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SUMMARY

Early developmental specification can be modeled by differentiating embryonic stem cells (ESCs) 

to embryoid bodies (EBs), a heterogeneous mixture of three germ layers. Here, we combine 

single-cell transcriptomics and genetic recording to characterize EB differentiation. We map 

transcriptional states along a time course and model cell fate trajectories and branchpoints as cells 

progress to distinct germ layers. To validate this inferential model, we propose an innovative 

inducible genetic recording technique that leverages recombination to generate cell-specific, 

timestamp barcodes in a narrow temporal window. We validate trajectory architecture and key 

branchpoints, including early specification of a primordial germ cell (PGC)-like lineage from 

preimplantation epiblast-like cells. We further identify a temporally defined role of DNA 

methylation in this PGC-epiblast decision. Our study provides a high-resolution lineage map for 

an organoid model of embryogenesis, insights into epigenetic determinants of fate specification, 

and a strategy for lineage mapping of rapid differentiation processes.
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In Brief

Kim et al. present a temporally precise genetic recording system for lineage tracing and 

transcriptomics analysis of single cells. They generate a trajectory map and single-cell 

transcriptional atlas of developing embryoid bodies, an organoid model of pre-gastrulation 

embryogenesis. These data reveal transcriptional and epigenetic regulators of early cell fate 

decisions.

INTRODUCTION

Development of a multicellular organism from a zygote is a complex process, tightly 

controlled by hierarchical transcriptional programs, epigenetic regulation, and spatial 

contexts. The process gives rise to all cell states through a sequence of precisely orchestrated 

cell divisions and specification events (Tam and Loebel, 2007). Classic studies of pre-

gastrulation embryogenesis and in vitro models have led to a deep understanding of how 

lineage-specifying transcription factors and sequential epigenetic silencing of pluripotency 

genes contribute to each embryonic cell state (Keller, 2005; Takaoka and Hamada, 2012; 

Tam and Loebel, 2007; Theunissen and Jaenisch, 2017). However, our understanding of the 

cellular hierarchies and timing of specification events during this early time window has 

lagged, in part because of a lack of technologies for mapping lineage relationships with 

sufficient temporal resolution. Understanding these lineage relationships and the 

transcriptional and epigenetic programs that control them is critical for our understanding of 

the fundamental processes by which cell identity is established.
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Single-cell transcriptomics and lineage trajectory modeling have enriched our understanding 

of cell states and their temporal relationships in the developing embryo (Boroviak et al., 

2015; Bowling et al., 2020; Cao et al., 2019; Deng et al., 2014; Han et al., 2018; Lescroart et 

al., 2018; Mohammed et al., 2017; Ohnishi et al., 2014; Pijuan-Sala et al., 2019). When 

combined with genetic recorders, these technologies have the exciting potential to address 

long-standing questions in the field regarding lineage relationships (Kester and van 

Oudenaarden, 2018; McKenna and Gagnon, 2019). For example, CRISPR-Cas9-based 

genetic barcodes have been applied to map lineage relationships in later stages of mouse 

embryogenesis (later than embryonic day 8.5 [E8.5]), confirming intriguing relationships, 

such as the transcriptional convergence between extraembryonic and embryonic endoderm 

lineages (Chan et al., 2019; Nowotschin et al., 2019). However, current CRISPR-based 

barcoding technologies require many cell divisions to evolve sufficient complexity to infer 

lineage relationships, which limits their applicability to pre-gastrulation embryogenesis or 

other similarly rapid and complex developmental processes.

Here we use an in vitro system for differentiating mouse embryonic stem cells (ESCs) to 

embryoid bodies (EB) to map and perturb transcriptional programs that underlie cell fate 

specification. We map the developmental trajectories and cell states that unfold as the three 

germ layers form in vitro, and we relate them to in vivo cell states. To validate inferred 

trajectories, we develop a genetic recording system based on a rapid recombination event to 

generate cell-specific barcodes in narrow temporal windows during the time course. 

Implementation of this recording system validated key branchpoints in our EB time course, 

including early specification of a primordial germ cell (PGC)-like cell state from cells that 

closely resemble preimplantation epiblast-like cells. We show that the commitment of these 

PGC-like cells is directed by an early switch in the DNA methylation state, documenting the 

precise time window during which a critical epigenetic driver of early development operates.

RESULTS

Single-Cell Profiling and Reconstruction of the Developmental Trajectory

To generate EBs, we maintained mouse ESCs in medium supplemented with serum and 

leukemia inhibitory factor (LIF) and seeded ~1,000 cells per microwell into the same 

medium without LIF to initiate differentiation (Wilson et al., 2014). In the absence of LIF, 

the cultures aggregated spontaneously and differentiated into EBs over 14 days (Figure 1A; 

STAR Methods). ESCs in serum plus LIF correspond to day 0 in our time course. On day 1, 

cell aggregates begin to form, and by day 2, dense aggregates with visible substructures are 

present (Figure S1A). On day 14, EBs express markers of all three germ layers: mesoderm 

(MES), endoderm (EN), and ectoderm (ECT) (Figures S1B and S1C; STAR Methods; 

Keller, 2005; Murry and Keller, 2008; Tam and Loebel, 2007).

To characterize the transcriptome of the EBs at single-cell resolution, we isolated viable 

cells every 48 h for 14 days and performed deep transcriptomics profiling using CEL-seq2 

(Hashimshony et al., 2016). This plate-based method has lower throughput than droplet-

based single-cell technologies but obtains significantly higher numbers of transcripts per 

cell, enhancing the ability to distinguish cell states (Ding et al., 2019). We assigned RNA 

sequencing (RNA-seq) reads to individual cells based on their cell barcode, aligned them to 
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the transcriptome, and counted individual mRNA molecules using unique molecular 

identifiers (UMIs) (STAR Methods). We acquired high-quality data from 1,536 cells that 

passed our quality control (QC) and gene complexity metrics, from two independent 

biological replicates. In total, approximately 80% of cells passed our QC (STAR Methods). 

For cells that passed QC, we detected a median of 44,197 UMIs for an average of 6,000 

genes per cell.

Next we utilized the single-cell transcriptomics data to infer differentiation trajectories 

across the EB time course. We used Monocle 2, a graph-based machine learning approach 

that orders single-cell transcriptomes based on their similarity and puts out a graph of a 

“pseudotime course” (Figure 1B; Qiu et al., 2017). Monocle 2 assumes that the different 

trajectories can be described with a tree structure with different states, and each cell’s 

pseudotime value is the distance a cell would have to travel from a user-specified root state 

in this tree. This pseudotime course can therefore be considered a quantitative measure of 

progress through a biological process (in this case, differentiation) (Figure 1C). The 

reconstructed trajectory comprised 26 cell state clusters and 6 different terminal branches 

(Figure S1D; STAR Methods). We then merged these 26 clusters into 10 main cell 

populations by differential gene expression analysis and hierarchical clustering (Figures 1B, 

1D, 1E, S1F, and S1G; STAR Methods). Increased pseudotime in the trajectory correlated 

with increased differentiation and decreased pluripotency, giving us confidence in the 

reconstruction (Figure S1E).

Cell populations expressed well known markers of early embryonic cell populations (Figures 

1B, 1D, and 1E); for example, Oct4, Nanog, Gbx2, Klf4, and Dppa2 for ESCs; T 
(brachyury), Fgf8, and Wnt3 for primitive streak (PS)-like cells); and standard markers for 

the germ layers (Boroviak et al., 2015; Cao et al., 2019; Chan et al., 2019). We identified 

extraembryonic primitive EN (PrE)-like cells and EN-like cells based on PrE markers 

(Foxq1, Cubn, and Srgn) and EN markers (Spink1, Afp, and Dab2) (Figures 1D, 1E, and 

S1H; Gouon-Evans et al., 2006; Ohnishi et al., 2014). We also identified two epiblast-like 

cell clusters: preimplantation epiblast-like cells that arise early on days 2–4 and express 

Aire, Pfkp, and Gstm1 and postimplantation epiblast-like cells that arise on day 6 and 

express Fgf5, Pou3f1, and Dnmt3b (Figures 1B and 1D; Boroviak et al., 2015). Finally, we 

annotated a small cluster of blood progenitor (BP)-like cells that distinctly express Cdh5, 

Tie1, Tal1, and Fli1 (Gritz and Hirschi, 2016; Wang and Nakayama, 2009; Figures 1B and 

1E). Our cluster annotations were also supported by independent Louvain clustering and 

tSNE analyses (Figure S1I). However, these algorithms, which do not incorporate 

pseudotime information, failed to distinguish PrE, EN, and BP and classified them with 

general EN (Figure S1I). All 10 cell states were identified in both independent biological 

replicates. In addition, all major lineages were present in each single EB analyzed (Figures 

S6A and S6B).

Annotation of PGC-like Cells

Because the Monocle 2 graph orders single cells by similarity of their transcriptome, it 

assigns each cell a pseudotime score that reflects its divergence from the ESC state. The 

pseudotime score for individual cells correlated well with the actual time points of 
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collection, with some notable exceptions (Figure 2A). In particular, we identified 36 

preimplantation epiblast-like cells with a low pseudotime score despite having been detected 

at multiple time points of EB differentiation. This suggested that these cells were arrested in 

their differentiation (Figure 2A; STAR Methods).

These cells map to the trajectory at the branchpoint between ESCs, preimplantation epiblast-

like cells, and postimplantation epiblast-like cells (Figures 2B and S2A). The most 

significant differentially expressed genes in this cluster are previously reported markers of 

PGCs, such as Dppa3/stella, Ifitm1, and Tfap2c (and its ortholog Ap3b2) (Chen et al., 2018; 

Tanaka et al., 2005), or of differentiated germ cells, such as Tex14/15, Tdrd12, and Ooep 
(Pandey et al., 2013; Pierre et al., 2007; Wang et al., 2001; Figures 2C; S2C–S2E). Unbiased 

clustering separated these 36 cells from the remainder of the preimplantation epiblast-like 

cells, supporting the conclusion that they represent a distinct population. We therefore 

annotated this cluster as PGC-like cells (Figure 2D).

EB Differentiation Recapitulates the Developmental Trajectory of the Pre-gastrulation 
Embryo

We next compared the transcriptomes of the main populations identified in the EB 

differentiation course with the pre-gastrulation mouse embryo. We correlated the aggregated 

RNA profiles of our assigned cell lineages with annotated in vivo populations from prior 

bulk and single-cell studies (Figure 2E; Boroviak et al., 2015; Nestorowa et al., 2016; 

Seisenberger et al., 2012; Zhang et al., 2018; STAR Methods). Overall, the expression 

profiles of the major clusters from the EBs correlated well (R > 0.5) with annotated in vivo 
cell types. In addition, comparison with single-cell data for in vivo embryos (Argelaguet et 

al., 2019) suggested that the population we term EN is a mixture of definitive EN (DE) and 

extraembryonic visceral EN (VE) (Figures S2F–S2H). The presence of ESCs, epiblast-like 

cells, PSs, and the three germ layers, together with concordance with published in vivo 
datasets, suggests that our EB time course approximately recapitulates major cell types in 

stages E3.5–E7.5 of mouse embryogenesis, corresponding to the preimplantation blastocyst 

through early germ layer differentiation (Figures 1A, S2I, and S2J).

We also sought to determine how closely the PGC-like population resembled PGCs in vivo. 

PGCs are a specific unipotent cell state that arises in vivo from primed, postimplantation 

epiblast cells at ~E6.5 in response to BMP4 signaling from extraembryonic tissues (Ohinata 

et al., 2005, 2009; Yamaji et al., 2008). Formation of PGCs in EBs and other in vitro models 

is enhanced by addition of BMP4 and other extrinsic signaling factors (Irie et al., 2014; 

Keller, 2005; Magnúsdóttir et al., 2013; Nakaki et al., 2013). Extrinsic BMP4 in our system 

is provided by serum. Although genes immediately downstream of BMP4 signaling, such as 

Blimp1/Prdm1 and Prdm14, are expressed in our in vitro PGC-like cells, they do not reach 

statistical significance in a differential gene expression analysis. Next we compared EB-

derived PGC-like cells with isolated embryonic tissues at various stages (Boroviak et al., 

2015; Magnúsdóttir et al., 2013; Seisenberger et al., 2012; Zhang et al., 2018), which 

suggested that EB-derived PGC-like cells share transcriptional programs with E4.5 

preimplantation epiblast cells and PGCs isolated from E11.5 embryos (Figure 2F). PGC-like 

cells also appeared to be cycling slowly (Figure S2B), but we found no evidence that they 
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progress to mature germ cells during the EB time course, potentially because other extrinsic 

cues are lacking in this organoid system (Figure S6I).

Taken together, the real-time and pseudotime information reveal that the major lineages arise 

spontaneously in EBs in the same strict temporal order that occurs in the developing embryo 

(Figures 1A, 1C, and 2E; Tam and Loebel, 2007).

Transcriptional Dynamics across the Differentiation Trajectory

The ordered graph of single cells generated by Monocle 2 implied at least six branch-points 

where a bipotent population bifurcates to two alternate branches. To discover the regulators 

of these cell fate decisions, we examined the dynamics of gene expression within each cell 

population bordering the trajectory branchpoints. The first bifurcation is segregation of 

ESCs into PrE or preimplantation epiblast-like cells. This occurs between days 0 and 4 in 

our time course (Figures 3A and S3A). This bifurcation approximates the inner cell mass 

(ICM), segregating into the PrE and epiblast at E4.5 (Boroviak et al., 2015; Mohammed et 

al., 2017; Tam and Loebel, 2007). We used hierarchical clustering of differentially expressed 

genes (Monocle 2, p < 1e–5) to define branch-specific transcriptional modules and gene 

expression patterns (STAR Methods). PrE cells closest to the branchpoint are defined by a 

gene expression module that includes expression of Gata6 and Pdgfra, whereas a second 

gene module including Col4a1, Cubn, and Srgn is upregulated as differentiation along this 

branch continues (Figures 3B, 3C, and S3B). Conversely, the preimplantation epiblast-like 

population is defined by Otx2 and Aire expression, which increases as cells differentiate 

along this branch. This bifurcation occurs before classical epiblast marker genes (e.g., 

Dnmt3b and Fgf5) are expressed in our time course (Figures 3E and 3F).

The second bifurcation involves specification of preimplantation epiblast-like cells into the 

PGC-like lineage or the postimplantation epiblast-like lineage. This occurs between days 4 

and 6 in our time course (Figures 3D, S3C, and S3D). The presence of postimplantation 

epiblast-like cells suggests that this bifurcation approximates late peri-implantation. In our 

trajectory, cells differentiating along the PGC-like branch gain expression of PGC marker 

genes (Dppa3/stella, Ifitm1, and Tdrd12) and demethylation machinery (e.g., Tet1 and Tet2). 

Conversely, cells differentiating along the postimplantation epiblast-like branch begin to 

strongly express epiblast marker genes (Pou3f1/Oct6 and Fgf5) (Figures 3E, 3F, and S3D). 

Expression of these classic epiblast markers is strictly limited to the day 6 time point. Cells 

along the postimplantation epiblast branch also upregulate DNA methyltransferases, 

consistent with increased DNA methylation in this lineage in vivo (Lee et al., 2014). As cells 

continue in pseudotime along the postimplantation epiblast branch, they begin to express PS 

marker genes (Wnt3a and Fgf8) and sharply decrease expression of epiblast markers 

(Figures 3E, 3F, and S3D).

Implantation in vivo leads to a switch in epiblast cells from naive to primed pluripotency 

(Hackett and Surani, 2014; Mohammed et al., 2017; Nichols and Smith, 2009). We collated 

general, naive, and primed pluripotency modules (Kalkan et al., 2017) and hierarchically 

clustered cells from days 0–6 by their expression of these 3 gene modules (Figure 3G). We 

observed a similar switch in pluripotency state between preimplantation and 

postimplantation epiblast-like cells in EBs (Figure 3G). In EBs, preimplantation epiblast-
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like cells expressed naive and general pluripotency modules. In contrast, postimplantation 

epiblast-like cells expressed primed and general pluripotency modules (Figure 3G), with 

expression of all pluripotency factors sharply decreasing with increased pseudotime along 

the postimplantation epiblast branch toward PS-like cells (Figures 3E and 3F). In vivo, 

PGCs arise from the primed postimplantation epiblast at E6.5 and subsequently regain naive 

pluripotent status (Ohinata et al., 2009). In EBs, PGC-like cells appear to maintain their 

naive status and instead arise from the naive preimplantation epiblast-like population (Figure 

3G).

Our graph-based trajectory next maps the progression of postimplantation epiblast-like cells 

to become the PS and subsequent branchpoints that specify the alternate germ layers and 

BPs. The trajectories and order of events are broadly consistent with known features of germ 

layer development (Figures S3E–S3M). In addition, the expression of marker genes at these 

later branchpoints closely resembles that seen in vivo. Briefly, as cells progress in 

pseudotime along the trajectory, PS cells first branch to form the EN and express classic EN 

markers such as Foxa2, Gata4, and Dpp4. Next the trajectory bifurcates to form the S. Ect 

(Surface Ectoderm), and cells express classic surface ectodermal markers, such as Sox11, 

Col2a1, and Tlx1. However, we caveat this inference on S. Ect with the observation that our 

EB derivation conditions favor MES (Keller, 2005) and may not faithfully recapitulate S. Ect 

trajectories. Finally, the trajectory bifurcates again to form the MES and BP terminal 

branches. The MES population is defined by class mesodermal markers such as Postn, Nrp1, 

and Igfr2 and the BP population by Tal1, Cdh5, and Esam (Gritz and Hirschi, 2016; Keller, 

2005).

Thus, unbiased analysis of single-cell transcriptomes for developing EBs reveals a spectrum 

of cell states and trajectories that recapitulate key features of preimplantation development 

and early embryogenesis. Our data support the value of this in vitro system for modeling and 

functionally interrogating early developmental programs and specification events and their 

epigenetic determinants.

The Recombination-Based System Barcodes Cells in a Defined Temporal Window

We next sought to validate the trajectory architecture implied by the ordered graphs of 

single-cell transcriptomes. We initially explored genetic recording systems based on 

barcodes that evolve over cell divisions (e.g., Bhang et al., 2015; Chan et al., 2019; Frieda et 

al., 2017; Kalhor et al., 2017; Pei et al., 2017) but were unable to generate sufficient 

diversity in the narrow temporal window of our pre-gastrulation model. We therefore 

established a barcoding system that could be “timestamped” by Cre induction.

We adapted the Polylox framework (Pei et al., 2017) with long-read nanopore sequencing 

(Figure 4A). We first cloned a cassette containing 10 tandem LoxP sites. Although Cre 

induction could theoretically generate 1.8 million possible recombined LoxP arrangements 

(Pei et al., 2017), we observed a strong bias for a relatively limited set of recombination 

events (Figure 4D, left). We therefore flanked the 10 tandem LoxP sites with a static barcode 

of 10 random nucleotides, which we call the unique clonal identifier (UCI), to ensure 

adequate complexity for lineage tracing (Figure S4A). We collectively refer to the temporal 

(LoxP) and static (UCI) barcodes as the timestamp cassette. Importantly, this cassette is read 
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out from the genomic DNA in our strategy and therefore would not be compromised by 

silencing during differentiation.

We integrated the timestamp cassette, a LoxP-RFP-STOP-loxP-GFP (Cre reporter cassette), 

and a separate Cre-ERT2 construct into ESCs at a low MOI (<0.1) (Figure 4A). In an initial 

pilot, we induced recombination on day 0 (ESCs) by addition of tamoxifen for 30 min, 

followed by rapid washout (STAR Methods) and let the EBs differentiate for 14 days as 

above. We modified the CEL-seq2 protocol to amplify the mRNA and the DNA timestamp 

cassette from the same single cells (STAR Methods). This amplification procedure yielded 

cDNAs appended to cell-identifying barcodes (CBs) and the timestamp cassette, also 

appended to CBs. We then sequenced the cDNAs using Illumina sequencing and the 

timestamp cassettes (~2.5 kb) by long-read nanopore sequencing (Figure S4B). After we 

recovered a relatively uniform distribution of approximately 5,000 UCIs from a library 

(Figures 4B and S4C), we detected the tandem loxP barcode with the expected lengths and 

recovered 155 unique recombination outcomes from the 10 LoxP cassettes from a total of 

4,224 cells on day 14 (Figures 4C, 4D, and S4D–S4G). When combined, the LoxP 

recombination and UCIs resulted in detection of 514 unique timestamp barcodes (Figure 

4D), comparable with other barcoding technologies and a 5-fold increase over the original 

Polylox strategy (Figures S4H and S4I). These benchmarking experiments indicate that the 

combination of the timestamped LoxP barcode and the static UCI barcode should provide 

sufficient complexity to uniquely mark cells in EB time courses starting from roughly 1,000 

ESCs.

Timestamp Barcodes Support Inferred Lineage Relationships in EBs

We next explored the potential of the timestamp system to validate lineage relationships in 

EBs. We generated EBs and induced recombination by exposing them to tamoxifen for 30 

min at a time point corresponding to peak postimplantation epiblast marker gene expression 

(days 8–9). In a side-by-side control, we induced recombination on day 0 (ESCs) of the EB 

time course. We harvested cells on day 14 and performed parallel transcriptomics profiling 

and long-read DNA sequencing to retrieve the expression profiles and timestamp barcodes, 

respectively (Figure 5A). We acquired high-quality transcriptomics data for 4,224 single 

cells from a total of 11 EBs (STAR Methods).

We identified 5 distinct cell populations on day 14 that corresponded to the terminal 

branchpoints in our initial trajectory: EN, S. Ect, MES, BPs, and PGC-like cells (Figure 5B), 

with the expected absence of the extraembryonic PrE, which is lost by day 14. In addition, 

all major lineages were present in each single EB (Figures S6A and S6B). For consistency of 

lineage annotations, we used a random forest machine learning algorithm to classify cells 

from this experiment by their similarity to the cell states annotated in the original time 

course (Figures 1, S5A, and S5B; STAR Methods). The classifier performed well with PGC, 

EN, MES, and BP populations (Figure S5B), and correlation analysis confirmed the 

consistency with embryonic tissue (Figure S5C). Notably, the new dataset contained 20 

times more day 14 cells than the original time course, which allowed us to also distinguish 

erythroid and myeloid-like cells within the BP-like population (Figure S5D).
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We next recovered the timestamp barcodes from the long sequencing reads. Integration of 

the recombined loxP sequence, the UCI, and the cell barcode enabled us to distinguish a 

timestamp barcode for a total of 3,331 cells. We then filtered out cells that had a low-

complexity, highly represented timestamp barcode (frequency, >0.005) (Figures S5E and 

S5G; STAR Methods). We also excluded cells with low-confidence lineage assignments 

(Figure S5F). Our final dataset consisted of 435 cells with high-confidence timestamp 

barcodes and transcriptome-based lineage assignments (Figures 5C and S5H).

Our inferred trajectory based on transcriptome data indicated that preimplantation epiblast-

like cells were no longer present on days 8–9, when the timestamp barcodes were diversified 

by recombination. Thus, barcode recombination occurred after the major bifurcation of 

preimplantation epiblast-like cells to form postimplantation epiblast-like cells and the PGC-

like lineage (Figure 3D), and after expression of the naive pluripotency module. When we 

examined the distribution of timestamp barcodes among cells harvested on day 14, we found 

that many barcodes were shared among the EN, S. Ect, and MES lineages but that PGC-like 

cells harbored a distinct set of barcodes (Figures 5G–5I). We validated these lineage 

relationships by varying confidence thresholds for barcode assignment (Figure S5J) and by 

observed-to-expected enrichment analysis (STAR Methods; Figure S5L). In stark contrast, 

in the control experiment in which recombination was induced on day 0 (ESCs), timestamp 

barcodes were shared by all populations (Figures 5D–5F and S5I). These data strongly 

suggest that the PGC-like cell state in EBs is specified before the postimplantation epiblast 

marker genes are expressed, and derives from the preimplantation epiblast-like cells.

This barcode recombination experiment also provided insight into the BP-like cells 

identified in day 14 EBs. The myeloid-like BP cells shared barcodes solely with the MES, 

consistent with MES derivation (Figures S5D and 5G–5I; data not shown). However, the 

erythroid-like BP cells harbored a limited distinct set of barcodes, suggesting that this 

population may be specified prior to the day 8–9 recombination event (Figures S5D and 

S5K). Notably, these erythroid-like cells also expressed the embryonic globin genes Hba-x, 

Hbb-y, and Hbb-bh1, potentially consistent with primitive hematopoietic cells derived from 

the yolk sac. We stress that this interpretation is caveated by the limited number of barcoded 

BP cells detected. However, the data do support MES derivation for myeloid-like BP cells in 

EBs and raise the possibility of distinct early embryonic derivation for erythroid-like cells.

These data and analyses provide insights into the differentiation trajectories of alternate EB 

lineages and demonstrate the unique advantages of our temporally controlled recombination-

based barcode system for tracing lineage relationships when the number of cell divisions is 

limited. This recombination system is particularly well suited to EBs and other rapid 

differentiation systems.

DNA Methylation Drives Cell Fate Choice in a Tight Developmental Window

PGCs arise in vivo in the postimplantation epiblast at the emergence of primed pluripotency 

(Ohinata et al., 2005). This switch from naive to primed pluripotency during implantation is 

concomitant with a striking global increase in DNA methylation (Argelaguet et al., 2019; 

Lee et al., 2014; Seisenberger et al., 2012; Tam and Loebel, 2007). In contrast, our 

experiments above suggest that, in EBs, PGC-like cells arise from preimplantation epiblast-
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like cells that still retain a naive pluripotent state. We therefore sought to understand the 

epigenetic determinants that underlie the fate choice between PGC-like and primed post-

implantation epiblast-like cells in EBs.

As cells progress in developmental pseudotime from the preimplantation epiblast-like state 

toward the postimplantation epiblast-like state, they increase DNA methyltransferase 

expression and decrease DNA demethylase expression. Conversely, as cells progress in 

pseudotime toward the PGC-like lineage, DNA methyltransferase expression remains low, 

whereas DNA demethylase expression increases modestly (Figure 6A). The transcriptional 

state of these EB-derived PGC-like cells more closely resembles that of the preimplantation 

epiblast than the postimplantation epiblast (Argelaguet et al., 2019), and they also have 

lower global methylation levels (Figures S2G and S6J). We therefore hypothesized that a 

relative paucity of DNA methylation promotes PGC-like specification from preimplantation 

epiblast-like EB cells.

To test this, we introduced the hypomethylating agent 5-azacytidine (5-aza; 100 nM) over 

the full course of EB formation (STAR Methods). We performed single-cell RNA-seq 

(scRNA-seq) at multiple time points and assigned cell lineage identities as in Figures 1 and 

5 (Figures S6C–S6F). Treatment with the hypomethylating agent resulted in a remarkable 

shift toward the PGC-like lineage (Figures 6B, S6G, and S6H). Although ~2% of cells in 

control EBs were PGC like, this lineage accounted for a full ~30% of cells after 5-aza 

treatment (Figure 6B). Further more, we observed complete absence of germ layers under 

the treated condition, with all cells approximating a naive state of pluripotency (Figures 6B, 

S6D, S6E, and S6G).

Genes significantly (t test, p < 1e–3) upregulated upon 5-aza treatment in EBs tended to be 

repressed in the epiblast, PS, and MES lineages in vivo (Figure 6C; Zhang et al., 2018). 

Moreover, the promoters of PGC-specific (e.g., Dppa3, Tet1, Gstm2, Trdrd12, and Dnmt3l) 
and naive pluripotency (e.g., Zfp42 and Nanog) genes become methylated in epiblast, PS, 

and MES lineages in vivo (Figure 6C; Zhang et al., 2018). These data suggest that DNA 

methylation is critical for repression of naive pluripotency genes and PGC programs. They 

are consistent with a model where the hypomethylated window associated with early 

preimplantation development is critical to maintain naive pluripotency and competence for 

PGC specification.

Finally, we precisely defined the time window in which DNA methylation is critical for PGC 

and postimplantation epiblast-like fate choice. We again induced hypomethylation during 

EB formation but, in this case, initiated 5-aza treatment on day 4 or day 6. We then 

harvested the cells on day 14 and performed scRNA-seq as described above (Figure 6D). We 

found that introduction of DNA hypomethylation on day 4, when naive preimplantation 

epiblast-like cells are still present, but before classic postimplantation epiblast or PS marker 

genes are expressed, modestly increased the PGC-like fraction to 4% and strongly skewed 

EBs toward EN/VE (Figures 6E, 6F, and S6K). In contrast, introduction of hypomethylation 

on day 6, after emergence of primed postimplantation epiblasts, had essentially no effect on 

lineage distribution (Figures 6E and 6F). Similarly, 5-aza treatment of serum-grown ESCs in 

the absence of EB differentiation conditions yielded fewer than 1% PGC-like cells (Figure 
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S6L). These data further support the conclusion that DNA methylation in naive 

preimplantation epiblast-like cells favors the postimplantation epiblast-like state, in part by 

suppressing PGC-like transcriptional programs. When the primed pluripotent epiblast state 

is established, DNA methylation is no longer required to maintain lineage-specific 

transcriptional programs, and hypomethylation cannot reprogram these cells for naive 

pluripotency and competence for PGC programs.

DISCUSSION

The highly choreographed lineage hierarchy of mammalian embryogenesis has been 

painstakingly characterized over several decades by marker gene analysis. Recent 

technological developments in single-cell transcriptomics and lineage tracing now enable 

characterization of cell states and transitions at unprecedented resolution. Here we used the 

EB organoid model to map and perturb transcriptional and epigenetic programs that underlie 

cell fate specification. We acquired a dense time course of scRNA-seq data over 14 days of 

EB differentiation and used hierarchical clustering, Monocle 2, and machine learning to 

infer cell states and lineage trajectories. We then adapted a timestamp genetic recording 

system to generate cell-specific barcodes in narrow temporal windows and validate key 

developmental branchpoints in this highly dynamic system. We identify early specification 

of a PGC-like cell state from cells that closely resemble naive preimplantation epiblast-like 

cells. We find that this critical specification event is tightly controlled by DNA methylation, 

which silences PGC programs in a precise temporal window in preimplantation epiblast-like 

cells. Our study provides insight into pre-gastrulation cell fate decisions and a set of tools for 

mapping lineage relationships in rapidly differentiating systems.

Single-cell transcriptomic and pseudotime temporal ordering of cells is a powerful approach 

to infer lineage relationships, which then require validation by direct lineage tracing 

approaches. We integrated a suite of technologies to map and validate cell state transitions in 

spontaneously differentiating EBs. We used scRNA-seq to map ~6,000 genes per cell. This 

high-transcriptome coverage increases confidence in lineage assignments, particularly for 

cells in transitional states. We also innovated a timestamped barcode system for lineage 

tracing that could be rapidly recombined, as opposed to CRISPR-based barcodes, which 

require many cell divisions to evolve complexity (Chan et al., 2019; Kalhor et al., 2018; 

Ludwig et al., 2019; McKenna and Gagnon, 2019; Pei et al., 2017). We read out the 

transcriptome and timestamped barcode from the same single cells by combining scRNA-

seq and long-read DNA sequencing. A key innovation was inclusion of an additional UCI 

that enabled us to identify and control for overly frequent recombination events and, thus, 

reduce false positives. Our method is readily extensible to other rapidly differentiating 

systems or single-cell sequencing technologies.

Our trajectory analysis and lineage tracing demonstrate that EB-derived PGC-like cells arise 

from a naive pluripotent preimplantation epiblast-like state. This is in seeming contrast to 

the emergence of PGCs from the primed pluripotent postimplantation epiblast at E6.25, 

which is almost concomitant with emergence of the PS (Ohinata et al., 2005; Yamaji et al., 

2008). This may be a limitation of the EB model, which lacks spatial cues of the developing 

blastocyst. However, recent studies have elegantly described a continuum of pluripotent 
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states in the developing epiblast, including an intermediate or “formative” state of 

pluripotency from which unipotent germ cells arise (Cheng et al., 2019; Kalkan et al., 2019; 

Kolodziejczyk et al., 2015; Messmer et al., 2019; Rostovskaya et al., 2019; Smith, 2017). 

Indeed, the preimplantation epiblast-like cells in EBs closely resemble this intermediate/

formative pluripotency state (Figure S6E). Thus, naive preimplantation epiblast cells in the 

EB could already be primed for PGC formation without the spatial cues of the 

postimplantation blastocyst environment.

Last, our data provide specific insights into the mechanisms by which DNA methylation 

directs lineage fates in the preimplantation development. We find that promoter methylation 

suppresses naive pluripotency and PGC transcriptional programs in EB preimplantation 

epiblast-like cells and favors postimplantation and primed pluripotency programs. Taken 

together with the single-cell transcriptomic data, our study supports the hypothesis that naive 

preimplantation epiblast cells are epigenetically primed for different cell fates by their 

differential DNA methylation. Indeed, pluripotent epiblast cells in vivo are also primed for 

ECT fates as early as E4.5 (Argelaguet et al., 2019). Our data also suggest that DNA 

methylation is only critical for lineage specification in the naive preimplantation epiblast-

like state. When the primed postimplantation epiblast transcriptional state is set, all other 

lineage-specific transcriptional programs can still be derived in the absence of DNA 

methylation. Induction of hypomethylation in these cells does not cause them to regain naive 

pluripotency and competence for PGC formation, consistent with increased importance of 

other chromatin- and transcription-based mechanisms in reinforcing postimplantation 

lineage identity (Nicetto et al., 2019; Wang et al., 2018). Taken together, our data suggest 

that the observed increases in DNA methylation in the epiblast in vivo are likely to influence 

the fate of naive preimplantation epiblast cells prior to emergence of primed pluripotency, 

when other epigenetic mechanisms gain prominence. Although our data emphasize a role of 

hypomethylation in facilitating PGC cell specification, they do not distinguish whether PGC 

precursors maintain a hypomethylated genome within the preimplantation epiblast or 

proceed through a transient hypermethylated state.

In summary, we report a developmental trajectory and single-cell transcriptional atlas for an 

organoid model of pre-gastrulation embryogenesis. We nominate and validate transcriptional 

and epigenetic regulators of key fate decisions. We also provide a toolkit for lineage tracing 

that is compatible with rapidly differentiating biological systems. Taken together, these data 

and tools provide a rich resource for charting developmental hierarchies, cell fate decisions, 

and the factors that regulate fate choice.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Bradley E. Bernstein 

(bernstein.bradley@mgh.harvard.edu).

Materials Availability—Plasmids generated in this study will be deposited in Addgene.
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Data and Code Availability—The accession number for the sequencing data reported in 

this paper is GEO: GSE140890. We also utilized published datasets GSE76505 and E-

MTAB-2958. The code generated during this study is available from the corresponding 

author on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We cultured mouse v6.5 ESCs with feeder cells (mouse embryonic fibroblasts (MEFs), 

Globalstem, GSC-6002G) in knockout DMEM media supplemented with 1% Pen Strep 

(Thermo, 15140163), 1% L-Glutamine (Thermo, 25030081), 1% Non-Essential Amino 

Acids (Thermo, 11140076), 15% FBS (GE, SH30070.02E), 0.004% 2-mercaptoethanol 

(Sigma, 6010), and 0.01% Leukemia inhibitory factor (LIF; Millipore, ESG1107). We 

replenished the media every day and cells were split every two days.

METHOD DETAILS

Generation of timestamp-barcode system—We synthesized (Genscript) a DNA 

sequence containing tandem LoxP sites (Table S1), and ligated this sequence to the 3′ end of 

the E2crimson gene in a lentiviral vector engineered to express PuroR-T2A-E2crimson from 

the EF1a promoter (Table S1). We then synthesized a UMI DNA oligo (IDT, diluted to a 

100uM) that includes the following elements: M13F-N(10)-HSV polyadenylation site-

M13R. We PCR amplified this sequence using 0.5 ul of the UMI oligo, UMI-Adaptor-

DigF/R primers (Table S2), and superFi DNA polymerase using the manufacturer’s 

guidelines (35 cycles, annealing at 55°C for 10 s, extension step for 5 s, 35 cycles in total). 

After amplification, 20ul of ExoSAP-IT (Affymetrix, 78200) was added and the reaction 

was incubated at 37°C for 15 minutes, followed by incubation at 80°C for 15 minutes. 2 

separate reactions were performed for the UMI oligo, which were then combined and 

precipitated with sodium acetate (10% volume from a 3M solution) and isopropanol (1:1 

volume). The solution was stored at −20°C for 30 minutes, spun down at 15000 Gs for 15 

minutes, washed with ethanol, and then resuspended in 20 ul of water. The amplified DNA 

was digested with BamHI and SalI overnight. We then ligated the UMI sequence into a 

lentiviral vector engineered to express PuroR-T2A-E2crimson and the loxP sequence from 

the EF1a promoter at the 3′ end of the loxP DNA (Table S1). We used a ligation ratio of 3:1 

(insert to vector, 100ng vector) for 1 hour at room temperature, and then transformed each of 

10 tubes (50 ul) of chemically competent NEB stbl cells with 2ul of the ligation reaction. We 

then grew the bacteria on LB agar plates at 30°C overnight. The next day, the colonies 

(~40,000) were scraped off using a glass spreader, and inoculated into 2 cultures of LB each 

containing 2 Liters with ampicillin (100 ug/ml), shaken for 4 hr at 37°C, and subjected to a 

maxiprep plasmid DNA extraction.

Lentivirus generation and infection of ES cells—mESCs were infected at an MOI of 

0.1 for CreERT2-BFP, and Cre reporter vectors (Table S1). The p-EF1a-PuroR-T2A-

E2Crimson-tandemLoxp-UMI vector was infected with an MOI of 0.1 to ensure only 1 

integration per cell. We added polybrene at a final concentration of 1 ug/ml for all infections 

then selected cells using antibiotics (puromycin) and performed FACS for E2Crimson 

positive cells. After integration of the timestamp-barcode lentiviral system, we performed 
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FACS for RFP+/GFP−/E2-crimson+/BFP-mid to ensure the expression of all plasmid and 

tightly controlled inducible system, and then immediately started EB differentiation.

EB differentiation—We incubated mESCs cultured on irradiated feeder MEFs together in 

ESC dissociation buffer (500ul of 0.5M EDTA and 0.9g of NaCl in 500ml Calcium/

Magnesium free PBS) for 20 minutes at 37°C. We next detached mESC colonies from MEFs 

by gentle pipetting and dissociated ESCs to single cells by incubating with Accumax for 5 

minutes at 37°C. To ensure removal of MEFs, we incubated single cell suspensions of ESCs 

on a 100mm tissue culture dish for 40 minutes at 37°C. We then collected the supernatant 

which contained mESCs only. We seeded a 1,200 well micro-well plate (STEMCELL 

Technologies, 27945) with 1.2 million ESCs in EB media (mESC media without LIF), to 

obtain a density of ~1000 cells per well. This approach allowed us to obtain morphologically 

consistent EBs controlling for spontaneous differentiation which can be altered by EB size 

and shape (Koike et al., 2007). For EB differentiation with inducible barcoding experiments, 

we seeded FACS sorted RFP+/GFP−/BFPmid cells to ensure Cre expression and remove 

unwanted recombination by un-controlled CreERT2 activation.

After 4 days of EB differentiation in the micro-well plate, we collected EBs and transferred 

them to 100mm Petri dishes and pursued spontaneous differentiation for another 10 days. 

EB media was changed every day (micro-well plate) or every other day (Petri dish) during 

EB differentiation.

To determine the optimal differentiation time window to detect spontaneous differentiation, 

we extracted bulk RNA from EBs at every 2 days and measured mRNA expression levels of 

lineage specific marker genes (ESC: Pou5f1 and Nanog, Post-Epib.: Dnmt3b and Fgf5, 

Primitive Streak (PS): T and Wnt3, Ectoderm: Pax6 and Prom1, Endoderm: Sox17 and 

Foxa2 and Mesoderm: Pdgfra and Kdr.) ESC maker genes were gradually decreased through 

14 days and the 3 germ layer (ectoderm, endoderm, and mesoderm) markers were increased 

along differentiation (day10~14). The oscillating expression of Post-implantation Epiblast 

and PS markers had a peak at day 6 and day 8, respectively.

Timestamp barcode induction—To generate barcodes at specific time points, we 

treated cells containing the timestamp loxp cassette, and the CreERT2 construct with 25nM 

of 4-Hydroxytamoxifen (4OHT Sigma, H7904). Cells were incubated with 4OHT for 30 

minutes (day 0 induction) or 1 hours (days 8–9 induction). Cells were then washed three 

times with PBS and then cultured to resume differentiation. Recombination events were 

confirmed by FACS for RFP−/GFP+ (Cre reporter).

Cell sorting—We dissociated EBs using Accumax (Sigma, A7089) or Trypsin 

(invitrogen). Cells were incubated with the dissociation enzyme for 20 minutes at 37°C with 

frequent trituration. We then washed the cells with PBS containing 2% FBS and filtered the 

cells through a 30um cell strainer (Stem cell technology). The resulting cell suspension was 

incubated with live cell count dyes (LIVE/DEAD aqua; ThermoFisher, L10119) for 15 

minutes on ice and washed with PBS containing 2% FBS. To check for spontaneous 

differentiation of EBs to the 3 germ layers, cell suspensions were further stained using 

antibodies that recognize germ layer markers for 30 minutes on ice: Pdgfra or Kdr for 
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Mesoderm, Cxcr4 for Endoderm, Prom1 for Ectoderm (Table S3). FACS was performed on 

a Sony SH800 sorter.

To perform FACS for single cell sequencing, live cells were sorted into single wells of 384 

well plates that were preloaded with 1.8 μL of distilled water involving 7.5 μg/μl of unique 

T7-polyA RNA barcoded adapters (RNA-adaptor; Table S2) and 1.5mM of dNTP mix. 

Plates were stored at −80°C until processing.

For parallel single cell sequencing, Cre induced and subsequent loxP barcode generated each 

EB was isolated into a single well of 96 well plates at day 14 and then dissociated, stained, 

and washed within a well to ensure single EB preparation. E2Crimson positive live cells 

were sorted into the cell-barcode plate (384 well) as stated above.

5-azacytidine treatment of EBs during differentiation—To perturb DNA 

methylation of EBs during differentiation, we treated EBs at day 0 (micro-well stage) of our 

differentiation time-course with 5-azacytidine (Sigma, A2385, 100 nM). We replenished 5-

azacytidine with every media change throughout all 14 days of differentiation. We treated 

EBS with DMSO in parallel as a control. We collected EBs every 2 days for 14 days, 

dissociated them, and then performed single cell sorting. We performed scRNA-seq on 768 

cells for both 5-azacytidine and DMSO treated EBs. To investigate when the PGC-like and 

postimplantation epiblast-like lineages are defined, we treated EBs with 5-azacytidine at day 

4 or day 6, targeting either before or after postimplantation marker genes are expressed. We 

sustained treatment until day 14. EBs were then collected at day 14 and we performed 

scRNA-seq.

Single cell RNA sequencing—We collected EBs (~500) every 48 hr for 14 days, from 

the same plate of growing EBs, and we then applied CEL-seq2 method (Hashimshony et al., 

2016) to profile single cell transcriptomes of time-coursed EBs. After freeze and thaw twice 

of FACS sorted single cell plates and incubation at 65°C for 5 minutes, we added a 1.2 μL of 

RT mixture (0.15 μL of SuperscriptII (Thermo, 18064–014), 0.15 μL of RNaseOUT 

(Thermo, 10777–019), 0.3 μL of 0.1M DTT, 0.6 μL of First strand buffer and 0.1% of 

IGEPAL (Sigma)) and performed a reverse transcription at 42°C for 1 hour, followed by heat 

inactivation at 70°C for 10 minutes. We next added a 10 μL of second strand synthesis 

mixture (0.35 μL of E.coli DNA polymerase I (Thermo, 18010–025), 0.09 μL of RNaseH 

(Thermo, 18021–071), 0.09 μL of E.coli DNA ligase (Thermo, 18052–019), 0.025 μL of 

10mM dNTP mixture (Thermo, R0192), 0.25 μL of Second strand buffer (Thermo, 10812–

014) and 6.72 μL of distilled water) and performed a second strand synthesis at 16°C for 2 

hours. We then pooled 96 wells to a sample and purified it by 1.2X AMpureXP beads 

(Bechman, A63881). Purified samples were linearly amplified by IVT (MEGAscript T7 

Transcription Kit (Thermo, AM1334)) at 37°C for 15 hr. Next, we added ExoSAP-IT 

(Thermo, 78200) and incubated samples at 37°C for 15 minutes to remove leftover primers. 

We then fragmented RNAs at 94°C for 3 minutes (200mM Tris-acetate, pH 8.1, 500 mM 

KOAc, and 150 mM MgOAc) and followed by adding a STOP buffer (0.5 M EDTA pH8). 

After -purification, amplified RNAs were reverse transcribed by random-hexamers and then 

further amplified by illumina adapters to generate sequencing libraries (High-Fidelity PCR 
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Master Mix (NEB, M0531S); Table S2). All the scRNA-seq libraries were sequenced using 

the Hiseq2500 platform.

Parallel single cell sequencing—To process plates with single cells for parallel RNA 

and DNA sequencing, we first thawed the plates containing sorted cells, and then subjected 

each plate to another freeze-thaw cycle. We then performed reverse transcription by unique 

RNA adapters, followed by second strand synthesis. We then added 0.5 μL of proteinase-K 

(1.4 μg/μl, Thermo, EO0491) and incubated plates at 50°C for 1 hour, followed by a heat 

inactivation at 85°C for 20 minutes. Next, We added 1.5 μL of DNA amplification mixtures: 

0.15 μL of Q5 Hotstart enzyme (NEB, M0493L), 0.3 μL of 10mM dNTP mix, 0.225 μL of 

distilled water, 0.075 μL of a forward DNA-primer (100 μM) and 0.75 μL of barcoded DNA 

adapters (10 μM), designed to encode an identical cell barcode to the RNA-adaptor used in 

the same well, to amplify both the static and inducible barcode region of genomic DNA in 

each well (Table S2). We then PCR amplified the barcode region: initial amplification by 5 

cycles of 98°C for 15 s, 60°C for 30 s, and 72°C for 90 s, followed by 15 cycles of 98°C for 

15 s, 72°C for 90 s. After purification of PCR products, we next performed IVT for RNA 

amplification, and then pooled all the wells. The mixture was then divided between scRNA-

seq reactions (70%) and a DNA library for barcode detection (30%). For the RNA library, 

we performed a library construction by scRNA-seq protocol as above. To prepare the DNA 

library to readout the timestamp-barcode, DNA primers further amplified the DNA library: 

initial amplification by 5 cycles of 98°C for 15 s, 62°C for 30 s, and 72°C for 90 s, followed 

by 10 cycles of 98°C for 15 s, 72°C for 90 s (Table S2). The purified DNA library was 

subjected to a long read sequencing.

Long-read single cell sequencing—We prepared libraries for Nanopore sequencing 

per manufacturer’s guidelines (NBE_9065_v109). Amplicons containing fragments between 

700 bp and 2500 bp were purified using a 1.0X AMPure XP bead cleanup, and library 

construction was performed using the SQKLSK109 (1D) Ligation Sequencing Kit (Oxford 

Nanopore Technologies, ONT) according to manufacturer’s instructions, with some 

modifications. Briefly, 100 ng purified DNA from a pool of barcoded single cells was 

subjected to end repair and dA-tailing using the NEB-Next Ultra II End-Repair/dA-tailing 

Module. Next, we performed a 1X volume AMPure XP bead cleanup and ligated nanopore 

barcodes to each sample using the 1D Native barcoding kit (EXP-NBD104 / EXP-NBD114) 

and the Blunt/TA Master Mix (NEB). After a 1X AMPure XP bead cleanup, equimolar 

amounts of each sample were pooled and nanopore sequencing adapters were ligated to the 

eluted DNA using the Quick T4 ligase (NEB). The final clean-up of the adaptor-ligated 

DNA was modified and performed with 0.5X AMPure XP beads. We used a total of 60 ng of 

the final library to load into a MinION flow cell. We sequenced each flow cell for 10–48 

hours and obtained over 10 million reads per run. The computational analysis of long-read 

single-cell sequencing data is described below.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell RNA sequence extraction and alignment—Sequencing RNA libraries, 

passed through quality filter (cluster density, total yield, and per-cycle base quality), were 

then split by library barcodes using bcl2fastq (v.1.8.4) and default setting. A 6bp of cell 
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barcodes and another 6bp UMI were in Read1 of 18bp reads. The extra bases were added to 

prevent misleading interrupted sequences by accident. The sequence of transcript was in 

Read2 of 36bp reads. We adopted CEL-seq2 pipelines (https://github.com/yanailab/celseq2) 

to process the single cell data. To demultiplex the data, we split Read2 into separate files 

based on the cell barcode from Read1 and attached UMI to Read2 metadata. Unclassified 

sequences were 0~20% of total reads in scRNA-seq and 0~40% of total reads from samples 

subjected to parallel sequencing. We then mapped the reads of each cell to a mouse 

reference genome (mm9) using Bowtie2 (v.2.3.4). Average mapped sequences were over 

70% of total reads in scRNA-seq and over 50% in samples subjected to parallel sequencing. 

Finally, we identified and eliminated reads sharing the same UMI, and then generated an 

accurate molecule count for each gene followed by converting the number of UMIs into 

transcript counts. Average gene complexity was 6000 in scRNA-seq and 3000~4000 in the 

samples in which we sequenced both RNA and the timestamp barcode from gDNA 

sequencing. We used transcript counts as a digital gene expression matrix for downstream 

analysis. Resulting fastq files were deposited in GEO (GSE140890).

Single cell RNA data pre-processing—We applied the sequential steps of single cell 

processing pipelines (Seurat R-package, v.2.2) for QC, normalization, dimensionality 

reduction and clustering with the following modifications: In brief, we first discarded low 

quality cells with abnormal gene complexity (fewer than 2,000 or over 10,000; average 

count is 6,000), high proportion of mitochondrial genes (> 10%), and over 200,000 UMI 

counts. For samples subjected to the recording data (parallel DNA/RNA sequencing), we 

used a different threshold of these parameters (gene complexity: 1,000~8,000, UMI: over 

20,000). We next normalized the data by total counts, multiplying scale factor (10,000), and 

log-transformation, and then scaled to zero mean expression and unit variance. For the EB 

data at the terminal differentiation time point, we further modeled the relationship between 

gene expression and cell cycle score (G2/M and S phase marker genes) and used the scaled 

residuals for downstream analysis to subtract cell cycle heterogeneity. We then selected 

highly variable genes based on variance mean ratio and applied principal component 

analysis (PCA) for dimensionality reduction. For batch correction of replicate datasets, we 

applied canonical correlation analysis (CCA) with separately normalized and scaled datasets 

to project each dataset into the maximally correlated subspaces by the canonical correlation 

vectors. We visualized the data by plotting the t-distributed Stochastic Neighbor Embedding 

(t-SNE) using top PCs or aligned CCs. To cluster cells, we then performed a shared nearest 

neighbor (SNN) for embedding cells and Louvain clustering for modularity optimization 

(resolution parameter 0.8).

Single cell timestamp-barcode extraction—We converted current-recording files 

(Fast5) of nanopore sequencing data to fastq files by Guppy (v.2.3.5). Resulting fastq files 

were deposited in GEO (GSE140890).

To identify the cell identity, the cell barcode (2×6bp = 12bp), together with its upstream 

(20bp) and downstream (24bp) sequence were used to map nanopore reads using minimap2. 

Each nanopore read is assigned to a cell barcode based on its highest mapping score.
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To identify the Polylox barcode for each cell, minimap2 was used to map sequences of 9 

different DNA blocks with loxP, WPRE_M13R_HSV and pBC00 to the nanopore reads that 

have cell barcodes detected as described above. We then assembled all the sequences into a 

full Polylox barcode based on their mapping position in the nanopore reads. Due to the 

sequencing error, truncation of sequencing and cross-contamination of cell barcodes, for all 

the reads carrying the same cell barcode, more than one Polylox barcodes were detected. 

Therefore, the frequency of each Polylox barcode among all the reads was calculated to 

determine the true Polylox barcode for each cell. We selected the most frequent barcode 

with additional filters: 1) The selected barcode should be detected in more than 30 reads. 2) 

The number of reads of selected barcodes should be much more than other barcodes 

detected and considered as an outlier in statistics (Figure S4E). 3) The selected barcode 

should be detected as full length with the flanking sequence of the WPRE_M13R_HSV and 

pBC00.

To identify UCI for each cell, we first mapped the upstream (M13F: 74bp) and downstream 

(WPRE_M13R_HSV: 104bp) of the UCI sequence to nanopore reads by minimap2. After 

having the position of M13F and WPRE_M13R_HSV sequence, we extracted the sequence 

between M13F and WPRE_M13R_HSV. Due to the sequencing error, we selected the most 

frequent UCI sequence with 3 additional filtering steps to ensure we selected the correct UCI 

sequence: 1) The selected UCI sequence should be detected in more than 30 reads. 2) The 

number of reads of selected UCI sequence should be much more than other UCI sequence 

detected and considered as an outlier in statistics. 3) The selected UCI sequence should be 

matched to the sequence from UCI plasmid.

With these criteria, we detected 514 unique timestamp-barcodes (Polylox and UCI 

combination) with high confidence (18% of total; Figure S5E).

Linkage map of lineages—The recombination bias of Polylox and uneven distribution 

of the UCI sequences results in overrepresentation of some timestamp-barcodes. To identify 

the lineage relationships between different cell types, we need to exclude high frequency 

barcodes that are likely to be shared by more than one cell at the beginning of the 

experiment. To estimate the frequency of each timestamp-barcodes, we calculated the 

frequency of UCI and Polylox barcodes separately in single EBs at day 14. As the 

generation of Polylox and the distribution of UCI barcodes are two independent events, we 

multiplied the frequency of UCI and Polylox barcodes to estimate the frequency of each 

timestamp-barcode at the beginning stage. Next, we applied frequency cutoffs 1/1000, 

3/1000, 5/1000, 1/100, leading to different numbers of cells for downstream analysis. 

Different cutoff values lead to similar conclusions. With 5/1000 cutoff, we end up with 435 

timestamp-barcodes (30% of detected barcodes) for the linkage map.

We then combined transcriptional profiles and extracted timestamp-barcodes for each single 

cell using the same cell barcodes available in both analyses. We connected cells with 

identical timestamp-barcodes, and assigned lineages to each cell by annotated cell clusters 

through parallely sequenced RNA profiles (Table S4). We used the circlize R package (v 

0.4.5) to visualize the connections between lineages. To compare the overall relationship of 

cells based on their cell-of-origin, we selected all the shared timestamp-barcodes and 
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counted the frequency of each barcode for each lineage. We also calculated the e pairwise 

spearman correlation between different lineages based on frequency of shared timestamp-

barcodes.

Trajectory analysis—Among several trajectory algorithms, we adopted the graph-based, 

machine-learning algorithm, called Monocle2 (R-package v.2.2) (Qiu et al., 2017) since it 

allowed us to emphasize bifurcation of cell fate decisions over putative lineage branch 

points. We performed Monocle with the following modifications: we imported a normalized, 

scaled and batch-corrected gene-expression dataset generated by our Seurat analysis for 

consistency across analyses. For the separate trajectory analysis targeting only early and late 

branch points, we generated an individual dataset with cells from days 0–4, 0–8 and 8–14, 

and extracted highly variable genes for each data-set. To order cells, we projected a gene-

expression dataset into a lower dimensional space and then applied a reversed graph 

embedding algorithm to learn the structure of the trajectory with unsupervised analysis, and 

then assigned a pseudotime to each cell based on the distance to the root. To resolve 

complex branching processes inferred by 3 germ layers from our initial analysis, we tested a 

default parameter of maximum dimension for total EBs, and then adjusted it to 3 for early or 

late EBs and 5 for total EBs. We visualized the trajectory in 3 dimensional spaces (rgl R-

package, v.0.98), and then displayed all information of each single cell on the tree structure 

(Cell identity, EB days, and gene expression). Separate trajectory analysis targeting early 

and late branch points revealed 5 branch points through 14 days of EB differentiation.

Lineage annotation based on reconstructed trajectory—The trajectory of total 

EBs suggested several branches and stems as segments on the tree structure. To find 

differentially expressed genes (DEGs) per segment over other cells, we performed the 

Wilcoxon ranked test (Seurat) in early and late EBs, separately. Segments fewer than 5 cells 

were not included for DEG calculation. We filtered DEGs that greater than a minimum 

detection percentage (0.25) and a minimum fold change (logFC > 0.25). We then selected 

top 10 genes by a positive fold changes and ranked through lowest p value (P value < 1e-3). 

Using top 10 genes per each state, we hierarchically clustered cells by Pearson correlation of 

expression profiles of DEGs. We collapsed segments to 9 clusters by similar gene-

expression patterns. We then compared the realtime and pseudotime variables and found a 

group of 36 cells that had unmatched real and pseudotime. We annotated these cells as 

arrested cells. To annotate clusters as corresponding embryonic lineages, we first 

investigated well-known marker genes (Table S3) of anticipated embryonic tissues. We 

identified developing embryonic lineages on cell clusters, such as Primitive Endoderm 

(PrE)-, Preimplatation Epiblast (Pre-Epib.)-, Postimplantation Epiblast (Post-Epib.)-, 

Primordial germ cell (PGC)- (“arrested”), Primitive Streak (PS)-, Definitive Endoderm 

(DE)-, Surface Ectoderm (S.ECT)-, Blood Progenitor (BP)- and Mesoderm (MES)-like cells, 

by distinctly expressed marker genes. Second, we cross-validated the expression of extracted 

DEGs in corresponding lineages of developing embryo (see method “Comparison the in vivo 

and in vitro RNA-seq data”). We then assigned the corresponding embryonic lineages on 

each cluster and displayed them on the trajectory.
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Clustering and lineage annotation of parallel sequencing data—We clustered 

4,028 cells using highly variable genes based on variance mean ratio and then displayed 

expression profiles of the top 30 differentially expressed genes (DEGs) from 5 clusters 

including 2 collapsed clusters that express erythroid and myeloid marker genes as BP. We 

assigned lineages to clusters by marker genes previously used to annotate lineages (Table 

S3) and validated their consistency to timed EB data by lineage prediction scores based on 

Random Forest classifiers. Assigned lineages were further validated by in vivo comparison 

of embryonic tissues. For more accurate lineage assignments responsible for decisions of 

connected lineages sharing barcodes, we re-clustered cells within each lineage and then 

annotated “unclassified” cells per each lineage by less correlation. Low correlated cells were 

not used for constructing linkage maps.

Random Forest classification—For consistency of lineage annotation across different 

experiments, we calculated lineage prediction scores by applying Random Forest classifiers 

based on 10 lineages of timed EB data as in previous works (van Galen et al., 2019). In 

brief, we trained 1,000 trees over timed EB data using all expressed genes to classify all 10 

lineages as in Figures 1 and 2. We then further trained the 1,000 trees by selecting the most 

informative genes (n = 1000) and validated them by performing 5 random subsets (5.52% 

error rate). We applied this classifier to our perturbation data in Figure 6. For the parallel 

sequencing data in Figure 5, we selected 5 lineages from timed EB data at day 14 and 

trained Random Forest classifiers of late EBs (day 10–14) as analyzed above (6.53% error 

rate). To calculate lineage prediction scores, we applied a defined Random Forest classifiers 

to our parallel sequencing and 5-azacytidine perturbation datasets and displayed prediction 

scores (ranging from 0 to 1) over previously clustered cells as a heatmap. We found weak 

prediction scores in blood progenitors (BP) and surface ectoderm (S.ECT) cells from the 

parallel sequencing dataset and in most clusters of 5-azacytidine perturbation dataset. 

Trained classifiers have limits to categorize new cell types if it is not included in the input 

lineages (pre-defined in timed EBs). Indeed, the Louvain clustering identified that BP was 

slightly further differentiated into Erythroid and Myeloid progenitor-like cells, and S.ECT 

was progressed with MES signature in deep transcriptomic profiling of 4224 cells. In 5-

azacytidine perturbation dataset, there was a cluster that resemble the 2-cell embryonic stage 

and intermediates between mESC and PGC-like cells.

To map the 5-azacytidine perturbation dataset to the previously reconstructed EB trajectory, 

we used lineage prediction scores to identify the 10 most highly correlated cells of timed EB 

data. We then counted the frequency of identified cells and displayed its density on the 

trajectory.

Comparison of the in vivo and in vitro RNA-seq data—To compare the cellular 

populations inferred from scRNA-seq during EB differentiation to their in vivo counterpart, 

we downloaded bulk or single cell RNA-seq data corresponding to each embryonic layer 

from mouse embryos throughout development, and computed a correlation score for all 

populations that were common across our study and the dataset origin (Boroviak et al., 

2015; Hargan-Calvopina et al., 2016; Nestorowa et al., 2016; Zhang et al., 2018). For bulk 

RNA-seq data of post-implantation tissue and PGC, we downloaded gene expression matrix 
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with FPKM value and calculated average expression of replicates of the sample. For single 

cell RNA-seq data of HSC, we downloaded gene expression matrix with reads count and 

calculated TPM by normalizing to total read counts of each single cell. The average mRNA 

expression for all single cells belonging to one cell type is calculated. For single cell RNA-

seq data of pre-implantation tissue, we downloaded gene expression matrix with FPKM and 

calculated average expression of all the single cell for one cell type is calculated. To 

compare the similarity between the in vitro and in vivo data, scRNA-seq data of EB were 

aggregated for each assigned lineage. The pair-wised Spearman’s correlation between 

aggregated single cell EB data and in vivo bulk data was calculated based on the lineage 

genes identified from clustering (P value < 1e-5).

Gene modules in branching points—To find gene expression modules that change 

along pseudotime and following its expression trends at each branch point, we applied 

branched expression analysis modeling using Monocle 2 (version 2.2.0). In brief, we 

extracted branch dependent genes with a significance score (q-value < 1e-4) over different 

branches at the branch point, and then aligned hierarchically clustered genes along 

pseudotime points from center (root) to both edges (bifurcated branches). We next identified 

clustered genes (gene modules) by the corresponding lineage marker genes we used in 

previous lineage annotation. We summarized expression trends of each module by regression 

analysis (LOESS) that created a smooth line through each expression score scatterplot. With 

this trend plot, we dissected gene modules to early and late activation clusters along 

pseudotime progression and revealed mutually exclusive clusters over branches.

DNA methylation data analysis—To identify the genes activated upon 5-azacytidine 

treatment, we compared the TPM of all the single cell profiles between 5-azacytidine 

treatment and DMSO from day2 to day14. The activated genes in 5-azacytidine treatment 

have 2-fold increase of their average expression across all the cells (P value < 1e-3). To 

examine the DNA methylation level on the promoters of genes activated upon 5aza 

treatment, we download the bulk WGBS data corresponding to the different lineages of the 

mouse embryo (Zhang et al., 2018). The average of mCG level on the 5kb of promoters were 

calculated and mapped to the activated genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell trajectory map of the embryoid body model of early 

embryogenesis

• A temporally precise genetic recording system for lineage tracing

• PGC-like lineage commitment in EBs occurs at the preimplantation epiblast-

like stage

• DNA methylation determines PGC-fate choice in a narrow developmental 

window
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Figure 1. Single-Cell Profiling and Reconstruction of the Developmental Trajectory
(A) Overview of the experimental design and the corresponding stages of embryogenesis.

(B) Pseudotime trajectory of 1,536 single-cell transcriptomes (points) from all stages of the 

EB time course. Data are from two independent biological replicates. Trajectory was 

inferred by Monocle 2. Cells are color coded by cell-state annotations from the analyses in 

(D) and (E) and Figures S1D and S1F–S1H. Pre-Epib, preimplantation epiblast-like; Post-

Epib, postimplantation epiblast-like; S. ECT, surface ectoderm

(C) Pseudotime trajectory from (B), with cells from each real-time point superimposed in 

red.

(D and E) Heatmaps showing unbiased clustering of meta-modules based on differentially 

expressed genes from the same 1,536 single-cell transcriptomes. Cells were split into two 

categories: early (ESC to epiblast; D) or late (PS to germ layers; E). The top differentially 

expressed genes for each cluster are annotated (p < 1e–5). Cells were assigned “transition” 
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(gray) when they did not have a clear lineage identity. Cell states were assigned based on 

marker gene expression.

See also Figure S1 and Table S3.
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Figure 2. EB Differentiation Recapitulates the Developmental Trajectory of the Pre-gastrulation 
Embryo
(A) Plot comparing real-time point of collection (y axis) with pseudotime score (x axis) for 

the same 1,536 single cells from Figure 1 (points). Cells are color coded by cell-state 

annotations from Figure 1. We identify a population of Pre-Epib cells with arrested 

differentiation (orange dots, black outline).

(B) Pseudotime trajectory as in Figure 1B, with a magnified view of the cells with arrested 

differentiation (orange dots, black outline). These cells fall at the branchpoint of ESCs (red), 

Pre-Epib cells (orange), and Post-Epib cells (lime green).

(C) Plot showing differentially expressed genes in the cell population with arrested 

differentiation. The top differentially expressed genes (36 genes, −log(p) > 5.8, fold change 

> 1.2) are highlighted (red). Top differentially expressed genes include many PGC marker 

genes. We therefore annotated the population of cells with arrested differentiation as PGC 

like.
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(D) Heatmap showing unbiased clustering of meta-modules based on the top 30 

differentially expressed genes from the single-cell transcriptomes of cells annotated as PGC 

like (yellow) or Pre-Epib (orange). The top differentially expressed genes for each cluster 

are annotated (p < 1e–3).

(E) Heatmap showing a correlation analysis of the annotated EB cell states with gene 

expression data from bulk RNA-seq from isolated populations in vivo (GEO: GSE76505; 

Zhang et al., 2018).

(F) Heatmap (left) of genes that are preferentially expressed in the PGC-like population, 

showing their expression across EB cell states (*p > 1e–3). A heatmap (right) of the same 

genes shows their average expression across in vivo populations, taken from published 

RNA-seq data (GEO: GSE76505; E-MTAB-2958; Boroviak et al., 2015; Zhang et al., 2018). 

These analyses support annotation of the cells with arrested differentiation as PGC like.

See also Figure S2 and Table S3.
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Figure 3. Transcriptional Dynamics across the Differentiation Trajectory
(A) Schematic of the first major lineage bifurcation. ESCs differentiate into extraembryonic 

PrE-like or Pre-Epib cell states. The pseudotime trajectory was re-plotted for the 600 single-

cell transcriptomes from days 0, 2, and 4.

(B) Heatmap showing unbiased clustering of transcriptional programs for the 600 single-cell 

transcriptomes in (A). Cells are ordered by their pseudotime score radiating left (PrE branch, 

blue) and right (Pre-Epib branch, orange) away from the progenitor ESC population (center, 

red). The top differentially expressed genes for each cluster are annotated (p < 1e–10).

(C) Graphs showing the average expression of each gene expression module from (B), 

plotted over pseudotime.

(D) Schematic of the second major lineage bifurcation. Pre-Epib cells form PGC-like cells 

and Post-Epib cells (which, in turn, form the PS). The pseudotime trajectory was replotted 

for the 800 single-cell transcriptomes from days 2, 4, 6, and 8.
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(E) Heatmap showing unbiased clustering of transcriptional programs for the 800 single-cell 

transcriptomes in (D). Cells are ordered by their pseudotime score radiating left (PGC 

branch, yellow) and right (Post-Epib branch, lime green; forming the PS, dark green) away 

from the progenitor Pre-Epib population (center, orange). The top differentially expressed 

genes for each cluster are annotated (p < 1e–10).

(F) Graphs showing average expression of each gene expression module from (E), plotted 

over pseudotime.

(G) Heatmap (left) showing expression of naive, general, and primed pluripotency modules 

defined from Kalkan et al. (2017) in the single-cell transcriptomes from the annotated ESC, 

PrE, PGC, preimplantation epiblast, and postimplantation epiblast populations. Boxplots 

(right) quantify the gene expression modules from the heatmap.

See also Figure S3 and Table S3.
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Figure 4. The Recombination-Based System Barcodes Cells in a Defined Temporal Window
(A) Illustration depicting procedures for acquiring the transcriptome and timestamp barcode 

information from each single cell. ESCs are engineered to express an inducible Cre (Cre-

ERT2-T2A-BFP), a Cre reporter (lox-RFP-STOP-lox-GFP), and a timestamp barcoding 

system containing a static barcode (N10 nucleotides) and an inducible tandem-loxP barcode 

(E2-crimson-tandem-loxp-UCI). ESCs are sorted into culture plates based on reporter 

expression (RFP, BFP, and E2-crimson) (as in Figure 1A). Recombination of the tandem-

loxP sequence is induced by addition of Cre-ERT2. At the end of the 14-day time course, 

cells are harvested. The timestamp barcode is amplified using targeted primers and 

sequenced using Oxford Nanopore long-read sequencing. The transcriptome is profiled as 

before (STAR Methods).

(B) The black histogram shows barcode distribution calculated from NGS data. The red 

cumulative frequency plot on the same plot shows that that 95% of barcodes are detected 

with 50 sequencing reads per UCI, consistent with observations from other barcoding 

studies (Bhang et al., 2015).

(C) Barplot showing the length distribution of long sequencing reads after Cre-ERT2 

induction. The tandem-loxP sequence contains 5 converging pairs of loxP sites with 9 spacer 

sequences, making an intact total of 2,317 bp. The full recombined product yields a 621-bp 

fragment.

(D) Pie charts displaying the number of unique loxp recombined barcodes (left) and the 

number of unique loxP recombined barcodes+UCI (right). 5,000 static UCIs and a total of 

155 achievable, temporally controlled tandem-loxP barcodes yield 514 unique barcodes in 

EBs after applying strict filtering criteria (Figures S4D–S4G; STAR Methods).
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See also Figure S4 and Tables S1 and S2.
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Figure 5. Timestamp Barcodes Support Inferred Lineage Relationships in EBs
(A) Illustration depicting the experimental design for timestamp barcode generation. We 

initiated recombination of tandem-loxP barcodes at two time points: ESCs (day 0) and after 

expression of postimplantation epiblast marker genes (days 8/9). Cells were harvested on 

day 14 and processed for scRNA-seq and barcode detection as in Figure 4A. A total of 4,028 

cells from 11 EBs passed QC.

(B) Heatmap showing unbiased clustering of meta-modules based on the top 10 

differentially expressed genes from 4,028 single-cell transcriptomes from the experiment in 

(A). Cells are color coded by cell-state annotations as in Figures 1 and 2. Lineage identity 

for each single cell was assigned as in Figure 1 and validated using correlations to in vivo 
datasets (Figure S5C) and using a machine learning classifier trained on data from Figure 1 

(Figures S5A and S5B). Key marker genes of the major embryonic populations are 

highlighted.

(C) Pie chart showing the number of timestamp barcodes identified in each lineage (left). 

18% of the identified barcodes are shared across different lineages (center). The violin plot 

indicates how many times each shared barcode is counted in different cells.
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(D) Schematics showing the expected outcome of barcode generation in ESCs. 

Theoretically, all descendent lineages would share barcodes.

(E) Linkage plot (left) showing the observed linkage map of cells when barcodes were 

generated in ESCs. Each connecting line represents 2 cells that possess an identical barcode 

(loxp+UCI). All major lineages are connected by multiple barcodes. The heatmap 

(right)shows correlation scores of detected barcodes over lineages.

(F) Tree schematic depicting the shared origin of lineages when barcodes are generated in 

ESCs.

(G) Schematic showing the expected outcome of barcode generation on day 8/9. 

Theoretically, descendants of lineages that are already distinct on day 8 would not share 

barcodes.

(H) Linkage plot (left) showing the observed linkage map of cells when barcodes were 

generated on day 8/9. Each connecting line represents 2 cells that possess an identical 

barcode (loxp+UCI). All major lineages are connected by multiple barcodes, except the 

PGC-like lineage, which is distinct. The heatmap (right) shows correlation scores of detected 

barcodes over lineages.

(I) Tree schematic depicting the distinct origin of lineages when barcodes are generated on 

day 8.

See also Figure S5 and Table S4.
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Figure 6. DNA Methylation Drives Cell Fate Choice in a Tight Developmental Window
(A) Top: schematic representing the lineage trajectory. Bottom left: reproduction of the 

pseudotime trajectory plot from Figure 2D, depicting the branchpoint between Pre-Epib 

cells (orange), PGC-like cells (yellow), and Post-Epib cells (lime green; which become the 

PS, dark green). Bottom right: plots showing average expression of the DNA methylation 

and demethylation machinery as a function of pseudotime along each lineage branch, with 0 

being the branchpoint.

(B) EBs were treated with 5-aza and spontaneously differentiated to day 14. DMSO control 

or 5-aza-treated cells are projected (red points) on the Monocle 2 trajectory plot of the 

branchpoint from A (top). Stacked bar plots depict the proportion of each lineage at each 

time point (bottom). Lineages were assigned as in Figures 1 and 5.

(C) Heatmap (left) showing the top upregulated genes after 5-aza treatment of EBs. The 

heatmap (center) shows that the same genes are downregulated during differentiation in vivo 
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(GEO: GSE76505; Zhang et al., 2018). Another heatmap (right) shows that the promoters of 

the same genes become methylated during differentiation in vivo (GEO: GSE76505; Zhang 

et al., 2018).

(D) Illustration depicting the experimental design for perturbation of DNA methylation at 

different time points. We treated cells with 5-aza on days 0, 4, and 6 and collected EBs for 

single-cell transcriptomics on day 14.

(E) 5-aza-treated cells and DMSO-treated control cells as in (D) are projected on the EB 

trajectory shown in Figure 1B.

(F) Stacked bar plots depicting the proportion of each lineage at each time point from the 

experiment described in (D) and (E). Lineages were assigned as in Figures 1 and 5.

See also Figure S6 and Table S3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE Antibodies SOURCE IDENTIFIER

Antibodies

Anti-Mouse CD140a (PDGF Receptor a) APC eBioscience 17–1401-81; RRID:AB_529482

BV421 Rat Anti-Mouse CD184(Cxcr4) BD bioscience 562738; RRID:AB_2737757

Anti-Mouse CD133 (Prominin-1) PE eBioscience 12–1331-80; RRID:AB_465848

Human/Mouse SSEA-1 Alexa Fluor 700 mAb (Cl 
MC-480) R&D systems FAB2155N-025 (No RRID number available)

Chemicals, Peptides, and Recombinant Proteins

DMSO Sigma D5879

(Z)-4-Hydroxytamoxifen Sigma H7904

5azacytidine Sigma A2385–100MG

AMPure XP (SPRI) beads Beckman Coulter A63881

Sodium hydroxide Sigma S8045–500G

UltraPure Distilled Water ThermoFisher 10977015

Sodium Chloride, 5M Broad Institute N/A

EDTA (0.5M, pH 8.0) Broad Institute N/A

2-Mercaptoethanol Sigma 6010

BSA Sigma A9418

PEG 20%, Sodium Chloride 2.5M(L) Broad Institute N/A

Calcium/Magnesium free PBS ThermoFisher 10010023

ESGRO® Leukemia Inhibitory Factor (LIF) Millipore ESG1107

HyClone Fetal Bovine Serum (U.S.), Embryonic Stem 
(ES) Cell Screened GE healthcare SH30070.02E

Tris-acetate Broad Institute N/A

Potassium Acetate Broad Institute N/A

Magnesium Acetate Broad Institute N/A

ExoSAP-IT ThermoFisher 78200

E.coli DNA polymerase I ThermoFisher 18010–025

RNaseH ThermoFisher 18021–071

E.coli DNA ligase ThermoFisher 18052–019

10mM dNTP mixture ThermoFisher R0192

Second strand buffer ThermoFisher 10812–014

RNaseOUT ThermoFisher 10777–019

IGEPAL Sigma I8896

Proteinase-K ThermoFisher EO0491

DNA Q5 Hot Star Hifi 500 New England BioLabs M0493L

Critical Commercial Assays

LIVE/DEAD® Fixable Aqua Dead Cell Stain Kit ThermoFisher L34957

LIVE/DEAD® Fixable Near-IR Dead Cell Stain Kit ThermoFisher L10119

PfuUltra II Hotstart PCR Master Mix Agilent 600852

Qubit dsDNA HS Assay Kit ThermoFisher Q32854
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REAGENT or RESOURCE Antibodies SOURCE IDENTIFIER

BioA High Sensitivity DNA Kit Agilent 5067–4626

Lipofectamine® 3000 Reagent ThermoFisher L3000008

NEBNext Ultra II End-Repair/dA-tailing Module New England BioLabs E7645

Blunt/TA Ligase Master Mix New England BioLabs M0367

Aggrewell 400 STEMCELL technologies 27945

MEGAscript T7 Transcription Kit ThermoFisher AM1334

High-Fidelity PCR Master Mix New England BioLabs M0531S

Superscripts ThermoFisher 18064–014

1D Ligation Sequencing Kit Oxford Nanopore 
Technologies SQK-LSK109

1D Native barcoding kit Oxford Nanopore 
Technologies EXP-NBD104, EXP-NBD114

Deposited Data

Raw data GEO GSE140890

Processed data GEO GSE140890

Experimental Models: Cell Lines

mESC Broad Institute N/A

C57BL/6 MEF 4M IRR GlobalStem GSC-6002G

Oligonucleotides

See Table S2 for a list of oligonucleotide sequences. N/A

Recombinant DNA

VSV.G Broad institute N/A

dVPR Broad institute N/A

p-EF1a-CreERT2–3Xflag-T2A-eBFP2 Table S1 N/A

p-EF1a-PuroR-T2A-E2Crimson-tandemLoxp-Filler Table S1 N/A

p-EF1a-fl-mRFP-HSVpa-fl-MCS-T2A-eGFP Table S1 N/A

Software and Algorithms

R version 3.3 R Core Team https://www.r-project.org

R package - randomForest CRAN https://cran.r-project.org/web/packages/
randomForest/index.html

R package - circlize CRAN https://cran.r-project.org/web/packages/circlize/
index.html

R package - Monocle version 2.2.0 CRAN https://bioconductor.org/packages/release/bioc/
html/monocle.html

Seurat version 2.2.1 Github https://github.com/satijalab/seurat

FlowJo version 10.4.2 TreeStar https://www.flowjo.com

Albacore version 2.3.3 Github https://github.com/dvera/albacore

Guppy version 2.3.5 Oxford Nanopore 
Technology

https://community.nanoporetech.com/sso/login?
next_url=%2Fdownloads

Minimap2 Github https://github.com/lh3/minimap2

celseq2 Github https://github.com/yanailab/celseq2
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