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KEY POINTS

� Myeloproliferative neoplasms (MPNs) are an excellent tractable disease model for the
application of single-cell approaches to study human disease.

� Single-cell genetic analysis of MPNs has provided important insights into disease latency
and the importance of the order of mutation acquisition during disease pathogenesis, of
broader relevance for cancer biology.

� Single-cell transcriptomics has revealed aberrant megakaryocyte differentiation trajec-
tories in persons with myeloproliferative neoplasms.

� Digital pathology analysis combined with deep learning allows objective analysis of mega-
karyocyte heterogeneity in persons with MPNs.
INTRODUCTION

Philadelphia-negative myeloproliferative neoplasms (MPNs) are an excellent tractable
disease model of a number of aspects of human cancer biology, including genetic
evolution, tissue-associated fibrosis, and cancer stem cells.1,2 MPN is associated
with long disease duration, well-characterized normal hematopoietic hierarchy, ability
to purify cell populations by flow cytometry, and ease of accessibility of tissue derived
from the malignant clone, facilitating the study of how this disease perturbs normal
blood cell development through time. Accordingly, new technologies developed to
study cancer biology have often been pioneered for the study of MPN. In this review,
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we discuss recent insights into MPN biology gained from the application of a number
of new single-cell technologies to study human disease: single-cell genomics, single-
cell transcriptomics and digital pathology (Fig. 1).

SINGLE-CELL GENOMICS

In the era of personalized medicine, genetic intratumoral heterogeneity (ITH) is increas-
ingly recognized as a critical factor defining the behavior of a particular tumor in terms of
clinical presentation, response to treatment, and risk of disease progression.3 Although
bulk next generation sequencing (NGS) techniques have undoubtedly provided exten-
sive insights into genetic diversity of clones within any given tumor,4,5 ultimately ITH
can only be fully resolved using single-cell technologies.6 For example, inferring clonal
structures from bulk variant allele fractions is inherently confounded by the presence of
loss of heterozygosity or convergent evolution in which the same genetic events might
occur multiple times in the same tumor.7,8 This makes it difficult to elucidate which
mutations are present in the same clone, to accurately measure clonal diversity during
therapy, to track disease evolution, or determine the order of mutations.
MPN has proven to be an important disease model providing an illustration of how

single-cell genomics techniques can be applied to provide new insights into disease
biology and how the technology might be moved toward application for precision
medicine. Indeed, to a degree, single-cell genomics approaches are already in routine
clinical use in myeloid diseases through application of cytogenetic analysis, including
fluorescent in situ hybridization. The most common driver mutation in MPN occurs in
exon 14 of the Janus kinase 2 (JAK2) gene, JAK2V617F, causing constitutive JAK-
signal transducer and activator of transcription (JAK-STAT) signaling and driving the
Fig. 1. Overview of single-cell approaches used to study MPN: current methods and future
applications. Created with BioRender.com.
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aberrant proliferation that is characteristic of MPN. Subsequently other mutations
causing aberrant JAK-STAT signaling in MPN have been reported to occur in patients
with MPN who are negative for the JAK2V617Fmutation,9–11 confirming that constitu-
tive JAK-STAT signaling is the key pathway driving MPN phenotype.12 The mutational
landscape of MPN has been extensive studied, revealing that MPNs are genetically
relatively simple compared with other tumors.12,13 Together with other disease char-
acteristics described in the introduction, this makes MPN an ideal tractable model for
the application of single-cell genomics to understand the genetic evolution and clonal
selection of mutant cells during disease development and progression. Consequently,
single-cell assessment of genetic clonal evolution in MPN already has a rich history for
the study of MPN over many years. Earlier studies benefited from the application of
well-established clonogenic hematopoietic assays,2 overcoming limitations of direct
genetic analysis of single cells by providing an expanded cell population derived
from a single cell for genetic analysis. For example, through the analysis of X-chromo-
some linked polymorphisms, including the study of single-cell–derived hematopoietic
colonies, it has long been appreciated that MPNs are clonal diseases14,15 that develop
on acquisition of a disease-initiating mutation in a single multipotent hematopoietic
stem cell (HSC).1 This mutant HSC clone undergoes a poorly understood process of
clonal expansion over time, with subsequent proliferation of mature cells of the
myeloid lineages.1 At the time that the JAK2V617F mutation was first described,16 it
was demonstrated that JAK2V617F selectively promoted the growth of single-cell–
derived erythropoietin-independent colonies in patients with polycythemia vera
(PV).17 This approach was also used to characterize clonal diversity in patients with
MPN with concurrent JAK2V617F mutation and a cytogenetic abnormality, demon-
strating that these genetic events were present in the same clone in some patients
but in separate clones in others.18 Furthermore, combined analysis of JAK2V617F
zygosity and loss of heterozygosity breakpoints using microsatellite markers in 6495
colonies revealed that JAK2V617F homozygous clones are recurrently acquired in pa-
tients with PV and patients with essential thrombocythemia (ET).19 However, PV was
typically associated with presence of a dominant homozygous subclone, unlike in ET.
The study of single-cell–derived colonies in MPN has more recently provided novel in-
sights into the importance of the order of acquisition of driver mutations. Analysis of
colonies derived from single cells from patients with JAK2 and TET2 co-mutated
MPN revealed differences in disease phenotype and response to targeted therapy
that were dependent on the order of acquisition of these mutations.20 The acquisition
of JAK2V617F first, followed by TET2 mutation, was more likely to result in a PV
phenotype, typically in younger patients, but if JAK2V617F was acquired on a
TET2-mutated background (“TET2-first”), an ET phenotype wasmore frequent. Similar
observations also applied to DNMT3A and JAK2 mutations.21 Together these studies
nicely illustrate how the study of MPN can provide insights into pathways of genetic
evolution of broader relevance for cancer biology.
Although analysis of hematopoietic colonies is a powerful approach, it is also asso-

ciated with certain limitations and potential biases, as not all stem/progenitors are
capable of growing colonies in vitro. Direct genetic analysis of single cells provides
a potential solution, but is more challenging than analysis of material derived from col-
onies due to the very small amount of starting material and extensive amplification
required.22 Single-cell mutation analysis can be carried out by targeted NGS of known
mutations, single-cell exome, or whole-genome sequencing.23 A number of methods
have been developed, each with advantages and also limitations in terms of the spec-
trum of mutations that can be analyzed and the sensitivity and specificity of mutation
detection.22,23 Whole-genome and whole-exome techniques allow the
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characterization of new genetic events, whereas targeted techniques rely on detection
of known mutations within a given tumor. Targeted mutational analysis is a higher
throughput and more cost-effective approach than whole-exome or genome
sequencing of single cells with improved sensitivity and specificity of mutation detec-
tion and high-throughput commercially available droplet-based platforms.24 Whole-
genome single-cell techniques are typically associated with higher rates of allelic
dropout, although new approaches to study low-input genomic DNA look set to
change this.6,25 To help address such technical problems, a number of bioinformatics
tools to resolve the tumor phylogenetic trees have been developed.26–28

One of the first examples of single-cell exome sequencing in human cancer was a
case of JAK2-mutation negative MPN, where 58 cells were sequenced, revealing
monoclonal evolution of the disease in this patient and potential new candidate muta-
tions driving clonal evolution.29 The integration of single-cell genotyping with
fluorescence-activated cell-sorting purification of specific cell populations allows mu-
tations to be mapped to distinct phenotypically defined cell types, confirming that all
mutations in MPN can be tracked back to the phenotypic HSC population.30 Single-
cell targeted mutation analysis in serial samples from patients with myelofibrosis
has revealed the very high level of clonal dominance in the CD341 compartment
seen in almost all patients with myelofibrosis.31 This study also elucidated pathways
of clonal evolution during JAK2 inhibitor therapy, and demonstrated that complex
clonal architecture correlates with risk of disease progression, particularly in associa-
tion with the acquisition of RAS/RTK pathway mutations.31

New technologies now allow targeted mutational analysis of single cells to be done
in a high-throughput manner using droplet-based approaches. For example, some of
the first examples of direct single-cell sequencing using the Tapestri platform report
the study of patients with MPN. In rare cases in which JAK2, CALR, and/or MPL mu-
tations co-occur, this approach was used to determine that the mutations are present
in independent clones.32 In a landmark study, the Tapestri platform has also recently
been used to analyze 740,526 cells from 123 patients with myeloid malignancies,
including cases of MPN that have progressed to secondary acute myeloid leukemia
(AML).24 As might be expected, the number of mutations present and clonal diversity
was higher in AML thanMPN and also higher in MPN than in clonal hematopoiesis. In 4
of 6 patients with transformation of MPN to secondary AML, a new dominant subclone
emerged that in some cases was present as aminor subclone during chronic phase. In
this study, the investigators also describe an exciting new methodology to combine
protein expression at the single-cell level with genotyping to link phenotype and
genotype.
Perhaps the most remarkable recent finding, revealed through single-cell genomics

approaches, relates to the origins and disease latency of MPN. These studies used
state-of-the-art single-colony whole-genome sequencing lineage tracing approaches
that rely on identification of background somatic mutations as a “molecular clock” to
determine the timing of clonal expansion and disease development following acquisi-
tion of the JAK2V617F mutation.33,34 With the caveat that both papers are available
only as “preprints” and have not yet undergone peer review, it is striking that both
studies reach a similar conclusion that the JAK2V617F mutation was reported to be
acquired typically decades before disease development; remarkably, in many cases,
the mutation was acquired in utero or in early childhood and yet only caused disease
after many decades in adult life. In the study from the Cambridge group, 448,553 so-
matic mutations were identified and used to determine clonal dynamics in 843 he-
matopoietic colonies from 10 patients with MPN. This study estimated the median
latency between JAK2V617F acquisition and disease onset to be 31 years, with
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remarkable interpatient variation in fitness advantage of the MPN clone.33 The study
by Van Egeren and colleagues34 analyzed a smaller number of colonies from 2 pa-
tients, also concluding that there was a disease latency of decades between
JAK2V617F acquisition and disease onset. This long latency is particularly striking
in view of the observation that many persons with normal hematopoietic parameters
have evidence of a small JAK2V617F clone.35 This suggests that many persons ac-
quire a JAK2V617F mutation and live with this mutation for decades, and perhaps
in many cases lifelong, without ever developing disease. The challenge is now to un-
derstand the heterogeneity of clonal fitness advantage exerted by the JAK2V617Fmu-
tation in HSCs. It is likely that this will involve an interplay among germline genetics
influencing HSC biology,36 heterogeneity of the HSC of origin, and extrinsic factors
such as “inflammaging.”37 To unravel this crucial aspect of MPN biology will no doubt
require extensive use of single-cell methodologies that look set to be at the forefront of
MPN research in coming years.
SINGLE-CELL TRANSCRIPTOMICS

Single-cell RNA-sequencing (scRNAseq) is the most widely applied assay in single-
cell genomics, and is extensively used to provide a comprehensive and unbiased
assessment of normal cellular and molecular tissue architecture and their perturba-
tions in disease states. Over the past decade, experiments have massively expanded
in their scale and implementation, due to technological advances resulting in high-
throughput methods that are relatively easy to implement.38,39 In parallel, there now
exists a wealth of user-friendly and open-source computational pipelines for data
analysis.40 Transcriptional profiling of cells individually has several advantages over
“bulk” analyses, including detection of rare cell types; determination of whether differ-
ences between samples are due to differences in the frequencies of cell types present
or alternatively changes in individual cell phenotype; and exploration of combinatorial
patterns of gene expression and differentiation trajectories.
A typical analytical pipeline includes organizing cells according to their transcrip-

tional profiles into discrete groups, or “clusters” that correlate with cell type or state.40

Although cells are captured as transcriptional “snapshots,” their differentiation trajec-
tories can be inferred computationally using trajectory analyses or ordering over
“pseudotime,” to identify key transition states and bifurcation points.41–44 In addition,
studying the ratio of spliced versus unspliced mRNA, or the “RNA velocity,” can be
used to predict the future direction of travel of individual cells along a computed tra-
jectory.45,46 scRNAseq can be readily combined with cell surface proteomics by incor-
porating barcoded antibodies,47 and analytical techniques have been developed to
infer cell-cell interactions using databases of receptor-ligand pairs.48

scRNAseq techniques have been widely used to study MPN, as these diseases pro-
vide an exemplar model of a cancer involving complex interactions among malignant
cells, diverse immune cell types (clonal and nonclonal), and mesenchymal stromal
cells. In chronic myeloid leukemia, stem cells were studied from patients before and
after tyrosine kinase inhibitor treatment and from the same patient before and after
transformation from chronic phase to blast crisis.49 Studying cells individually pro-
vided the necessary resolution to detect the rare, highly quiescent, BCR-
ABL1 stem cells in those responding to tyrosine kinase inhibition, and to demonstrate
that these cells were transcriptionally distinct from normal stem cells, suggesting
possible new targets for therapy. In this study, scRNAseq was combined with a novel
method enabling BCR-ABL positive and negative cells to be reliably distinguished with
high sensitivity, revealing that BCR-ABL negative stem cells also showed an aberrant
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transcriptional signature with activation of inflammatory pathways, especially in those
patients who failed to achieve an optimal response to treatment.49

scRNAseq has also been applied to study how mutations alter hematopoiesis in
Philadelphia-negative MPN, both in mouse models and in primary patient samples.
In studies of primary cells isolated from patients with MPN, high-throughput scRNA-
seq has been applied to study how hematopoiesis is altered in patients with
MPN.50,51 In a study of approximately 40,000 cells from patients with mutCALR-
driven MPN, scRNAseq using a widely used droplet-based 30 scRNAseq platform
(10x Genomics, Pleasanton, CA) with a new genotyping method involving targeted
amplification of mutation transcripts was performed.50 This method can easily be
applied to profile 10 to 100s of 1000s of cells in parallel, and is sensitive for mutations
that are highly expressed, such as mutCALR, for which approximately 90% cells were
accurately genotyped, albeit less sensitive for low-expressed mutations (eg, 7.3% of
JAK2V617F-mutant cells were genotyped) or those distant from the 30 end, for
example, SF3B1 (w24% sensitive).50 This study showed that CALR mutations in pa-
tients with ET affect the entire hematopoietic hierarchy, with mutant cells detected in
all stem and progenitor subsets, although a higher proportion of mutant cells in the
megakaryocyte progenitor (MKP) compartment. Trajectory analyses indicated that he-
matopoiesis was biased toward myeloid and myeloid-megakaryocytic differentiation,
with MKP showing increased cell cycling, and mutant cells had upregulation of genes
involved in the unfolded protein response to an NF-kB signaling pathway.50 A highly-
sensitive method combining genomic DNA and complementary DNA genotyping in
parallel with scRNAseq was also developed in MPN, enabling resolution of transcrip-
tional signatures of genetic subclones in MPN and confirming that nonclonal stem/
progenitors show aberrant, inflammatory gene expression signatures, highlighting
the importance cell-extrinsic effects of MPN mutant clones.30

A recent study of a mouse model of mutant calreticulin (CALR)-driven ET reported
similar findings. In this model, mutCALR resulted in an expansion of both HSCs and
megakaryocyte progenitors, and the investigators identified an aberrant intermediary
population termed “proliferative megakaryocyte progenitors (pMKP)” that fell on a
distinct differentiation pathway to MKP in normal hematopoiesis in their analyses.52

In addition, mutCALR HSC and MKP cell clusters showed significant dysregulation
of genes involved in cholesterol biosynthesis as compared with wild-type cells,52 in
addition to cell cycle and unfolded protein response genes as previously been
described in mutCALR patients with MPN.50

Profiling of more than 120,000 individual cells from a range of patients with primary
and secondary myelofibrosis and both JAK2V617F and mutCALR-driven disease also
demonstrated megakaryocyte-biased hematopoiesis, with an 11-fold increase in MKP
detected in patients with myelofibrosis as compared with controls in all clinical and
molecular subgroups.51 Notably, the MKP in patients with myelofibrosis fell into 2
distinct transcriptional subgroups: a small subset with a transcriptional profile similar
to MKP detected in age-matched healthy donors, and a larger population with global
upregulation of inflammatory/profibrotic genes. This study also identified that
megakaryocyte-associated genes, including a cell surface marker, G6B, as being
widely upregulated in myelofibrosis stem/progenitor cells, suggesting a strategy for
immunotherapeutic targeting of cells derived from the myelofibrosis clone.51

Single-cell analyses have also shed light on the changes to the nonhematopoietic
stromal cell compartment in MPN. Creating a “map” of certain stromal cell populations
in myelofibrosis mouse models highlighted mesenchymal progenitor cells as showing
the strongest upregulation in expression of extracellular matrix proteins in fibrosis.
This study highlighted the S100A8/S100A9 alarmin complex as a potential therapy
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target, demonstrating that its inhibition was able to ameliorate the disease phenotype
in the mouse model.53

These insights highlight the power of single-cell “omic” techniques to accurately
dissect cellular and molecular perturbations in MPN. Combined with emerging tech-
niques to capture cell states and transcriptomes in unperturbed tissues, so-called
“in situ sequencing” (see Fig. 1) single-cell approaches will prove to be a powerful
approach for target discovery and in the future look set to play a key role in clinical
diagnosis through more accurate disease classification and risk stratification.
DIGITAL PATHOLOGY

The bonemarrow represents a complex, dynamic, and highly regulated tissue in which
diverse cell populations lie in close proximity to an orchestrated network of extracel-
lular (stromal) matrix, blood vasculature, and bone.54 This complexity is compounded
by physiologic changes in response to aging, stress, and environmental factors that
manifest as shifting patterns of tissue cellularity, heterogeneity, and lineage matura-
tion.55 Such complex spatiotemporal relationships are increasingly recognized as
important for disease initiation, progression, therapeutic response, and relapse in pa-
tients with various myeloid malignancies, including MPN.56 Although advances in
high-resolution single-cell genomic technologies are well established in the search
for new treatment strategies, advanced diagnostics, and disease monitoring in
MPN, complementary approaches to decipher the important interactions among
neoplastic hemopoietic cells, stromal constituents, and immune cell populations of
the marrow in MPN are required.55,57 Recent developments in digital pathology, com-
puter vision, and image analysis have the potential to address this imbalance and
revolutionize the assessment of bone marrow tissues in MPN.
Key morphologic features relating to marrow cellularity, megakaryocyte pleomor-

phism/atypia, and fibrosis are firmly embedded in current MPN classification
schemes.58,59 However, inconsistencies in the interpretation of key morphologic fea-
tures may lead to inaccurate diagnosis and disease classification, with multiple
studies suggesting significant intraobserver and interobserver variability among pa-
thologists.60–63 Although this appears to be partly attributable to experience and
training,64 the subjective and qualitative nature of routine marrow biopsy reporting re-
mains a fundamental limiting factor in any classification scheme incorporating
morphology-based assessment of marrow tissue. The importance and value of
more accurate and objective strategies for capturing the complexity of marrow tissue
architecture in MPN extends beyond the potential for improving diagnosis and classi-
fication using current recommended criteria. As perturbations in the relationship be-
tween clonal and nonclonal hematopoietic cells and components of the marrow
stem cell niche are gradually elucidated using sophisticated murine models of myeloid
malignancies,55,56,65–68 therapeutic strategies targeting the mediators of tumor cell
survival, proliferation, and chemoresistance are beginning to emerge.69–72 Translating
these findings to human disease and validating novel therapies will require a
concerted effort to move from the conventional, subjective, and laborious description
of tissue morphologic features by pathologists to objective, quantitative, and auto-
mated descriptions of marrow constituents and their interactions.
Computational analysis of digitized images prepared from glass slide material has

evolved over the past few decades and significantly accelerated in recent years
with the development of sophisticated deep learning (DL) methods that emulate the
structure and function of human neurons in the form of artificial neural networks.73,74

DL methods have found ready application in the field of pathology, with image
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recognition convolutional neuronal networks (CNN) increasingly adopted for computer
vision tasks in histopathology and cytology.75–77 In contrast to common solid tumors,
image analysis has seen relatively limited application to disorders of the bone marrow,
with most studies describing strategies for cell identification, quantification, and the
resolution of specific leukemic differential diagnoses including B-ALL and common
B-cell lymphoma/leukemia subtypes.78–83 These machine learning strategies have
generally relied on morphology-based criteria to distinguish tumor cell subtypes rather
than interrogate tumor cells with the intention of gaining novel insights into disease
biology. However, recently machine learning has been used to correlate bone marrow
aspirate morphologic features with somatic mutations in myelodysplastic syndrome,
with specific morphologic profiles linked to unique clinical characteristics.84

Despite the central role of bone marrow biopsy assessment in the diagnosis and
classification of MPNs, and the importance of the marrow microenvironment in dis-
ease biology (as outlined previously), few studies have attempted to apply advanced
machine learning approaches to these disorders. In response, we recently demon-
strated the utility of an automated image analysis pipeline that uses machine learning
techniques to extract important cytomorphological and topographic features of indi-
vidual megakaryocytes from digitized images of bone marrow biopsies.85 This
enabled the differentiation of reactive samples from common MPN subtypes (ET,
PV, and primary myelofibrosis) and assisted in disease classification. Clustering of
megakaryocytes using the machine-learned features from extracted megakaryocytes
identified cellular subtypes beyond the sensitivity of detection by specialist hematopa-
thologists and were seen to correlate with the underlying MPN driver mutation status.
When combined with topographic assessment incorporating patterns of megakaryo-
cyte clustering and cell distribution, the extracted features could be combined to pro-
duce a multidimensional representation of an individual sample well beyond
conventional microscopic assessment. Moreover, the rapid automated analysis of
samples allowed index cases of MPN or reactive marrow to be contextualized against
libraries of previously analyzed samples (Fig. 2). This could be used to monitor or track
morphologic features over time, corresponding to either stable disease or
Fig. 2. Illustration of how digital pathology approaches can be used to study cellular hetero-
geneity in MPN.
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progression. This work highlights the potential of image analysis, driven by advanced
machine learning approaches, to improve tissue diagnosis in MPN and correlate
tissue-based morphologic features with standard mutational and clinical data
collected during the routine investigation of patients with MPN. Importantly, the auto-
mated extraction of objective quantitative data from routinely prepared hematoxylin-
eosin–stained slides is ideally suited to future integration with the results of whole-
tissue immunolabeling studies, advanced single-cell genomic analysis, and the out-
puts from high-resolution multiplexed tissue imaging performed in the research
setting.
An important consideration in the development of improved descriptions of tissue

morphology and the marrow microenvironment using digital pathology and machine
learning is the development of intuitive yet sufficiently detailed data visualization.
The methods used will depend on the application and requirements of the end user,
but it seems likely that for clinicians and researchers unfamiliar with the normal
bone marrow tissue architecture and its heterogeneity, visual representation of the
cellular target(s) of interest in the context of normal and/or previously analyzed disease
tissue will aid interpretation and understanding. Successfully designed outputs should
capture temporal changes in the course of disease or following treatment, but also
have the potential to highlight relevant diagnostic and prognostic features with atten-
tion drawn to potential therapeutic targets.
Notwithstanding the potential clinical application of automated analysis of discrete

single-cell populations, such as megakaryocytes in biopsies of MPN, a deeper under-
standing of the complex cellular interactions within the bone marrow of patients with
myeloid malignancies requires a more comprehensive description of the spatiotem-
poral relationships that exist between the cellular and stromal components of the
marrow. This will require integration of discrete cellular and extracellular morphologic
features with lineage specific markers of differentiation and maturation using multi-
plexed immunolabeling approaches. Although several analytical platforms already
use such approaches in the research setting, they are typically restricted to relatively
small tissue fields (roughly equivalent to conventional microscopic high-power fields)
from limited sample numbers.86–88 Translating the insights of such studies to cohorts
of routinely prepared clinical bone marrow samples will require the development of
powerful and robust computational approaches that can be adapted to identify, quan-
titate, and integrate diverse cellular and extracellular targets at scale. An additional
challenge will be building advanced 3-dimensional models of the bone marrow envi-
ronment and establishing methods for their validation using cohorts of patient samples
analyzed in 2 dimensions.
Although automated analytical pipelines using convolutional neural networks to

detect and segment targets of interest in digital images offer the potential for rapid
sample analysis, their generation is typically dependent on access to large numbers
of tissue samples accompanied by detailed clinical, laboratory, and genomic data.
In general, machine learning applications in pathology use supervised approaches
in which functions are learned by mapping annotated tissue features into some qual-
itative or quantitative output.77,89,90 This process is dependent on access to high-
quality training data that are sufficiently labeled to allow the training phase to ultimately
emulate the expert’s input data. Strategies to reduce the burden of manual annota-
tions by pathologists include transfer learning from preexisting CNNs and the develop-
ment of human-in-the-loop annotation approaches that leverage human interactions
to more rapidly train, test, and validate machine-learned functions.
Given the importance of accessing sufficient quantities of high-quality training and

validation material, important practical considerations surround access to suitable
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tissue. Few centers can rely solely on locally retained tissue archives to build and vali-
date models of discrete MPN subtypes that are sufficiently enriched with relatively rare
samples corresponding to important clinical or genomic events, such as disease
transformation or response to novel therapeutics. Access to trial sample cohorts
and sharing of tissue libraries between collaborating clinical centers will likely optimize
use of available diagnostic material and accelerate the development and validation of
machine learning models of MPN.
In summary, machine learning approaches to image analysis have already received

broad acceptance in several branches of solid tissue pathology and are widely
accepted as a transformational technology with significant clinical and research po-
tential. Realizing this potential in MPN will depend on the identification and extraction
of important cell-cell and cell-stroma interactions that complement and enhance our
understanding of the dynamics underlying the clonal expansion of single-cell precur-
sors that ultimately drive the disease phenotype in individual patients. This will require
close collaboration among hematologists, pathologists, bioinformaticians, biomedical
engineers, and software engineers and the integration of multimodality approaches
spanning novel single-cell and whole-tissue sample technologies.

SUMMARY

Single-cell technologies have over many years provided remarkable insights into MPN
biology, making conceptual advances of broader relevance across cancer biology.
Future technological developments in digital pathology, in situ sequencing, and
single-cell multiomics approaches (see Fig. 1) will undoubtedly be applied over the
coming years to tackle crucial questions in the field. One key question that will defin-
itively require single-cell approaches is why different HSC clones carrying MPN driver
mutations such as JAK2V617F show such heterogeneity in fitness advantage. This is
crucial to understand if we are to develop treatment approaches that reverse the
fitness advantage to induce molecular responses and ultimately alter the natural his-
tory of MPN. Another key challenge in the field is to translate these single-cell techno-
logical developments through to direct patient benefit. Although at the present time it
may seem farfetched for single-cell methodologies to be applied routinely in clinical
diagnostics, this will surely become a reality over the coming years with obvious utility
for improved approaches to diagnose and classify disease as well as monitor
response to treatment and predict risk of disease progression.
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