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ABSTRACT Polar bears in captivity can be exposed to opportunistic pathogens not
present in their natural environments. A 4-month-old polar bear (Ursus maritimus)
living in an isolated enclosure with his mother in the Tierpark Berlin, Berlin, Ger-
many, was suffering from severe abdominal pain, mild diarrhea, and loss of appetite
and died in early 2017. Histopathology revealed severe hepatic degeneration and
necrosis without evidence of inflammation or inclusion bodies, although a viral in-
fection had been suspected on the basis of the clinical signs. We searched for nu-
cleic acids of pathogens by shotgun high-throughput sequencing (HTS) from
genomic DNA and cDNA extracted from tissue and blood. We identified a novel
Mastadenovirus and assembled a nearly complete genome from the shotgun se-
quences. Quantitative PCR (qPCR) revealed that viral DNA was present in various
concentrations in all tissues examined and that the highest concentrations were
found in blood. Viral culture did not yield cytopathic effects, but qPCR suggested
that virus replication was sustained for up to three passages. Positive immunofluo-
rescence staining confirmed that the virus was able to replicate in the cells during
early passage. Phylogenetic analysis demonstrated that the virus is highly divergent
compared to other previously identified Mastadenovirus members and basal to most
known viral clades. The virus was found only in the 4-month-old bear and not in
other captive polar bears tested. We surmised, therefore, that the polar bear was in-
fected from an unknown reservoir, illustrating that adenoviral diversity remains un-
derestimated and that cross-species transmission of viruses can occur even under
conditions of relative isolation.

IMPORTANCE Cross-species transmission of viral pathogens is becoming an increas-
ing problem for captive-animal facilities. This study highlights how animals in captiv-
ity are vulnerable to novel opportunistic pathogens, many of which do not result in
straightforward diagnosis from symptoms and histopathology. In this study, a novel
pathogen was suspected to have contributed to the death of a juvenile polar bear.
HTS techniques were employed, and a novel Mastadenovirus was isolated. The virus
was present in both the tissue and blood samples. Phylogenetic analysis of the virus
at both the gene and genome levels revealed that it is highly divergent to other
known mastadenoviruses. Overall, this study shows that animals in isolated condi-
tions still come into contact with novel pathogens, and for many of these patho-
gens, the host reservoir and mode of transmission are yet to be determined.
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Captive polar bears are vulnerable to opportunistic pathogens present in their
anthropogenic environments. Captive-animal environments may inadvertently

serve as hot spots for pathogens to concentrate and mix in nonsympatric species. This
has led to polar bears being exposed to pathogens they would never encounter in their
natural environment (1–4). Viral pathogens such as equine herpesvirus (EHV) types 1 (1)
and 9 (3, 5), West Nile virus (WNV) (2), and suid herpesvirus (SuHV) (4) have been
responsible for many serious and often lethal infections in captive polar bears in Europe
and the United States. Polar bears at the Zoological Gardens, Wuppertal, Germany,
were found to be infected with EHV-1, while polar bears at the Zoological Society of San
Diego were infected with EHV-9. However, in both cases, the polar bears were not in
direct contact with any equine species, and the source and mode of transmission have
remained undetermined. This suggests that there may be an indirect vector(s) enabling
the transmission of many viruses infecting different animals in zoos that never come
into direct physical contact.

In March 2017, a 4-month-old polar bear (Ursus maritimus) named Fritz developed
a sudden onset of mild diarrhea and loss of appetite in the Tierpark Berlin, Berlin,
Germany. Three days later, he died with severe abdominal pain. At necropsy, a severely
enlarged liver (hepatomegaly) was detected. Histopathology revealed severe hepatic
degeneration and necrosis. There was no evidence of inflammation or intranuclear or
cytoplasmic inclusion bodies. A search for viral particles using transmission electron
microscopy (TEM) in negative-stained homogenates from fresh liver tissue and intes-
tinal mucosa was negative. Likewise, TEM investigations of several epoxy-embedded
liver samples did not detect intranuclear or intracellular viral particles. We performed an
in-depth investigation at the molecular level to identify potential pathogens that could
be responsible for the disease. We used high-throughput sequencing techniques (HTS)
and classical virological methodology to examine tissue from liver, kidney, prescapular
lymph nodes, large intestine, and blood. We identified and characterized a nearly
complete genome of a novel Mastadenovirus that was present in all tissue and blood
samples tested and is the first to be recovered from the Ursidae family.

Mastadenoviruses belong to the family Adenoviridae and have linear double-
stranded DNA genomes that range in size from 26 to 43 kb (6). They infect a broad
range of host vertebrates and are known to be extremely stable in the environment,
suggesting that they may have multiple transmission routes (7, 8). Most adenoviruses
have been shown to have restricted host specificity (9) and usually cause clinical signs
that include enteritis and respiratory disease, but other clinical signs can also result
from infection (10–12, 53). Adenoviruses are used as gene therapy vectors to treat
genetic disorders and cancer (13). They are important vectors, as they can accommo-
date large pieces of foreign DNA and target multiple tissues. Additionally, animal
adenoviruses have been successfully engineered as vectors for gene delivery in humans
(14).

To date, no adenoviruses have been isolated from polar bears or any other species
of bear. However, in 1948, the first probable occurrence of an adenovirus infecting a
polar bear was reported but was never confirmed (15). In addition, an adenovirus was
isolated from two black bear cubs (Ursus americanus) that died within 1 to 4 days after
they exhibited signs that included salivation, emesis, convulsions, periodic nystagmus,
and paddling of the legs (16). In this case, a polar bear also kept in the same facility and
suffering from an unknown condition recovered after administration of canine hepatitis
(hepatitis contagiosa canis [HCC]) antiserum. In this case study, the necropsy findings
of the black bear cubs were confirmed by both histopathology and electron micros-
copy, results that led to HCC diagnosis.

The viral genome determined was divergent from all known adenoviruses, and
genetic distances for most genes of the new virus (polar bear-associated mastadeno-
virus 1 [PbAdV-1]) were equidistant from known viruses in GenBank. Phylogenetic
analysis of the viral genome and genes failed to indicate the reservoir, and analysis
suggests that it is a mammalian Mastadenovirus basal to most other adenoviruses. In
addition, the virus grew on two cell lines, but it was unclear whether it was noncyto-
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pathic to the cell lines or whether they simply did not fully support effective replication
of the virus. The results suggest that like other pathogens, even in isolated facilities
such as the quarantined enclosure in which the baby polar bear was kept with its
mother, cross-species transmission of viruses can occur in captivity.

RESULTS
Pathology and TEM. The only significant histopathological finding was an acute

severe hepatic degeneration and necrosis associated with marked hemorrhage. There
was no evidence of an inflammatory reaction or of intranuclear or intracytoplasmic
inclusion bodies in any of the internal organs. Additional special stains did not reveal
any evidence of the presence of another pathogen(s). The intestine, kidneys, heart, and
brain had no morphological lesions. The lungs had damage related to reanimation
attempts, and the spleen and lymph nodes showed age-related apoptosis of lymphoid
cells and reactive germinal centers in the lymphoid follicles.

Novel adenovirus genome characterization and phylogenetic analysis. Using
standard homology-based searches at a 95% similarity threshold, no virus-specific
sequences could be identified in any of the samples beyond known polar bear
endogenous retroviruses. Using a bioinformatic pipeline specifically developed for
detection of divergent viral sequences from HTS data (Viral Identification Pipeline [VIP]),
a novel adenovirus with a nearly complete ~28-kb linear genome was assembled from
Illumina paired-end reads, which we named polar bear-associated adenovirus 1
(PbAdV-1) (Fig. 1) (GenBank accession no. MH115806). Illumina reads aligning to the
genome were present in all tissue samples that were sequenced, including liver,
prescapular lymph nodes, large intestine, and kidney. Major open reading frames
(ORFs) encompassing all genes, including the hexon and pol genes, were identified
(Fig. 1). Although the genes were quite divergent with a pairwise identity of ~40%, the
viral gene order was typical of adenoviruses. Contamination in HTS has proved trou-
blesome in the past (17). In order to rule out potential contamination from reagents,
including DNA extraction kits and library building reagents, we used negative controls
in addition to showing that the virus was able to be directly amplified by PCR from the
blood of the polar bear using both pol- and hexon-specific primer sets.

Phylogenetic analysis of both individual genes and the full genome did not fully
resolve the evolutionary relationship to other adenoviruses, indicating that PbAdV-1
is very divergent (Fig. 2; see Fig. S1 in the supplemental material). The hexon gene
encodes a major virus capsid protein in adenoviruses (18) and was 2,749 bp in length
in PbAdV-1. Phylogenetic analysis of this gene shows it in a nonbasal group and
distantly related to other hexon genes from other known adenoviruses (Fig. S1) but
more closely related to the genes of viruses isolated from mammals. This same result
was observed in the phylogenetic analysis of the DNA polymerase gene (pol). The pol
gene in adenoviruses is conserved, as it is responsible for replication of the viral
genome (19). In PbAdV-1, the pol gene was 3,280 bp, again phylogenetic analysis
indicated that the gene was distantly related to other pol genes from adenoviruses
currently known to infect mammals (Fig. S1). Combining genes from PbAdV-1 placed
the virus in a basal position to a clade containing several mammalian orders, although
the most basal adenoviral clade included two cetacean adenoviruses, four bat adeno-
viruses, and one phocid adenovirus (Fig. 2 and Table S1).

Virus detection by PCR and qPCR. All tissue samples (liver, kidney, prescapular
lymph nodes, and large intestine) and blood samples from polar bear Fritz were

FIG 1 Genome organization of PbAdV-1. The nearly complete 28,200-bp genome assembled from the Illumina sequencing reads is shown in black. ORFs
encoding genes are shown in yellow along with their orientation in the genome. 19K, 19,000; CDS, coding sequence; DBP, DNA-binding protein; ITR, inverted
terminal repeat.
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screened using three specific primers targeting both the hexon and pol genes of
PbAdV-1. All samples gave positive results with all primer sets (Table 1). In addition,
quantitative PCR (qPCR) was carried out to quantify the pol gene in PbAdV-1 from viral
DNA in both tissue and blood samples. The results show that blood samples had the

FIG 2 RAxML maximum likelihood phylogenetic tree of all identified genes from adenoviruses using LG
gamma substitution model with 20 maximum likelihood searches and 500 rapid bootstrap replicates and
the frog adenovirus 1 (NC_002501.1) as an outgroup. PbAdV-1 is shown in red.

TABLE 1 PCR and qPCR performed on the DNA extracted from blood and tissue samples
from polar bear Fritz

Sample screened

Detection by PCR using the following primera:
Mean CT valueb

detected using
SYBR green qPCRHexon 1 Hexon 2 Hexon 3 pol 1 pol 2 pol 3

Blood � � � � � � 19.84
Liver � � � � � � 20.98
Kidney � � � � � � 23.25
Prescapular lymph node � � � � � � 20.26
Large intestine � � � � � � 25.16
aThe PCR targeted the hexon and pol genes using the primers listed in Table 1. SYBR green-based
comparative qPCR of the pol gene for PbAdV-1 was performed on DNA extracted from blood, liver, kidney,
prescapular lymph nodes, and large intestine. Symbol: �, a positive result from PCR.

bThe CT shows the mean of each sample that was run in triplicate.
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lowest threshold cycle (CT) value, indicating that it had the largest amount of viral DNA
(CT � 19.84), followed by the prescapular lymph nodes (CT � 20.26) and the liver (CT �

20.98). The large intestine had the smallest amount of novel adenovirus DNA present
(CT � 25.16). PCR of both the pol and hexon genes was performed on other polar bear
samples to identify other potential hosts. Blood and liver samples from eight captive
polar bears from five European zoos were screened for the virus. The PCR results show
that all samples screened apart from Fritz were negative for PbAdV-1 (Table S2).

Polar bear CXADR gene analysis. The coxsackievirus and adenovirus receptor

(CAR) is a protein encoded by the CXADR gene and is the cellular receptor in the host
that allows adenovirus cellular entry. The CXADR gene was examined to see if any
mutations were similar to CXADR genes in other host reservoirs for mastadenoviruses
or if there were any unusual features of the polar bear receptor that might suggest why
the bear was infected. The CXADR gene was extracted from the polar bear genome
(SRA092289) and used as the reference to align the whole-genome data obtained from
polar bear Fritz. The resulting alignment had a high coverage on the entire region of
the gene (33,293 bp). Nucleotide percentage pairwise identity analysis of the polar bear
CXADR to other mammals using BLAST shows that the gene is most closely related to
the giant panda CXADR gene with 83.5% nucleotide identity (Table S3). The Fritz CXADR
gene consensus sequence was examined for unique polymorphisms. The analysis
identified a limited number of observed polymorphisms, including one 16-bp deletion
indel (16274 to 16289 bp), that were not present in other CXADR genes from other
mastadenovirus hosts.

Cell culture. In an effort to determine virus viability and potential hosts, cell culture

was conducted using liver, kidney, and lymph node tissue samples on 11 different cell
lines and passaged consecutively three times. Culture of blood-derived virus could not
be performed, as the sample was severely hemolyzed. Cells were observed for cyto-
pathic effect (CPE) of the virus, and qPCR analysis was performed to assess infectivity
of PbAdV-1. The results from the initial cell culture showed that infection occurred in
three cell lines, Madin-Darby canine kidney II (MDCK II), Vero, and Crandell Rees feline
kidney (CrFK). Immunofluorescence microscopy was used to confirm PbAdV-1 infection
of CrFK, MDCK II, and Vero cells. The positive immunofluorescence (IF) signal of the CrFK
cell lines demonstrate that 48 h postinoculation, the cells are infected by the virus and
are able to replicate in the cell line (Fig. 3). However, although the virus infects the cells,
microscopy also shows that there is no clear CPE in any cell line (Fig. 3, Fig. S2, and
Table 2). The IF signal in both MDCK II and Vero cell lines was extremely weak (data not
shown); at 48 hours postinoculation, there was minimal infection of the cells by the
virus and no visible CPE.

Kidney and lymph node tissues were positive for the adenovirus pol gene by qPCR
with CT values of 20 and 17, respectively (Table 1). Liver tissue culture was negative for
adenovirus. qPCR analysis of cell culture samples were performed for infected CrFK,
MDCK II, Vero, and baby hamster kidney (BHK) cells. In passage 1 (P1), CrFK cells
infected with lymph node and liver homogenates had CT values of 24 and 38, respec-
tively. In subsequent passages (P2 and P3), CT values increased in CrFK cells with the
lymph node inocula (P3, CT � 31) (viral DNA quantity decreased), whereas slight
decreases in CT values were observed for liver tissue-infected CrFK cells (P3, CT � 33)
(viral DNA quantity increased). CrFK cells inoculated with kidney tissue homogenates
had detectable CT only at P3 (CT � 30). Lymph node tissue-infected MDCK II cells had
a CT value of 24 and 28 at P1 and P3, respectively, whereas kidney tissue-infected MDCK
II cells had detectable CT only at P1 (CT � 29), and adenoviral DNA could not be
detected in subsequent passages. Further, only lymph node tissue-infected Vero cells
had CTs of 29 and 31 at P2 and P3, respectively. BHK cells remained negative for viral
DNA in all passages, in spite of inoculation with the same tissue inocula used for MDCK
II, CrFK, and Vero cells. The viral DNA levels at P1 to P3 did not exceed the basal DNA
levels present in the inocula.
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DISCUSSION

In this study, we have employed the use of HTS techniques coupled with traditional
cell culture and microscopy to identify a novel adenovirus that we named PbAdV-1
from tissue and blood samples taken from a deceased captive polar bear. The pathol-

FIG 3 Indirect immunofluorescence (IF) staining 48 h postinoculation for adenoviral antigens in CrFK cells infected with supernatant
P1 from the prescapular lymph node. IF staining carried out using goat adenovirus antibody diluted 1:20 in 3% BSA in PBS as the
primary antibody and anti-goat FITC diluted 1:100 in 3% BSA in PBS as the secondary antibody. (A) Bright green positive IF staining
of cytoplasm of adenovirus-infected CrFK cells. Bar, 100 �m. (B) Corresponding bright-field image of panel A. (C) An uninfected CrFK
cell control shows no IF signal. (D) Corresponding bright-field image of panel C. Scale bar is 100 �m.

TABLE 2 SYBR green-based comparative qPCR of pol gene for PbAdV-1a

Tissue Cell line

CT for DNA from cells

Passage 1 Passage 2 Passage 3

Liver CrFK 38 36.4 33
MDCK II � � �
Vero � � �
BHK � � �

Kidney CrFK � � 30
MDCK II 29 � �
Vero � � �
BHK � � �

Lymph node CrFK 26 28 31
MDCK II 24 30 28
Vero � 29 31
BHK � � �

aqPCR was performed on DNA extracted from cell culture of supernatant from liver, kidney, and lymph node
tissue on the CrFK, MDCK II, Vero and BHK cell lines after 1, 2, and 3 passages. �, negative result.
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ogy results showed acute severe noninflammatory liver damage. Lesions typical of
adenoviral infections (20) were not observed in any of the major organs. Investigations
by TEM also did not yield evidence for a virus infection. Only the results obtained from
HTS for various tissues confirmed a possible novel adenovirus isolated in both tissue
and blood samples.

Difficulties that were encountered in both cell culture isolation attempts and
identifying PbAdV-1 using electron microscopy have proven troublesome for previous
studies such as the identification of the bottlenose dolphin adenovirus (21). The virus
was believed to have replicated to some extent in the HeLa cells; however, electron
microscopy could not give conclusive results on identifying adenovirus particles in the
infected cells similar to PbAdV-1. In addition to this, the bottlenose dolphin adenovirus
did not show typical tissue tropism for liver and lungs, much like the PbAdV-1. This
shows that culturing novel adenoviruses may prove difficult if little or nothing is known
about the potential host and the tissue the virus replicates in. This is particularly
complicated in cases like Fritz where it is highly likely that the polar bear was an
accidental host and no established polar bear reagents, e.g., cell cultures, exist.

The results from the PCR of the pol and hexon genes coupled with the qPCR results
indicate that the highest viral copy number was observed in the blood, although all
organs were positive for the virus (Table 1). This suggests that the virus may replicate
in blood cells and not in a specific organ, as no tissue lesions were observed. The
presence of the virus in blood would explain why all organs tested were positive for the
virus, as all organs are connected to the circulatory system. Unfortunately, blood was
not immediately examined using microcopy or negative staining and by the time qPCR
was carried out, the blood had been frozen and thawed multiple times. Viremia has
been reported for other adenoviruses in pygmy marmosets (Callithrix pygmaea) (22),
kowari (Dasyuroides byrnei) (23), sea lions (Zalophus californianus) (24), and reptiles (25).
In these studies, adenoviral DNA was often isolated and amplified from several organs,
even though the pathology did not always reflect a typical adenovirus infection, which
is similar to what was observed with PbAdV-1.

The polar bear coxsackievirus and adenovirus receptor (CAR), which is widely
expressed in many cell types, including hematopoietic cells, was also characterized.
CAR is also expressed in several tissues, including heart, brain, epithelial, and endothe-
lial cells (26, 27). In the polar bear Fritz, the gene shared close nucleotide pairwise
identity with those of other members of the Ursidae family such as the giant panda;
however, it is not known how the 16-bp deletion in the gene identified here would
affect binding of adenoviruses, as it was not in a conserved receptor-binding site.
Studies have demonstrated that the conserved CAR-binding sites on the fiber proteins
such as the AB loop are crucial for successful virus attachment to the CAR-binding site,
so mutations in these conserved regions of the gene are likely to be deleterious (28, 29).
The lack of tropism in the tissues examined may also be explained by other factors
linked to CAR such as virus replication being reduced in cells with downregulated CAR
expression and the abundance and regulation of CAR that can influence the availability
of the correct receptor (30). However, the extremely wide taxonomic distribution of
mammalian hosts for related mastadenoviruses suggests that there is little if any
restriction of these viruses to a specific mammalian taxon and that it was exposure to
the virus rather than specific mutations in polar bear CAR or any other adenoviral
receptor that resulted in Fritz’s infection.

The cell culture results in 11 different cell lines did not give any further indication as
to potential hosts or cell type preference for PbAdV-1. The qPCR and immunofluores-
cence results from the cell culture indicate that the virus was able to infect MDCK II,
Vero, and CrFK cells, but not BHK cells; however, replication was not efficient and not
beyond the third passage. The lack of CPE in MDCK II, Vero, and CrFK cells suggests
either that these cell lines do not support efficient replication of the virus or that the
virus is noncytopathic in these cell lines. However, indirect immunofluorescence assay
(IFA) staining within the cytoplasm of CrFK and Vero cells infected with the lymph node
tissue homogenate showed that expression of viral antigens is indicative of at least
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some virus replication, although the signal was stronger in the CrFK cells. The cell
culture results support the lack of histopathological evidence for viral infection, as
neither inclusion bodies nor individual viral particles could be found in tissue sections
(data not shown). Taken together, our results may suggest that the presence of the
adenovirus in the polar bear was not the primary cause of its death. However, it is
possible that the infection with PbAdV-1 could have compromised the immune system
of the bear, leaving it susceptible to other pathogens or toxins. Fowl adenovirus 8
infections in chickens can for example, result in compromised immune responses in
chicken (31).

The phylogenetic analysis of PbAdV-1 shows that it groups with other masta-
denoviruses identified in mammals; however, it likely diverged from other known
adenoviruses some time ago. Only the harbor porpoise AdV-1 was in a more basal
position among mammalian adenoviruses. Neither individual genes nor the com-
bined genomic sequence could resolve the phylogeny of PbAdV-1 with confidence
(Fig. 2; see Fig. S1 in the supplemental material). The lack of similarity to other
adenoviruses identified in animals provided no indication of potential hosts for the
virus. The polar bear was 4 months old and was restricted in range within an indoor
enclosure with its mother. The mother was fed beef. Phylogenetically, PbAdV-1 is
not closely related to known domestic cattle adenoviruses, and therefore, a dietary
route of infection is unlikely, particularly since the animal had not been weaned.
Rodents and bats can enter most enclosures, and it is therefore conceivable that an
as yet unidentified rodent or bat species transmitted the virus to Fritz. The mother
was not sampled at the time of death, and it is unclear if she was infected as well
though she has never exhibited symptoms of any kind. These results in conjunction
with the negative PbAdV-l result for the other polar bears screened suggests that
PbAdV-1 represents a new lineage (Table S2).

In summary, we report a novel adenovirus associated with the death of a 4-month-
old polar bear. As the polar bear was not in direct contact with other animal species,
the investigation of indirect viral vectors such as rodents, bats, water sources, and
fomites may prove useful in giving further insights into pathogens the bear may have
been indirectly exposed to. This highlights that there are numerous pathways where
captive animals are able to come into contact with pathogens, and these need to be
considered when trying to establish transmission routes and host specificity of novel
viruses.

MATERIALS AND METHODS
Pathology. The polar bear was received from the zoo five hours after death. Tissue samples from all

organs of the polar bear were fixed in formalin, processed routinely for histopathological investigations,
and stained with hematoxylin-eosin. Serum was not obtained, as the blood was severely hemolyzed.
Additionally, liver sections were further stained with azan, Giemsa, Gordon-Sweet (reticulin), Hemalaun,
von Kossa, periodic acid-Schiff, and Warthin-Starry.

Transmission electron microscopy. Native liver tissue and intestinal mucosa were homogenized
and processed for negative staining using phosphotungstic acid and uranyl acetate for contrast. Samples
of liver tissue fixed in a solution of 3.5% glutardialdehyde as well as liver tissue fixed in a solution of 4%
formalin were processed for embedding in Epon 812 before preparing ultrathin sections and subsequent
contrasting with uranyl acetate and lead citrate to search for viral particles by transmission electron
microscopy (TEM).

DNA/RNA extraction. DNA and RNA were extracted from liver, prescapular lymph nodes, large
intestine, kidney, and blood using Qiagen DNeasy Blood and Tissue kits according to the manufacturer’s
protocol with the following modifications: tissue samples were lysed overnight for 15 h, and blood was
lysed for 1 h. Samples were eluted in 150 �l. DNA was then quantified using an Agilent TapeStation
(Agilent Technologies USA) using Genomic ScreenTapes and reagents.

Generation of cDNA. cDNA was generated from the DNA/RNA extract kit using the Invitrogen
SuperScript IV (Thermo Fisher Scientific, USA) following the manufacturer’s instructions. Second-strand
synthesis was then carried out by adding 1 �l of Klenow DNA polymerase I (Thermo Fisher Scientific,
USA) to 21 �l of cDNA and incubated at 37°C for 60 min and then at 75°C for 20 min. The cDNA
concentration was then determined with an Agilent TapeStation (Agilent Technologies, USA) using
D1000 ScreenTapes and reagents.

Illumina library preparation and sequencing. The extracted DNA from tissue samples (liver, kidney,
prescapular lymph node, and large intestine) were sheared to an average size of 350 bp using the Covaris
M220. The fragmented DNA from each sample was subsequently used to generate Illumina libraries as
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previously described by Meyer and Kircher (32) with the modifications of Alfano et al. (33). The end of
each library molecule was doubly indexed by assigning a unique set of P5 and P7 index adaptors (34)
to prevent index jumping and to enable identification of pooled libraries after sequencing (35). The
pooled libraries were amplified using Herculase II fusion polymerase (Agilent Technologies, USA) in 50-�l
volumes with the following cycling conditions: (i) 95°C for 5 min; (ii) 8 cycles, with 1 cycle consisting of
95°C for 30 s, 60°C for 30 s, and 72°C for 40 s; and (iii) 72°C for 7 min. Each library was amplified with three
replicates to minimize PCR bias on individual samples. The three replicates were then pooled and purified
using the QIAquick PCR purification kit (Qiagen, Germany) and quantified with an Agilent TapeStation
(Agilent Technologies USA) using D1000 ScreenTapes and reagents. The indexed amplified libraries were
then pooled to equimolar amounts to a final concentration of 17.5 nM for paired-end sequencing on the
Illumina NextSeq platform using the v2 reagent kit at the Berlin Center for Genomics in Biodiversity
Research (BeGenDiv).

Data analysis. All fastq data generated were adaptor, size, and quality trimmed using Cutadapt v.1.5
(36), using a quality cutoff of 30 and minimum sequence length of 30 bp. To rule out contamination from
other sources, each individual fastq file was mapped to the Ursus maritimus mitochondrial DNA (mtDNA)
genome (NCBI accession no. AP012596) using Burrows-Wheeler Aligner (BWA-MEM, version 0.7.5a-r405)
(37) to ensure that the mtDNA sequences obtained matched the species of interest. The resulting
alignments were sorted using Samtools v 1.5 and visualize using Geneious v7.1 (38). Consensus
sequences generated from the mtDNA mapping were subjected to a BLAST search in NCBI (39, 40)
database for species confirmation.

Viral Identification Pipeline. Viral Identification Pipeline (VIP) is a recently developed bioinformatic
pipeline that screens next-generation sequencing data for viral hits even when homology to known
viruses is low. Each fastq file was processed using the VIP sense algorithm (41). The pipeline first aligns
the fastq files to the Ursus maritimus reference genome and filters all reads that map to it. The remaining
reads were further processed and filtered against a bacterial database. The reads remaining after this
filtering step were further processed and searched against a nucleotide viral genome database followed
by an amino acid alignment to viral protein database. The Geneious 7.1 (38) de novo assembler with
medium sensitivity and Velvet version 1.2.10 (42) was then used to create contigs of the adenoviral
positive reads (SRA accession no. PRJNA431169). Resulting contigs were aligned using MAFFT v. 7.017
(43) to create a genome consensus sequence. Consensus viral sequences were translated to all the
available protein frames using Geneious 7.1 (38). The resulting reading frames were subjected to a BLAST
search and used to annotate the viral genome (44).

Phylogeny of novel adenovirus. A multiple-sequence alignment was created using MAFFT v.
7.017 with adenoviral genome sequences obtained from GenBank (see Table S3 in the supplemental
material) and the polar bear adenovirus 1 genome (GenBank accession no. MH115806) sequence. The
amino acid sequences of pol and hexon gene-encoded proteins of PbAdV-1 (MH115806) were aligned
using MAFFT v. 7.017 (43) with adenoviral sequences obtained from GenBank (Table S3). The resulting
alignments were manually curated where needed. Jmodeltest2 (45) and Protest version 3.4 (46) were
used to identify the appropriate sequence evolution model for the phylogenetic analysis. Phylogenetic
trees were reconstructed using a maximum likelihood framework in the Hybrid build of RAxML (47).
Nucleotide genome sequences were examined with the generalized time-reversible (GTR) substitution
model with 20 maximum likelihood searches and 500 rapid bootstrap replicates. Amino acid sequences
were examined with the Le-Gascuel (LG) gamma substitution model with 20 maximum likelihood
searches and 500 rapid bootstrap replicates. For both nucleotide and amino acid phylogenies, frog
adenovirus 1 (NC_002501.1) was used as an outgroup. Resulting trees were visualized using Geneious 7.1.

Polar bear CXADR gene analysis. The BWA-MEM algorithm (37) was used to align the whole-
genome data obtained from Fritz to the data extracted from the polar bear genome CXADR gene (48).
The resulting bam file was sorted, and a pileup was generated using SAMtools v1.5 (49). Nucleotide
polymorphism screening was performed using BCFtools (50) and VCFtools (51).

Adenovirus PCR of the pol and hexon genes. PCR was used to confirm the adenovirus high-
throughput sequencing (HTS) assemblies by using adenovirus-specific primers (Table 1) targeting the pol
and hexon genes of the assembled viral genome. PCRs were run on DNA extracted from all tissue and
blood samples and negative controls. The following PCR was used with the primers resulting in a 500-
to 600-bp product: 12.5 �l of MyFi (Bioline USA), forward and reverse primers (10 mM), 4.5 �l of
PCR-grade water, and 2 �l of DNA. The following thermocycling conditions were used: (i) 95°C for 5 min;
(ii) 30 cycles, with 1 cycle consisting of 95°C for 20 s, 61°C for 20 s, and 72°C for 20 s; and (iii) 72°C for
2 min.

To rule out viral contamination, a significant problem in virome studies (17) from the DNA extraction
process, a further PCR was carried out using MyTaq Blood-PCR kit, which directly amplifies PCR products
from blood. The blood sample was diluted to 5% with PCR-grade water. Primers Hexon 1F (F stands for
forward) and Hexon 1R (R stands for reverse) and Hexon 3F and Hexon 3R were used to amplify a 500-
to 600-bp product according to the manufacturer’s protocol.

In addition, DNA was extracted as previously described from blood and liver samples from eight
different polar bears collected from a range of zoos around Europe. The DNA from the eight samples was
screened for the presence of the hexon and pol genes of the novel adenovirus using the PCR conditions
described above (Table 2).

qPCR for detection of a novel adenovirus. To quantitatively determine the presence of the novel
adenovirus SYBR green-based comparative CT (ΔΔCT) quantitative PCR (qPCR) was performed on 100 ng
of adenovirus DNA from all tissue and blood samples. The qPCR targeted the pol gene of the novel
adenovirus (GenBank accession no. MH115806). Primer concentrations were optimized according to the
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manufacturer’s protocol. The target genomic fragment (350 bp) was amplified using the following
reaction mixture: 100 nM of the forward primer 5= GGG GAG TGG GTC TAG AAA CT 3= and reverse primer
5= CGA AGA CTA TCA CGC CAA CA 3=, 12.5 �l SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich, USA),
0.25 �l reference dye (ROX), and 10 �l of template DNA. The PCR was carried out in strip tubes using the
Stratagene MX3000P System (Agilent Technologies, USA) and StepOnePlus instruments under the
following cycling conditions: 94°C for 2 min, followed by 40 cycles, with 1 cycle consisting of 94°C for 15 s
and 58°C for 1 min. For all reactions, samples were run in either duplicate or triplicate along with positive
and negative controls.

Cell culture. Crandell Rees feline kidney (CrFK), Madin-Darby canine kidney II (MDCK II), Madin-Darby
bovine kidney (MDBK), African green monkey kidney (Vero), baby hamster kidney (BHK-21), rabbit kidney
(RK-13), chicken fibroblast (DF1), human embryonic kidney (293T), and human cervical epithelial (HeLa)
cells were propagated in Dulbecco’s modified Eagle’s medium (DMEM) (Biochrom) supplemented with
10% fetal bovine serum (FBS) (Biochrom), 100 U/ml penicillin, and 100 �g/ml streptomycin (1%
penicillin-streptomycin). Equine dermal (ED) cells were grown in Iscove’s modified Dulbecco’s medium
(IMDM, Pan) supplemented with 20% FBS, 1% nonessential amino acids (Biochrom), 1 mM sodium
pyruvate (Pan), and 1% penicillin-streptomycin. Mouse neuroblastoma cells (N1e) were grown in Ea-
gle’s minimum essential medium (MEM Eagle, Pan) supplemented with 5% FBS and 1% penicillin-
streptomycin.

Virus isolation. To prepare inocula, tissue samples (prescapular lymph nodes, liver or kidney;
200 mg) were homogenized using a handheld microtube homogenizer, in which tissue in the microtube
was triturated evenly using a plastic pestle by simple pushing in and pulling out the pestle in 1 ml of cold
phosphate-buffered saline (PBS) with 2% penicillin and streptomycin and 5 �g/ml of amphotericin B
(Biochrom) and incubated for 10 min at 4°C (52). Prepared tissue homogenates were frozen at �70°C and
thawed to 4°C. Solid debris was pelleted by centrifugation at 7,000 rpm for 10 min at 4°C. Clarified
homogenates were used as an inoculum, applied over different cell lines, incubated at 37°C, and
observed daily for the development of cytopathic effect (CPE). Each inoculated cell line was subjected to
three blind passages.

Indirect immunofluorescence assay. An indirect immunofluorescence assay (IFA) was performed to
detect adenoviral antigen in cell culture. CrFK, MDCK II, and Vero cells were grown in 24-well plates and
inoculated with 200 �l of the virus sample. After 48 h, cells were washed twice with PBS, fixed with 4%
paraformaldehyde for 30 min, and permeabilized with 0.1% Triton X-100 for 10 min. Following each step,
plates were washed with PBS. Permeabilized cells were blocked with 3% bovine serum albumin (BSA)
(VWR Life Sciences) in PBS for 1 h at room temperature and incubated with goat antiadenovirus primary
antibody (catalog no. 0151-9004; Bio-Rad) diluted 1:20 in blocking buffer at 4°C overnight. Further,
fluorescein isothiocyanate (FITC)-labeled rabbit anti-goat IgG H&L (ab6737; Abcam) secondary antibody
diluted to 1:100 in blocking buffer was applied and incubated for 1 h at room temperature. Mock-
infected CrFK cells were stained with primary and secondary antibodies of the same dilution. Plates were
analyzed using a Zeiss Axio Vert.A1 fluorescence microscope.

Data availability. Contigs of the adenoviral positive reads from the Illumina data are available in the
NCBI Sequence Read Achieve (SRA) under accession no. PRJNA431169. The PbAdV-1 genome is available
in Genbank under accession no. MH115806.
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