
residues, which provided another solution for the query sequences whose remote templates are
not available.

Evaluation of Our Method with Non-Nucleic Acid Binding Sequences
Finally, the non-nucleic acid binding protein dataset (NB250) prepared by Stawiski et al. [59]
was used to check our predictors, which were trained with DB312/RB264. The results of 5-fold
cross-validation on DB312/RB264 were considered as a control. For each sequence, we calcu-
lated the ratio of positive predictions (RPP), which is defined as the number of the predicted
binding residues divided by the number of all the residues. As shown in Fig 4, for all the three
predictors, the distribution of the RPP of NB250 was significantly different from that of
DB312/RB264 (P-value�2.87×10−10, Kolmogorov-Smirnov test). Generally, the nonbinding
sequences achieved the relatively lower RPP values compared to the real binding sequences. In
particular, when SNBRFinder and SNBRFinderF were applied to the RB264 dataset, around
20% of RNA-binding proteins, most of which actually bind to ribosomal RNAs, attained a RPP
value greater than 0.4. Nevertheless, very few nonbinding proteins in NB250 can achieve such
a high value, which reasonably showed the specificity of our proposed methods. Additionally,
it should be emphasized that the majority of non-nucleic acid binding proteins yielded a RPP
value greater than 0, suggesting that our methods tend to incorrectly recognize some nucleic
acid-binding residues in these sequences. Hence, as the new sequences with unknown function
are to be annotated by our predictors, we should carefully check the prediction results.

SNBRFinder As a Web Service
To highlight the value of our algorithm, we implemented SNBRFinder as a user-friendly web
server freely available at http://ibi.hzau.edu.cn/SNBRFinder, which was developed in PHP,
Perl-CGI, and JpGraph. Our server allows users to conveniently submit multiple queries each
time with three diverse approaches including: (i) paste amino acid sequences in FASTA format;
(ii) upload a sequence file from the local machine; (iii) input UniProt IDs for retrieving the
remote sequence file. Meanwhile, users can choose the binding nucleic acid type they may be
interested in. As the submitted job is done, SNBRFinder will demonstrate the prediction results
from three perspectives (Fig 5). The first section provides summary information about the
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query sequence and its optimal template. The second section is graphical representation of the
prediction results. The last section includes details about the prediction results from our indi-
vidual and integrative predictors.

Fig 4. Distribution of the ratio of positive predictions for non-nucleic acid binding and nucleic acid binding proteins. (A) NB250 annotated by our
predictors trained with DB312, (B) NB250 annotated by our predictors trained with RB264. The solid bars represent the prediction results of non-nucleic acid
binding sequences, while the hollow bars represent the prediction results of nucleic acid binding sequences.

doi:10.1371/journal.pone.0133260.g004
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Conclusions
Inspired by our earlier findings that both DNA- and RNA-binding residue predictions can
be remarkably improved by merging structure-based template and feature methods, here we
developed a sequence-based hybrid algorithm SNBRFinder for predicting nucleic acid-binding
residues. To address this problem, the profile HMM alignment was ingeniously utilized to
establish the sequence-based template method, which can effectively recognize the weakly
homologous template of query protein as the structure-based template methods did. We also
characterized each residue with comprehensive sequence features to establish an enhanced
sequence-based feature predictor, which showed clear superiority over the simple PSSM-based
method. Based on the complementary nature between the individual predictors, SNBRFinder
yielded an obvious improvement in the performance of nucleic acid-binding residue predic-
tion. Especially, our sequence-based prediction can achieve competitive performance in com-
parison with the prediction relying on the native and predicted structures. Furthermore, the
comparison with current state-of-the-art algorithms demonstrates that SNBRFinder not only
has advantages over the similar method such as RNABindRplus, but also remarkably outper-
formed other existing feature-based predictors. This work strongly suggests that our proposed
methodology might open a new avenue to annotate other functional residues from protein
sequence.

Fig 5. Snapshots of SNBRFinder web server. The submission page allows users to input mutiple protein
sequences and specify the binding nucleic acid type. When the submitted job is finished, SNBRFinder will
demonstrate the prediction results from three perspectives. The first section provides summary information
about the query sequence and its optimal template. The second section is graphical representation of the
prediction results. The last section includes details about the prediction results such as the outputs from our
three predictors.

doi:10.1371/journal.pone.0133260.g005
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