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Abstract

Hybridization- and tag-based technologies have been successfully used in Down syndrome to identify genes involved in
various aspects of the pathogenesis. However, these technologies suffer from several limits and drawbacks and, to date,
information about rare, even though relevant, RNA species such as long and small non-coding RNAs, is completely missing.
Indeed, none of published works has still described the whole transcriptional landscape of Down syndrome. Although the
recent advances in high-throughput RNA sequencing have revealed the complexity of transcriptomes, most of them rely on
polyA enrichment protocols, able to detect only a small fraction of total RNA content. On the opposite end, massive-scale
RNA sequencing on rRNA-depleted samples allows the survey of the complete set of coding and non-coding RNA species,
now emerging as novel contributors to pathogenic mechanisms. Hence, in this work we analysed for the first time the
complete transcriptome of human trisomic endothelial progenitor cells to an unprecedented level of resolution and
sensitivity by RNA-sequencing. Our analysis allowed us to detect differential expression of even low expressed genes crucial
for the pathogenesis, to disclose novel regions of active transcription outside yet annotated loci, and to investigate a
plethora of non-polyadenilated long as well as short non coding RNAs. Novel splice isoforms for a large subset of crucial
genes, and novel extended untranslated regions for known genes—possibly novel miRNA targets or regulatory sites for
gene transcription—were also identified in this study. Coupling the rRNA depletion of samples, followed by high-
throughput RNA-sequencing, to the easy availability of these cells renders this approach very feasible for transcriptome
studies, offering the possibility of investigating in-depth blood-related pathological features of Down syndrome, as well as
other genetic disorders.
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Introduction

Expression profiles of thousands of genes in various organs and

cell lines have been successfully determined by using different

methods and approaches such as microarray, serial and cap

analysis of gene expression, and massively parallel signature

sequencing [1–11]. These approaches have led to the identifica-

tion of differentially expressed genes in physiological and

pathological conditions, such as Down syndrome (DS) [12–15],

Alzheimer, Parkinson [16–18] and cardiovascular diseases

[2,8,19,20].

In Down syndrome the dosage imbalance of human chromo-

some 21 (HSA21) genes, and the subsequent global gene

deregulation observed overall the genome [12,21,22], have long

been associated to different aspects of DS pathogenesis. Expression

analyses of DS tissues and mouse models have reported conflicting

results [23,24], showing that HSA21 gene expression greatly varies

across trisomic tissues [14,22]. However, most of published works

has focused on hybridization-based technologies - suffering from

hybridization and cross-hybridization artefacts and offering a

limited dynamic range - or tag-based approaches, suffering for the

ambiguous mapping of their short reads. Hence, to date we
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completely lack information about other rare, even though

physiologically relevant, RNA classes such as small coding and

(long-) non-coding RNAs. In addition, there is not yet evidence of

DS-specific splice isoforms for genes crucial in the pathogenesis

and, to date, none of published works has described, in a single

experiment, the complete transcriptional networks in Down

syndrome.

The introduction of next generation sequencing (NGS) technol-

ogies has revealed the complexity of mammalian transcriptomes,

enabling to effectively explore - with an unprecedented throughput

capacity - simple and complex genomes [25–31]. NGS have shown

that most of nucleotides are expressed, highlighting that only a small

fraction of all transcribed sequences (less than 2%) is represented by

mRNA [32,33], and that not yet well-characterized RNA species,

such as microRNA recently described in DS [34] as well as small

nucleolar RNA (snoRNA), are emerging as potential factors

contributing to pathological phenotypes [35,36].

In the last years, in order to identify genes contributing to DS

phenotype and to its phenotypic variability, the above-mentioned

standard approaches for gene expression profiling have been

applied to several mouse models with segmental duplications of

DNA segments orthologous to human chromosome 21. Alterna-

tively, transcriptome studies on human DS subjects have been so

far performed on post-mortem tissues and/or fetuses, and few studies

have focused on RNAs isolated from human adult whole blood

samples [12,37–39]. Thus, it would be clinically relevant to

investigate, with an innovative and high-throughput approach,

early gene regulatory mechanisms linked to cardiovascular disease,

cancer and immune disorders linked to DS.

To this purpose, we analysed for the first time the global

transcriptome of human trisomic and euploid endothelial

progenitor cells (EPCs) to an unprecedented level of resolution

and sensitivity by RNA-Seq on a next generation sequencing

platform. By using a selective depletion of abundant rRNA

molecules from samples - followed by the sequencing of strand-

specific cDNA libraries - we were able to measure the effects of

trisomy 21 in a specific cell type affected in DS, and also to

quantify the defect during postnatal development, possibly

correlating gene expression changes to the observed phenotype.

Indeed, literature data and our recent findings strongly indicate

that circulating EPCs, whose levels are linked to tissue regener-

ation, are impaired in DS [12,40–42]. These cells play pivotal role

in the maintenance of endothelium integrity, repair after injury

and postnatal neovascularization and several studies suggest their

use in the clinical setting [43–47]. Moreover, accumulating

evidences indicate a reduced availability, and/or impaired EPC

function in cardiovascular and metabolic diseases [12,45,48–50].

Endothelial dysfunction, angiogenesis suppression and infection

recurrence are hallmarks of DS, and the impairment in the

number and function of circulating progenitors may promote a

wide number of diseases. The massive-scale RNA-Seq and the

easy availability of these cells from affected individuals allow to

shed light on endothelium-related pathological features of DS,

rendering this analysis feasible on a large number of samples.

Results

Strand-oriented libraries preparation and sequencing
The ability, and the power, to measure gene expression in

RNA-Seq experiments is strictly correlated to the number of

sequence reads mapped to transcribed regions in a particular cell/

tissue/organism. In the light of this, for a whole-transcriptome

(WT) analysis we planned both our sequencing strategy and

platform usage (Figure S1).

To this aim, a systematic depletion - from total RNA samples -

of very abundant rRNA molecules (consisting of about 95% of

cellular RNA), was performed. This procedure, coupled with the

massive sequencing on NGS platform, allows to investigate the

entire transcriptional landscape of an organism, offering the

possibility to analyse - within the same experiment - polyA+

mRNAs, long as well as small coding and non-coding RNA

species. It clearly represents a great opportunity, and a challenge,

compared to the commonly used approaches relying on polyA+

enrichment of the samples [30–32,51–57].

In addition, since preserving the strandedness is fundamental for

further data analysis and interpretation, we created strand-

oriented libraries (SOLs) for each sample. Indeed, SOLs usage

allows to determine the correct directionality of transcription and

gene orientation (for both annotated and unannotated expressed

regions), thus facilitating the detection of opposing and overlap-

ping transcripts.

In this study, we generated SOLs from rRNA-depleted total

RNAs isolated from human EPCs [7,58] of a female affected from

trisomy 21 and one age- and sex-matched euploid, and sequenced

them to a depth of about 100 million of 50 nt reads per library on

a SOLiD v3 platform (Applied Biosystems).

Mapping strategy and visualization
The sequenced reads were mapped on human genome (hg19)

using RNA-MATE [30]. Mapping strategy and results are

illustrated in Figure S2 and Table S1. Details of the mapping

strategy are given in ‘‘Materials and Methods’’ and File S1.

We noted that filtering reads derived from very abundant

rRNAs molecules (5.8S, 18S, 28S) has a great impact on rRNA-

depleted WT experiments since they still constitute a significant

fraction of total sequenced reads, whereas adapter-filtered reads

represent a negligible amount. However, at least for the purpose of

this work, they can be used as a measure of ribodepletion efficiency

rather than a real measure of interest.

The cyclic alignment implemented in RNA-MATE ensured the

detection of expressed regions from both annotated exons and

junctions from a custom library, also giving the possibility to detect

the expression of previously unannotated regions and to identify

novel combinatorial exon usage for every known locus. The low

extent of antisense mapping of reads (about 0.07% for both

libraries) to splice junctions’ libraries, was used to assess SOLs’

directionality and to tune the mapping parameters. In addition,

most of reads (about 90%) that mapped to the genome and to

junction library were 50 nt in length with few sequence

mismatches. Such results are comparable to those obtained in

analogous studies and constitute an overall measure of the quality

the produced data.

At the end of the alignment strategy three types of reads were

distinguished: uniquely assignable reads (UARs), multiple reads

(MRs) and reads without a specific mapping location (denoted as

unmatched reads; see ‘‘Materials and Methods’’, Figure S2 and

Figure S3). For the sake of simplicity we considered only UARs

and reads mapping on junction library for further analyses. We

noted that discarding MRs - which mainly derive from conserved

domains of gene families and/or common repeats - is likely to

introduce an experimental bias, decreasing the coverage and

reducing the possibility to investigate expressed retrotransposons

and most of highly conserved gene families [26]. However, since a

significant fraction of multiple reads was assigned to UARs

category using a rescue procedure, we reduced the above-

mentioned mapping bias (‘‘Materials and Methods’’ and File S1)

[59].

rRNA-Depleted Transcriptome in Down Syndrome
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We also noted that the sequenced reads mapped at 50 nt length

(with few mismatches) contribute to about 91% of DS and 86% of

euploid unique reads, and to about 76% and 71% of finally

assigned UARs for DS and euploid, respectively.

We observed, as expected due to the presence of an extra copy

of HSA21 for DS sample, a higher amount of sequenced reads

mapping to this chromosome, with the highest (1.33) DS/euploid

mapped reads ratio than observed for the other chromosomes

(mean ratio 0.9960.05). A similar unbalancing in reads’ mapping

was also observed for the mitochondrial chromosome (chr M)

(ratio = 1.23) mainly due to the highly variable number of

mitochondria in a cell, organism and tissue type.

To better elucidate the landscape of gene expression in both

states we classified all mapped reads in the following categories:

reads mapping to 1) annotated RefSeq gene models, 2) intronic

regions, 3) intergenic regions, 4) known RefSeq splice junctions

and 5) novel combinatorial junctions and 6) mitochondrial

genome. The mapping of the categories from 1) to 3) and 6) is

depicted in Figure S4. The analysis of each category is described in

the following sections.

Gene expression quantification
Since we previously described in EPCs isolated from DS

individuals a global deregualtion of gene expression compared to

euploid cells [14], we used RNA-Seq to have a better quantitative

estimate of gene expression from both known genes and previously

uncharacterized expressed regions. To this aim we scored each

locus activity in both trisomic and euploid cells by counting the

number of reads mapping to annotated RefSeq transcripts (release

38) [60]. In particular, for gene loci with a single transcript we

estimated gene expression as the number of UARs mapping to the

entire length of the transcript, whilst for genes with multiple splice

isoforms a measure of global locus activity was obtained summing

the reads mapped to any independent exon (or part of exon) of

each possible transcript (details in File S1). In both cases, the reads

count deriving from reads mapped to the junctions library were

added to each corresponding locus.

The representative RefSeq categories (Human Gene Nomen-

clature Committee, HGNC) [61] comprising all the genes detected

and analyzed in the WT experiment are shown in Figure 1A. In

DS as well as euploid sample, about 92% of detected loci with

evidence of active transcription in circulating progenitors fall in

the mRNA category. Surprisingly, the distribution of mapped

reads per category revealed a 2- to 10-fold enrichment of non-

coding RNAs, particularly snoRNA, in both analyzed samples

(Figure 1B and 1C). Moreover, the distribution of mapped reads

(in terms of genomic positions) showed, as expected, a strong bias

toward regions already annotated as genes in RefSeq: on average,

about 50% of mapped reads fell in such regions. However, we

noted that such percentage is significantly smaller than observed

using polyA+ enrichment protocols.

The gene expression values of already annotated genes were

measured and expressed as reads per kilobase of transcript (or gene

model) per million mapped reads (RPKM) [55]. Using a threshold

of 0.1 RPKM, we detected a total of 17474 and 16800 RefSeq

genes for DS and euploid EPCs respectively with at least one

mapped read, and 13144 RefSeq genes with evidence of active

transcription common for both trisomic and euploid EPCs.

In particular, due to our interest in investigating gene expression

in the context of DS, we also focused on HSA21 genes. Hence, on

a total of 260 RefSeq annotated HSA21 genes, we detected 148

and 141 genes expressed at levels below the threshold for DS and

euploid EPCs samples, respectively.

All RefSeq genes, whose expression was detected within the

experiment, were further classified according to RPKM values in 5

categories of expression: 1) very low, 2) low, 3) intermediate, 4)

high and 5) very high (Figure 2; see ‘‘Materials and Methods’’).

This categorization revealed us, for both trisomic and euploid

samples, a strong enrichment of snoRNAs in the highest RPKM

categories (these RNAs were about 15% of total genes in category

4, and about 90% in category 5), clearly showing these molecules

are below mRNAs – and if we exclude rRNAs - the second RNA

group for abundance, and they also represent the more expressed

RNA fraction in rRNA-depleted WT experiment.

To visualize in a user-friendly way the gene expression data

derived from reads mapping, we prepared genome-wide, strand-

specific, nucleotide-resolution files for each library corresponding

to the trisomic and euploid states. In particular, these files contain

information about reads mapping to the entire human genome, to

splice junctions and RPKM categories for each analyzed RefSeq

gene (see File S1). These resources represent a very powerful tool

for genetics and genomics studies as they allow to easily investigate

the entire landscape of gene expression alongside public genome

annotations within UCSC Genome Browser [62] as ‘‘custom

tracks’’ (Supplementary files available upon request).

Evidence and quantification of intronic and intergenic
transcription

An intriguing finding of this study was the observation that, in

both DS and euploid libraries, about 50% of all mapped reads

occurred outside the annotated loci, outside the furthest 59 and 39

exons of already known genes, strongly indicating that many

RefSeq genes may require extension or revision. This finding also

suggests that this relevant extent of extra-genic transcription may

possibly account for some of the pathological features observed in

Down syndrome, as well as it is likely to occur for other human

inherited disorders.

Thus, to address the extent of intronic and intergenic

transcription, reads mapping to hg19 in non-RefSeq regions were

divided into three categories: 1) intronic (inR) and 2) intergenic

(igR) regions, and 3) chr M.

In particular, in the trisomic sample, about 8.7 M of sequenced

reads mapped to inRs, 5.9 M into igRs and 2.0 M to chrM, for a

total of 16.6 M of reads mapped to non-RefSeq regions. For the

euploid sample, about 7.3 M of reads mapped to inRs, 5.6 M into

igRs and 1.4 M to chrM for a total of 14.3 M of reads mapped to

non-RefSeq regions (Figure S4).

To identify yet unannotated transcribed regions, potentially

representing novel disease-specific expressed regions, and to better

elucidate the still uncharacterized landscape of gene expression in

trisomic EPCs compared to euploid cells, reads were further

filtered with combined annotations from UCSC ‘‘known genes’’

and Ensembl databases (File S1) [63,64]. We found that in DS

sample about 4.6 M of reads (of which 2 M from chr M and

2.6 M from both intergenic and intronic) were supporting either

UCSC or Ensembl annotation, whilst more interestingly 12 M of

reads were still mapped to unannotated regions. In the euploid

sample, about 3.9 M (of which 1.4 M from chr M and 2.5 M from

both intergenic and intronic) supported either the annotations,

whilst 10.4 M of reads still mapped to unannotated regions. We

also observed that most UCSC and Ensembl annotations covered

about 98% of the reads mapping on chr M, about 30% of

intergenic and about 10% of intronic regions, for both samples.

Finally, the reads mapping to yet unannotated regions, from

both DS and euploid samples were pooled together and used to

predict candidate novel intronic and intergenic transcriptionally

active regions (inTARs and igTARs, respectively) - possibly

rRNA-Depleted Transcriptome in Down Syndrome
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representing new genes - or to revise previously annotated gene

models (definitions are given in File S1).

To this purpose, we noticed that 4.2 M of mapped reads in DS

and 3.9 M in euploid - assigned to intergenic unannotated regions

- spanned across 4.96109 bp (considering both strands), and

7.8 M of mapped reads in DS and 6.5 M in euploid - assigned to

unannotated intronic regions - spanned across 16109 bp (consid-

ering both strands). The size of, such huge, unannotated regions

do not allow to easily identify the presence of significant signal (i.e

density of reads mapping together) from the background noise,

resembling the search of a needle in a haystack. Therefore, ad hoc

refinement procedure with W = 500 and T = 30 (described in

‘‘Refinement of non-RefSeq loci’’) was used to automatically

extract reads’ dense transcriptionally active regions in a compu-

tationally fast way. The refinement procedure, applied on the

pooled samples, allowed us to define 21804 igTARs (spanning

across about 17 Mb) in which for both samples mapped about

1.8 M of sequenced reads (about 45% of unannotated intergenic

reads). In a similar way, we defined 99030 inTARs (spanning

across about 80 Mb) in which were mapped about 4.1 M and

3.7 M of reads for DS and euploid, respectively (more than 55% of

unannotated intronic reads for both samples). All regions were

annotated in a BED format and the expression levels of both

inTARs and igTARs were then measured for each sample.

Since not yet annotated TARs may be relevant for DS

pathogenesis, we focused on the quantitative evaluation of these

regions. The analysis revealed that 21648 igTARS and 98156

inTARs were transcriptionally active in DS progenitor cells,

whereas 21608 igTARS and 97709 inTARs were active in the

euploid state. Of these, 21460 igTARs were regions of active

Figure 1. RefSeq categories and reads distribution. Distribution of the abundance of the RefSeq categories (HGNC) in the observed actively
transcribed loci of the two states (A); Distribution of the UARs across the distinct RefSeq categories. DS (B) and euploid (C). The ‘‘other’’ category,
marked with asterisk, include less represented RNAs (pseudogenes, microRNA, snRNA, scRNA, antisense, vault and RNAse) according to HGNC.
Percentages are shown in the pie chart.
doi:10.1371/journal.pone.0018493.g001
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transcription common to both states, whilst 187 and 148 were

respectively DS and euploid specific. Similarly, we identified

96864 inTARs common to both samples, with 1092 and 745

regions DS and euploid specific, respectively.

A random selection of a small subset of newly identified TARs

underwent manual curation for further analysis. Particularly, we

noted that many highly expressed unannotated regions felt in large

repeats family (RepeatMasker based on RepBase library),

comprising short - which include Alu family - and long interspersed

nuclear elements (SINE and LINE), spanning overall the human

genome, and also RNA repeats (such as SSU-rRNA family).

However, an accurate estimate of the expression within such

regions is strongly biased in both samples due to the multiple

localization of these regions alongside the human genome, and

thus further focused studies are needed in order to better address

the extent of expression of such repeats families.

In addition, we also scanned a subset of inTARs and igTARs for

the presence of putative open reading frames (ORFs). The analysis

revealed that a high fraction of these newly identified TARs, both

intronic and intergenic contain ORFs longest than 200 bp. In

particular, some inTARs conserved the correct frame of the gene

they are located within, suggesting these are likely to represent

alternative exons. On the other hand, it has been observed that a

subset of analyzed igTARs (150–250 bp in length) did not show

any ORF, suggesting they may represent novel small and long

non-coding RNAs.

However, these preliminary findings strongly suggest these

newly identified regions of active transcription require both further

experimental validations - and also computational efforts - in order

to address in a genome-wide fashion whether they represent novel

genes - and/or exons of already known genes- and novel short (or

long) intergenic transcripts, and whether the differential expression

of these expressed extragenic regions may be linked at some extent

to observed DS phenotypes.

Independently, we also studied the transcriptional activity in

close proximity to 39 and 59 UTRs of RefSeq loci, in order to

understand whether these regions could possibly represent

extensions of already annotated genes. Particularly, we focused

on expressed regions using a user-defined window 150 bp in

length, located both upstream 59 UTRs and downstream 39

UTRs. We found 3600 and 2948 candidate genes showing a clear

evidence of an extended 39 UTR in DS and euploid samples,

respectively (example in Figure 3A). Of these, 1868 extended

regions were common to both samples, giving a strongest

evidence for the refinement of untranslated regions of these

RefSeq loci. We believe that state-specific extended UTRs

(specifically those expressed in DS progenitor cells) may be

important for gene expression regulation and/or for mRNA

Figure 2. Comparison of RPKM content for RefSeq genes. Distribution of RefSeq categories (according to HGNC) within each class of RPKM.
doi:10.1371/journal.pone.0018493.g002

rRNA-Depleted Transcriptome in Down Syndrome
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stability and processing, possibly accounting for some DS

pathological features. More interestingly, we observed that most

of newly-defined or extended 39UTRs contain putative novel

miRNA binding sites (data not shown), characteristic of 39UTRs

of annotated transcripts, suggesting these regions may potentially

contribute to microRNA-mediated regulation of these transcripts.

This finding is crucial for understanding putative novel

mechanisms of regulation for genes already known to be involved

in DS pathogenesis, and may also be helpful to identify novel

candidates in the trisomy 21.

Finally, for 59 UTRs we found a lower number of candidate

genes (1491 and 1280 for DS and euploid, respectively) possibly

needing annotation revision, which indicates that current

annotations are more biased toward the 39 UTRs of expressed

transcripts (example in Figure 3B).

Survey on the alternative splicing
Massive-scale RNA sequencing data, other than identifying

differential expression of genes in a disease, are useful to human

genetics in what they can be used to investigate alternative

splicing, also discovering novel splice isoforms for crucial genes.

For instance, identifying sequence reads that span exon-exon

junctions could help to define exon usage and alternative splicing

(although reconstructing entire transcripts will be challenging,

particularly with short reads and it will require a very high

coverage and the use of paired-end reads to achieve a good

accuracy).

However, to illustrate the great potential of these data for

studying both canonical and alternative splicing in the context of

Down syndrome, we performed a preliminary analysis to identify

reads that span exon-exon junctions. We detected a total of 92939

splice junctions in DS sample and 80200 in euploid; of these,

64115 and 56621 (DS and euploid, respectively) mapped with at

least 3 sequenced reads, whilst 48604 and 43308 (DS and euploid,

respectively) mapped with at least 5 sequenced reads (Table S2).

In addition, as expected for large-scale RNA-Seq data, we

found evidence of several alternative splicing events (ASEs) in

known RefSeq genes with a user-defined threshold of 3 and 5

mapped reads. To achieve a highest reliability of these data, we

considered a user-defined threshold of at least 5 mapped reads as

informative for ASEs (Figure S5). By using this approach, we

found that 1621 splice junctions in DS and 1783 in euploid were

representative of ASEs (i.e either multiple donor or multiple

acceptor junctions; details in ‘‘Materials and Methods’’).

In order to identify ASEs specific of DS progenitor cells,

avoiding a ‘‘threshold-dependent’’ exclusion of any given junction

(i.e of junctions with a number of mapped reads slightly below the

chosen threshold), we marked as ‘‘sample-specific’’ only junctions

without any mapping in the euploid state (and viceversa). By using

this procedure, we found that about 18% of all ASEs detected in

each sample were sample specific. Indeed, we identified 294 DS-

specific and 323 euploid-specific alternative splice events (Figure

S5 and Table S2). Of these, 135 junctions for DS and 229 for

euploid (45.9% and 70.9% of total state-specific ASEs, respective-

Figure 3. Evidence of 39 and 59 UTRs gene extensions. Illustration of 39 (A) and 59 (B) extended UTRs that are present in both samples.
doi:10.1371/journal.pone.0018493.g003
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ly) were completely unannotated (i.e. non-RefSeq, -UCSC, or -

Ensembl), thus representing good candidates for further analyses

aimed to fully characterize novel disease-specific isoforms within

DS isolated EPCs. Examples of genes with evidence of sample

specific splicing are depicted in Figure 4.

Interestingly, this analysis showed evidence of a DS-specific

splice junction (transcript variant NM_130436.2; proteinID

Q13627-2) in a crucial HSA21 gene involved in DS pathogenesis,

namely DYRK1A [65]. For all mentioned cases, sequence reads

supporting evidence of alternative splicing will be helpful for

further detailed analyses aimed to resolve, if any, possible exon-

annotation conflicts.

In the context of the syndrome, we also observed that some

interesting genes, involved in the immune response and angio-

genesis pathways - and previously shown to be deregulated in DS

EPCs [12] - had evidence of yet unannotated sample-specific

isoforms. Further analyses are needed to address whether these

isoforms may play a role in DS pathogenesis.

The transcriptome complexity of DS beyond the rRNA
NGS has revealed the evidence of previously not well,

characterized - or completely uncharacterized - RNA molecules,

emerging as crucial regulators of many biological processes and for

their potential link to human diseases. Small RNAs, including

miRNAs, regulators of gene expression involved in various cellular

processes, as well as small nucleolar RNAs (snoRNAs) - central to

ribosome maturation and guides for site-specific modification of

rRNAs - are acquiring greater attention for their involvement in

human inherited disorders [35,36]. In addition, long as well as

short non coding RNAs, whose functional significance is still

debated, and other classes of coding and non coding RNAs have

been also described at transcriptional start sites, splice sites or in

large intergenic regions [66–68].

In our experiment, not limited to the annotated polyA+ mRNA

fraction, we detected and quantified active transcription in both

human trisomic and euploid isolated EPCs from snoRNAs, small

nuclear RNA (snRNA), miRNAs and other non-coding RNA,

including lincRNAs.

In particular, we focused on UARs mapping to annotated

snoRNAs, for which, as above described for the RefSeq genes, we

measured gene expression as RPKM. Evidence of active

transcription from 289 snoRNA (171 C/D box snoRNAs alias

SNORD genes, 95 H/ACA box snoRNAs alias SNORA genes

and 23 Cajal body-specific scaRNAs) was observed for DS cells,

and the expression of 289 snoRNAs (173 C/D box, 93 H/ACA

box and 23 Cajal body-specific scaRNAs) was detected in the

euploid state. For both analysed samples, we observed a

significantly strong increase (about 170-fold) in mean RPKM

values for this class of RNAs compared to ploy-A+ transcripts

(Figure 2).

In addition, we independently selected snoRNA belonging to

‘‘Very high’’ and ‘‘High’’ RPKM categories, which represent

almost the totality of snoRNAs, and observed that the vast

majority of these localize within the introns of RefSeq genes

(namely host genes). Then, we analyzed the expression level, in

terms of RPKM, of their related host genes. Table S3 shows the

occurrence of each RPKM category of the host genes for two

classes of snoRNAs, both in DS and euploid samples. We noted

that 221 highly-expressed snoRNAs common to both states (76%

of the total), preferentially - if not exclusively - mapped within

intronic regions of highly-expressed genes (Figure 5A). More

interestingly, none of highly-expressed snoRNA localized within

Figure 4. State-specific alternative splicing. Example of sample-specific alternative splicing events with T1 = 5. Reliable junctions are highlighted
in light red for both cases (DS in panel A and euploid in panel B). Junctions highlighted in light grey are below the threshold. State-specific junctions
are those not showing any hit in the other sample.
doi:10.1371/journal.pone.0018493.g004
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introns or in close proximity of RefSeq genes with low or without

any evidence of expression (Table S3), suggesting this class of small

RNAs is preferentially located within euchromatic regions of very

active transcription.

Moreover, since it has been recently shown that snoRNAs can

be processed into snoRNA-derived RNAs (sdRNAs) [67], we

analysed our WT data to address these specific features. Hence, we

interestingly observed, as recently shown by Langenberger and

colleagues [69], a correlation between reads’ mapping pattern and

snoRNAs processing steps, and possibly with their structural - and

thus functional - properties (Figure 5B). As there depicted,

snoRNAs clearly show specific block patterns with a characteristic

reads coverage distribution. The particular enrichment of reads

mapping to specific snoRNA sites is very likely to be correlated to

its processing steps. A similar correlation with the secondary

structure processing of non coding RNAs, even though at a lower

extent due to RNA extraction protocol and library construction,

was also observed for miRNAs (data not shown). However, these

findings highlight the great potential of RNA-Seq data, deriving

from ribosomal RNA-depleted samples rather than polyA+

enrichment procedure, for a better functional classification and

the identification of novel non-coding RNAs.

Furthermore, a significant differential expression (DE) of

snoRNAs in human trisomic EPCs (compared to euploid) was

also observed (Table S4). In particular, 46 C/D box snoRNAs (3

up- and 43 down-regulated), 31 H/ACA box (9 up- and 22 down-

regulated) and 9 Cajal body-specific scaRNAs (2 up- and 7 down-

regulated) were differentially expressed in DS compared to euploid

cells. Interestingly, we noted that the gene with the highest

expression of HSA21 was a member of H/ACA box, SNORA80,

which showed a strong evidence of DE in the trisomic cells.

Similarly, the expression of annotated RefSeq miRNA encoding

genes was also measured. Expression from about 180 of them was

detected, although about 20% of them had a small number of

mapped reads in both samples. A significant DE in DS isolated

progenitors compared to euploid, was also observed for a small

subset of them (15 miRNA with a significant number of mapped

reads; data not shown).

Finally, we also measured the expression from annotated

lincRNAs (Homo sapiens GRCh37, Ensembl 58). Since the average

length of these regions was significantly higher than RefSeq genes,

on average RPKM values were smaller. However, a significant

expression was detected for 1335 and 1269 regions for DS and

euploid sample respectively, even though a subset of them

completely or partially overlapped with RefSeq genes or repeated

regions. After removing them from further analyses, we observed a

significant differential expression in the trisomic state for 45

lincRNAs (Figure S6).

Differentially expressed genes in human trisomy 21
Given the quantitative nature of our analysis, we used UARs

and reads mapping to junction library to detect DE genes between

the trisomic and euploid states.

In particular, we observed 1629 DE genes marked as ‘‘good’’

(about 12% of total detected genes in both samples), 158 as

‘‘strong’’, 54 ‘‘acceptable’’, whilst a large fraction (1827 genes)

showed weak evidence of DE in the trisomic state since it did not

pass the 1.5 fold-change cut-off. We selected only DE genes

marked ‘‘strong’’ and ‘‘good’’ for further analyses (definitions are

given in ‘‘Materials and Methods’’).

Of these 1787 genes showing evidence of differential expression

between samples, 956 were up-regulated and 831 down-regulated

in DS endothelial progenitors (Figure 6A). In contrast, about 75%

of RefSeq annotated genes did not show any evidence of DE in the

syndrome (Figure 6B). We also observed that 55 HSA21 genes -

out of the 132 expressed in both DS and euploid cells - were DE in

the trisomic state and, more interestingly, most of them (50 genes

out of 55 HSA21 genes differentially expressed in DS) were up-

regulated. Quantitative Real-Time PCR was used to validate the

expression values in 24 actively transcribed loci per sample,

confirming the evidence of DE also for genes marked as ‘‘weak’’ or

‘‘no change’’ (Figure S7 and Table S5).

The list of DE genes was then analyzed by using PANTHER

(Protein ANalysis THrough Evolutionary Relationships) Classifi-

cation System [70] in order to establish the occurrence of more

representative deregulated pathways in the syndrome. The

analysis revealed a particular enrichment for inflammation,

angiogenesis, integrin and Wnt signaling pathways (Figure 7A).

In addition, to highlight the most relevant biological processes

possibly contributing to DS phenotypes previously observed in

EPCs [12], we used a newly developed application for Gene

Ontology (GO) analysis on RNA-seq data, namely GO-Seq [71].

By using the selection of genes DE within DS progenitor cells, we

observed a particular enrichment for GO terms related to immune

and inflammatory responses, cell adhesion and chemokine/

cytokine receptor activities (Figure 7B). These GO terms are in

agreement with the independent analysis of enriched gene

pathways performed with PANTHER. Taken together these

findings, which confirm independent results deriving from a

genome-wide microarray analysis on EPCs isolated from young

DS [12], strongly suggest that these biological processes, and the

related genes, require much attention to further address their

involvement in DS vascular and immune-related phenotypes.

Furthermore, in order to understand whether the newly

identified igTARs and inTARs were differentially expressed

within the syndrome, a similar approach was also used. In

particular, we found that 44, out of the total 21804 igTARs

identified in DS cells, were classified as strong DE regions, 1792

showed good evidence of DE, and 130 were classified as

acceptable DE. For what concerns the inTARs, among the

99030 defined regions, we found 48 of them with strong evidences

of DE in DS sample, 3173 with good and 720 defined as

acceptable evidence of DE. In both cases, we noticed that the

observed fold changes were sufficiently large, hence the threshold

effect was negligible. Results are shown in Figure S8. These results

suggest a possible involvement of such expressed regions in the

pathogenesis of this syndrome, indicating that some yet unknown

genetic determinants may be responsible of, or contribute to, the

wide spectrum of DS pathological phenotypes.

Discussion

RNA-Seq experiments revealed that the transcriptional land-

scape in higher eukaryotes is much more complex than previously

anticipated, with a high proportion of transcripts originating from

intergenic regions, referred to as ‘‘dark matter’’ [72,73], thought to

be transcriptionally silent or antisense to genes [33]. Previously

Figure 5. snoRNAs expression and mapping block patterns. (A) illustrates the percentage of snoRNAs host genes (SHG) vs non host genes
(nSHG) within each RPKM category for both DS and euploid samples. (B) is a schematic representation of maximum coverage of few examples of
snoRNAs, showing a characteristic mapping block pattern. Black and red numbers refer to DS and euploid maximum coverage, respectively.
doi:10.1371/journal.pone.0018493.g005
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Figure 6. Differentially expressed RefSeq genes in human trisomy 21. (A) Standard MA-plot of the normalized global observed counts per
each RefSeq gene. (B) shows the percentage of RefSeq genes classified as strong, good, acceptable evidence of DE with respect to those not showing
any statistical evidence.
doi:10.1371/journal.pone.0018493.g006
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published transcriptome sequencing data based on the polyA+

enrichment started to shed light on the transcriptional complexity

in humans and other organisms [27–31]. Nonetheless, the

information revealed by using this approach could only detect a

fraction of the total RNA content, representing the tip of the

iceberg. In contrast, in our study we show the clear advantage of

the whole trasncriptome analysis of rRNA-depleted samples for

studying Down syndrome. Hence, our approach offers the

possibility to detect previously not well-characterised - or

completely uncharacterized - non-coding RNA, such as snoRNAs,

miRNAs and others, emerging as novel candidates for their

possible contribution to the pathogenesis of different human

disorders [34–36]. Coupling the ribodepletion procedure of

samples followed by massive-scale RNA sequencing provides

new intriguing opportunities to better understand the underlying

molecular bases of complex phenotypes, such as herein described

for Down syndrome.

In contrast, in the last years, most of studies mainly focused on

hybridization- and tag-based expression profiling on post-mortem

DS tissues and fetuses, with only few of them considering adult

whole blood samples as a good source of RNA to address these

aspects [37–39]. Since angiogenesis’ suppression, endothelial

dysfunction and infection recurrence are hallmarks of DS, and

several studies suggest the use of endothelial progenitors -

previously shown to be impaired in DS [12] - in the clinical

setting [43–47], these cells represent an optimal source for

studying blood-related DS pathological features. Therefore, the

possibility to investigate in a genome-wide scale and easy-

accessible non-invasive manner - early gene regulatory mecha-

nisms responsible of cardiovascular disease, cancer and immune

disorders in DS, would be of great clinical interest. Hence, our

study was accurately designed to investigate these issues.

The analysis of the whole transcriptome of DS-isolated EPCs

allowed us to detect differential expression - compared to the

euploid sample - of even low expressed genes in immune and

inflammatory pathways, crucial for DS pathogenesis, showing the

great potential of RNA-Seq to detect even subtle changes in gene

expression. Clearly, we are aware that we cannot conclusively

attribute to trisomy 21 all the changes in transcript levels found

within this single case-control study since RNA-Seq decreases the

experimental noise, but cannot reduce the individual variability. In

order to separate the confounding effect due to the individual

variability from the effect related to DS condition, a larger number

of biological replicates - for each condition - should be considered.

However, in this case, most of gene expression changes identified

in the present work confirmed other data derived from previous

independent studies performed on the same specific cell type in

more DS and euploid samples [12].

At the same time we also disclosed novel regions of active

transcription falling outside annotated loci, with strong evidence of

DE within DS progenitor cells. In addition, our work revealed a

wide spectrum of not yet well-characterized non-coding RNAs

(particularly snoRNAs) with evidence of differential expression,

some of them localized on HSA21 and shown to be over-expressed

in DS cells, possibly accounting for some of the observed

angiogenesis- and immune-related DS phenotypes.

Moreover, our approach allowed us to identify novel DS-

specific splicing isoforms for a large subset of genes, even

belonging to crucial pathways involved in DS pathogenesis (i.e.

DYRK1A) [65]. Alternative splicing is currently known to generate

either novel transcripts – possibly encoding novel domains – or to

have regulatory roles through balancing levels of those mRNAs

encoding functional proteins [74] and, very recently, it has been

highlighted the power of RNA-Seq in detecting splicing differences

in brain regions of individuals affected by Alzheimer’s disease [75].

In addition, low-expressed transcripts, subtle changes in the

expression of both known and, more interestingly, yet unannotated

transcripts, were also investigated. It should be noted that a

fundamental aspect of gene expression regulation, emerging as a

crucial issue for inherited disorders and cancer in humans, is the

identification of cis- and trans-acting regulatory regions within 59

and 39 UTRs of genes. To this aim, the present study shows the

great potential of RNA-seq towards the identification of novel

putative extended UTRs for already known genes, possibly

representing novel miRNA targets or regulatory sites for gene

transcription, and to our knowledge this is the first paper

describing the complete transcriptome of HSA21 trisomic

endothelial progenitor cells.

On the other hand, it is clear that the high extent of complexity,

not completely detected by commonly used approaches, opens

several new challenges either from computational and experimental

point of view, not easily solvable within a single study. For instance,

the much higher level of mapping disclosed, and then measured,

into unannotated TARs, requires suitable procedures to build

appropriate novel gene models. Further studies will be then required

to combine information from annotated genes, extended 39 and 59 -

and exon boundaries - with those arising from igTARs and inTARs.

A possible way to cope with this problem could be to build-up

putative gene models and assess them by using data-driven library of

junctions and iteratively repeat the mapping in a similar way as

proposed by TopHat [76]. Another challenge to face is the

reconstruction, and thus the further quantification, of multiple

isoforms of a transcript, including those arising unannotated TARs

or coming from revised gene models, in a statistical rigorous way.

Clearly, as occurs for any data-driven procedure, such

approaches are likely to require very high coverage, a large

number of samples and the integration with different type of

biological information and data in order to be robust.

In conclusion, although with the limitation for the number of

analyzed samples, we have shown the great potential of

performing whole transcriptome RNA sequencing using ribosom-

al-depleted samples from a technical, technological and bioinfor-

matics point of view. We believe the above-described procedures

may represent a useful guideline even for larger, and more

statistically significant, case-control studies based on RNA-Seq.

Since transcriptome profiling represents a powerful tool for the

functional analysis of EPCs in health and disease [77], coupling

this innovative technological approach, as shown herein within the

context of Down syndrome, to the easy availability of circulating

progenitor cells from blood samples, render this kind of analysis

very feasible for large-scale studies of transcriptome in both

physiological and pathological states.

Materials and Methods

Total RNA isolation and ribodepletion
Cells were isolated as described in [7] from peripheral blood

samples of DS and euploid donors recruited at the Second

Figure 7. Pathway of differentially expressed RefSeq genes in DS sample. Bar graph representation of differentially expressed genes in DS
vs euploid samples. (A) More enriched gene pathways are represented. The number of total DE RefSeq genes is also depicted. (B) Pie chart showing
the percentages of representative GO terms (biological processes) enriched in DE genes in the DS sample compared to euploid.
doi:10.1371/journal.pone.0018493.g007
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University of Naples, and an approval statement was obtained by

the ethics’ review board of the ‘‘Monaldi Hospital’’, Second

University of Naples. Written informed consent was obtained from

individuals involved in this study according to the principles

expressed in the Declaration of Helsinki.

Briefly, total mononuclear cells were isolated by density gradient

centrifugation of peripheral blood samples on Histopaque-1077

(Sigma). Cells were washed twice with PBS, plated on culture

dishes pre-coated with gelatin and fibronectin and maintained in

endothelial growth medium-2 (EGM2; Cell Systems). Cells were

cultured at 37uC with 5% CO2 in a humidified atmosphere. After

four days, non-adherent cells were removed and adherent cells

were collected for RNA isolation.

Total RNA was isolated from endothelial progenitor cells as

described [7]. Integrity and quantity of RNA was evaluated by

Experion (Biorad), following the manufacturer’s instructions.

Ribosomal RNA depletion was performed on 10 mg of isolated

total RNA by using magnetic beads (RiboMinusTM Eukaryote Kit

for RNA-Seq, Invitrogen) according to the manufacturer’s

protocol (see for technical details File S1). 10 mg of total RNA

were incubated at 72uC for 5 min to allow a complete

denaturation for efficient hybridization to single-stranded eukary-

ote rRNA sequence-specific 59-biotin labeled oligonucleotide

probes (targeted against 5S, 5.8S, 18S and 28S human rRNAs)

containing locked nucleic acids (LNA) at specific positions. Then,

streptavidin-coated RiboMinusTM Magnetic Beads were used to

capture rRNA-probes complexes to be further discarded form

total RNA samples. The efficiency of rRNA depletion was

evaluated on the Experion. Resulting RNA was successfully

fragmented with RNase III and, after cleanup with RiboMinusTM

Concentration Module (Invitrogen) according to the manufactur-

er’s protocol, resulting fragmented samples were quantified on the

Qubit Fluorometer (Invitrogen). The appropriate size distribution

of fragmented RNA was finally evaluated on the Experion. The

experimental procedure used in this work is illustrated in Figure

S1.

Stand-oriented cDNA library preparation
100 ng of the fragmented RNA samples were hybridized and

ligated to double stranded oligonucleotides adapter suited for the

59 SOLiD System sequencing (details in File S1). Reverse

transcription was performed using ArrayScriptTM Reverse Tran-

scriptase. Purified cDNA samples were denatured on 6% TBE-

Urea gel, and size selection (150–250 bp) was performed. PCR

amplification on gel slices was then performed using AmpliTaqH
DNA Polymerase, and yield of purified PCR products was assessed

on the Qubit Fluorometer and NanoDrop spectrophotometer

(Invitrogen). Size distribution of cDNA libraries was evaluated on

the Experion.

SOLiD sequencing
We drove 500 pg of each library onto 1-mm-diameter beads

using emulsion PCR, according to the SOLiDTM Whole

Transcriptome Analysis Kit (Applied Biosystems). Libraries were

sequenced using the Applied Biosystems SOLiD sequencing, as

50-mers. We sequenced ,200,000,000 (100 M for each sample,

euploid and DS) beads using ‘sequencing by ligation’ chemistry on

a SOLiD sequencer version 3 (Applied Biosystems). Approximate-

ly 97% of beads deposited onto the slice generated good-quality

sequence reads 50 nt in length (Figure S2 and Table S1).

SOLiD processed files have been submitted to the Gene

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)

repository (accession n. GSE27443).

Quantitative Real-Time for RNA-Seq validation
Quantitive Real-Time PCRs were performed on the same

euploid and DS rRNA-depleted samples that underwent library

construction and further sequencing on the SOLiD platform.

Amplification reaction mix contained 16 SYBR Green PCR

master mix (Applied Biosystems), 160 nM of each primer and

about 50 ng of cDNA (RNA equivalent) as template. PCR

conditions were 95uC for 10 min followed by 40 cycles of 95uC
30 sec, 60uC 30 sec and 72uC 30 sec. Melting curves were

generated after amplification. Data were collected using the

7900HT Fast real time PCR system (Applied Biosystems); each

assay for each of the 24 analysed genes (Figure S7) was performed

in duplicate in both rRNA-depleted samples. Primers were

designed using Oligo 4.0-s. The relative gene expression was

calculated using the 22DDCt method [78].

Mapping strategy and data visualization
The whole mapping strategy is illustrated in Figure S2 and

consists in several steps. First, the total reads produced were

filtered out accordingly to quality values, secondly, those reads that

mapped to the adapters and to the ribosomal sequences were

further removed, thirdly RNA-MATE software [59] version 1.1

was used to map the usable reads either to the genome and to a

custom-designed library of exon-junction sequences, (see File S1).

RNA-MATE is an open source software specifically designed to

map RNA-Seq data generated from the SOLiD system. It works

cyclically. At each cycle it attempts to map usable reads first to the

reference genome and subsequently to the junctions’ library. At

the end of each cycle, reads failed to map to the genome or to the

junctions library were left-end trimmed using a pre-defined lengths

schema.

RNA-MATE allows a user to control the number of mismatches

tolerated for each cycle, however it does not incorporate the

possibility of mapping gaps, reducing the possibility of locating

reads with small indel. Moreover, it requires the pre-construction

of a junctions library limiting the possibility of identifying de-novo

junctions. However, the assessment and the correct interpretation

of mapping strategies that are junctions model free has not been

completely elucidated and good performance are obtained only at

the price of a much higher coverage. Moreover, tail-end trimming

the reads at each cycle allows either to cope with the behaviour of

the quality values (that are usually worst in last bases of the reads)

and to partially handle the presence of novel splicing junctions

allowing to map the right side of the read.

By default, RNA-MATE allows to directly assign multiple reads

with a single ‘‘best hit’’ to that specific position. In our pipeline, all

remaining multiple reads (with at most 10 mapping positions)

underwent the rescue procedure with default parameters.

At the end of the alignment procedure three types of reads were

identified: UARs, MRs and unmapped reads (see File S1 for

definitions).

Annotation and quantification of RefSeq transcriptional
events

Given the results of the alignment, first we performed a within

sample analysis aimed to extract and characterize the activity of

both states independently, then we provided a cross-comparison

between trisomic and euploid cells aimed to detect differences in

term of gene expression.

In order to provide a quantitative estimate of gene expressions

in both trisomic and euploid cells, we considered genes in the

ReqSeq annotation. However we suitably revised the annotation

to remove ambiguities due to overlapping genes, see File S1 for
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technical details. The annotation contains 215952 annotated

elements (i.e., exons or part of them) in a BED format

corresponding to 21122 uniquely identified (and non redundant)

RefSeq genes or group/family of RefSeq genes.

For each gene in the RefSeq annotation a preliminary estimate

of the global expression was obtained by computing the number of

UARs starting in all the annotated elements (i.e., exons or part of

exons) corresponding to the same gene. Then, the final expression

value was corrected by adding to each specific locus the read counts

derived from the splice junctions. Additionally, an exon by exon

usage map and the corresponding reads counts was provided in

order to facilitate isoforms identification.

To account for transcripts of different lengths when selecting

active genes, the gene expression counts values of annotated loci

were converted in RPKM [55]. For each sample, only loci with

RMKM.0.1 were considered detected.

Expressed genes in both samples were further classified

according to RPKM distributions in 5 categories: 1) very low

expression, 2) low expression, 3) intermediate, 4) high and 5) very

high expression (Figure 2 and details in File S1).

The analysis of RefSeq loci was also aimed to detect a particular

enrichment in 39 (or 59) UTRs (see File S1).

Identification of alternative splicing events
We inferred the evidence of multiple isoforms within each

annotated gene on the basis of the reads that mapped to the

splicing junctions and we suggested the presence of novel isoforms

from the type of junction mapped (i.e., junctions annotated in

some database such that RefSeq, UCSC or Ensembl or novel

combinatorial junctions). In particular, we considered as alterna-

tive splicing marks either the multiple donors or the multiple

acceptor (or both) junctions (see File S1 for definition).

For the sake of simplicity to reduce the effect of the random

matching, a junction was considered reliable if there were at least

T1 reads mapped on it. Then the identification proceeded as

follows. First, for each sample, we retrieved all the reliable

junctions and, among them we selected those containing either

multiple donors or multiple acceptors. Then, RefSeq genes

containing such junctions were detected. Such genes constitute

an initial list of candidates to the presence of multiple splicing

isoforms. The lists can be further filtered using information arising

from exon by exon map usage to remove mapping artefacts.

Secondly, the two samples were cross-compared as follows: the

spliced junctions common to both samples were identified then, for

each sample, a list of candidate sample specific junctions was

obtained. To remove the effect of the user specific threshold T1,

each list was subsequently filtered, by removing those junctions

that received any number of hits in the other sample.

Finally, since each junction was also classified as RefSeq

junction, UCSC, Ensembl junction or as putative new junction

accordingly to if it was annotated in the corresponding database or

it was a results of a pure combinatorial process, we use such

information to detect those genes containing putative new

junctions that are candidate to show novel (unannotated) isoforms.

Refinement of non-RefSeq loci
Given the RefSeq annotation we defined and annotated on each

strand on the genome igRs and inRs (File S1) to cover all the

genome. The annotation was performed independently on each

strand and regions were labelled, enumerated and described in a

BED file. The regions were quantified in each sample to provide a

measure of the overall mapping in non RefSeq regions. In order to

quantify the strength of the signal in the truly unannotated regions,

both igR and inR were filtered on the basis of the UCSC and

Ensembl Annotation (see File S1).

Remaining regions were re-labelled and enumerated. The reads

count was repeated on both samples. For comparative purposes

and to assess the consistency of UCSC and Ensembl databases, the

reads count was also performed on the UCSC and Ensembl

Annotation filtered by the RefSeq annotation.

Subsequently, to more precisely determine novel active regions,

each unannotated genomic region (either igR and inR) that

showed presence of signal (i.e., mapped reads) underwent an ad-

hoc refinement procedure. The refinement procedure is aimed to

more precisely define the approximate location of the active

regions within the unannotated regions (i.e., to identify igTARs

and inTARs, where there is a concentration of reads, removing

those regions or part of regions which showed sparse or no signal

at all).

The refinement procedure was performed either on each

samples independently - to determine sample specific annotations

(data not shown) - and by pooling together the two samples in

order to determine a set of unannotated active regions, igTARs

and inTARs, on which trisomic and euploid cells can be

compared. The reads count was finally repeated for each sample.

Statistical tests for differential expression
In order to detect DE between trisomic and euploid states, we

first compared the two samples at RefSeq level, then we compared

the previously identified un-annotated intergenics and intronic

regions.

Statistical significance has been inferred from the total observed

reads count in each locus combining together a bunch of tests,

namely DEGseq [79], DESeq [80] and edgeR [81] for which R-

packages are available under Bioconductor (www.bioconductor.

org/packages/2.7). Such tests are based on slightly different

assumptions that usually produce a different level of stringency -

and sometime different results - when applied to small sample

experiments. However, all of them are particularly suited for

RNA-Seq data, hence they were independently applied to the

dataset. For each locus we compute a p-value and its correspond-

ing adjusted p-value or q-value to detect significant change in the

expression (i.e., DE loci).

A cut-off of 0.1 was used for DESeq (that was found very

conservative for small sample), while a cut off of 0.0001 was used

for both edgeR and DEGseq (both of them resulted to be more

permissive. Additionally, a threshold of 1.5 on the fold change

between the normalized samples was imposed to filter out those

genes whose significance appeared marginal (see File S1 for

details).

Finally, the results of each selection were cross-compared either

to compromise with their assumptions and to illustrate their

impact in the final choice.

DE evidence was finally classified as ‘‘strong’’, ‘‘good’’, and

‘‘acceptable’’. All DE genes below the fold-change threshold, but

found significant in at least one test, were classified as ‘‘weak’’

evidence. Figure 6A shows the scattered plot of the normalized log

intensities vs the normalized log ratio between the two samples for

RefSeq loci.

Supporting Information

Figure S1 Experimental procedure. Schematic representation of

the whole RNA-Seq experiment. Depicted are: Total RNA

isolation (1) and ribo-depletion (2). Ribo-depleted total RNA is

fragmented (3), then ligated to specific adaptors (4) and retro-

transcribed (5). The resulting cDNA is size selected by gel
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electrophoresis (6), and cDNAs are PCR amplified (7). Then size

distribution is evaluated on Experion (8). Emulsion PCR is finally

used for the clonal amplification of SOLs (9). Enriched beads are

deposited onto glass slides (10), and sequenced by ligation on the

SOLiD v3 platform.

(JPG)

Figure S2 Data analysis pipeline. Schematic representation of

the data analysis workflow described in detail in ‘‘Materials and

Methods’’.

(JPG)

Figure S3 Summary of mapping results. Distribution of the

sequenced reads according to the mapping procedure. DS sample

(A) and Euploid (B).

(JPG)

Figure S4 Distribution of the UARs in the human genome.

Distribution of the UARs according to RefSeq genes, intronic

intergenic regions and mitochondrial chromosome. DS sample (A)

and Euploid (B).

(JPG)

Figure S5 Detection of alternative splicing events. Schematic

representation of the computational analysis used to detect

sample-specific ASEs both canonical and unannotated. Reliability

of the junction was measured with T1 = 3 (A) and with T1 = 5 (B).

(JPG)

Figure S6 Differential expression of lincRNAs. Standard MA-

plot of the normalized global observed counts per each lincRNA.

(JPG)

Figure S7 Quantitative Real-Time PCR validation. A random

selection of ‘‘no change’’ (A) and weak DE (B) RefSeq genes

between the analyzed samples confirmed by qRT-PCR. Relative

expression levels for a selection of DE RefSeq genes in DS state

(C).

(JPG)

Figure S8 Differential expression of igTARs and inTARs.

Standard MA-plot of the normalized global observed counts per

each identified igTAR (A) and inTAR (B). Venn diagrams showing

the number of regions with evidence of DE according to each

statistical method used (igTARs in panel C and inTARs in panel

D).

(JPG)

Table S1 Mapping summary.

(DOC)

Table S2 Summary of mapping on the junctions.

(DOC)

Table S3 Distribution of RPKM expression level of snoRNA

host genes.

(DOC)

Table S4 List of differentially expressed snoRNAs in human

trisomy 21.

(DOC)

Table S5 Primer pairs used for quantitative RT-PCR.

(DOC)

File S1 Supporting Materials and Methods.

(DOC)
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