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Abstract: Scale free Lévy motion is a generalized analogue of the Wiener process. Its time derivative
extends the notion of “white noise” to non-Gaussian noise sources, and as such, it has been widely
used to model natural signal variations described by an overdamped Langevin stochastic differential
equation. Here, we consider the dynamics of an archetypal model: a Brownian-like particle is driven
by external forces, and noise is represented by uncorrelated Lévy fluctuations. An unperturbed
system of that form eventually attains a steady state which is uniquely determined by the set of
parameter values. We show that the analyzed Markov process with the stability index α < 2 violates
the detailed balance, i.e., its stationary state is quantified by a stationary probability density and
nonvanishing current. We discuss consequences of the non-Gibbsian character of the stationary state
of the system and its impact on the general form of the fluctuation–dissipation theorem derived for
weak external forcing.

Keywords: nonequilibrium and irreversible thermodynamics; fluctuation phenomena; random walks
and Lévy flights

PACS: 05.70.Ln; 05.40.-a; 05.40.Fb

1. Introduction: Lévy Stable Distributions and Lévy Stable Processes

The normal distribution plays a special role in statistics and physics. This is due to the abundance
of the observations displaying Gaussian fluctuations which is explained by the central limit theorem.
Additionally, the Gaussian assumption in tandem with the Markov property, in many cases, makes
calculations more manageable. Therefore, Gaussian white noise is used as an archetypal process
modeling complex interactions of a test particle with its environment. This approximation works
perfectly well when interactions are independent and bounded. Both these assumptions can be violated
resulting in more general non-Markovian and non-Gaussian processes. Also, vast experimental
evidence indicates that fluctuations can be of a more general, non-Gaussian type.

Many collective, complex physical systems are characterized by fluctuations strongly deviating
from the “canonical” Gaussian description, often categorized by diverging mean and variance. In terms
of the probability calculus, distributions governing this type of behavior are frequently identified with
so called Lévy α-stable laws [1], where “stability” signifies that the product of characteristic functions
of two independent such laws results in a characteristic function of another variable of the same type.
Moreover, according to the generalized central limit theorem [2], these distributions appear as limits of
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sums of independent and identically distributed random variables with divergent variance, i.e., random
variables with probability density functions behaving as the power law 1/|x|α+1 for large |x| values.

Lévy statistics are omnipresent and have been used as valuable models of various data sets—they
have been detected in the critical state and in self-organized criticality phenomena. They correctly
fit empirical distributions of extreme events, like avalanches and earthquakes, and describe the
broadening of spectral lines in plasma, the distribution of gravitational force between randomly
localized stars, and relaxation phenomena in disordered systems well [3]. A generalization of Gaussian
white noise to its non-Gaussian, Lévy stable counterpart serves as a model of impulsive, large scale
variations observed, e.g., in turbulent heat flow [4] and solar flare fluctuations [5,6], hole transport in
semiconductors [7], transmission of light in inhomogeneous materials [8], and anomalous diffusive
transport [9,10]. Apart from financial mathematics where the Lévy fluctuations became an attractive
model for price variation [11], there is also accumulating evidence from biological experiments showing
that production of mRNA and proteins occurs in a pulsatile manner and creates non-Gaussian noise
in individual cells [12–14]. Those bursty events result in high transcriptional activity followed by
long periods of inactivity and are characterized by heavy tailed distributions and Lévy-like statistics.
Moreover, the cytoplasmatic mechanical activity has been documented to be far from equilibrium [15],
and the total intensity of cytoskeletal noise has been estimated to exceed the level of thermal noise
(kBT). Since the intrinsic stochastic excitations may play a crucial role in transcriptional regulatory
systems [14], it could well be that non-Gaussian Lévy noise should be a proper model of choice for
underlying fluctuations in biological systems.

Over the past years, stochastic differential equations with non-Gaussian Lévy noises have gained
a lot of interest in regard to modeling the DNA-target search for binding sites [16], active transport
within cells [17], and search strategies [18–24]. In all of those problems, the primary focus is on
proposing a stochastic model to address the issues of relaxation and kinetics of the system under
investigation. The paradigmatic choice of preference is usually the Langevin equation, for which
stochastic energetics have been defined under the action of Gaussian white noise [25,26]. It thus
seems plausible to deeply explore the possibilities and limitations of the Langevin approach to study
systems with a more general form of fluctuating forces. Before addressing this point, we briefly review
the properties of α-stable laws [1,27–32] and discuss the profoundly nonequilibrium properties of
Lévy-stable noises.

Definition 1. Let X1 and X2 be independent identically distributed random variables. The distribution they
share is said to be stable if

∀a, b > 0 ∃c, d ∈ R ∀x : FaX1+bX2(x) = FcX1+d(x), (1)

where FX stands for the distribution function of X. If d = 0 for every pair (a, b), then the distribution is said to
be strictly stable.

The family of all distributions which satisfies the requirement of stability was constructed by Paul
Lévy [27]. These distributions are referred to as α-stable distributions or Lévy α-stable distributions.

Definition 2. Let α ∈ (0, 2] and β ∈ [−1, 1]. A random variable (S(α,β)) is called α-stable if its characteristic
function is given by the formula

ln ΦS(α,β)
(k) =

{
−|k|ασα

(
1− iβsgn(k) tan πα

2
)
+ ikµ for α 6= 1

−|k|σ
(
1 + iβsgn(k) 2

π log |k|
)
+ ikµ for α = 1

, (2)

where sgn(·) is the sign function. In the special case of β = 0, this formula simplifies to

ln ΦS(α,0)
(k) = −|k|ασα + ikµ, (3)
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and the corresponding S(α,0) is called a symmetric α-stable random variable.

In accordance with Samorodnitsky [1], we recall here a representation of standard α-stable
distributions with the following parameters: α (identified as a characteristic exponent or a stability
index), β (responsible for the skewness of the probability law), and σ—called the scale parameter
that control thes overall distribution width. Finally, µ is the location parameter. The stability index α

describes the asymptotic (i.e., large x) behavior of the density function (p(x) = d
dx FX(x)), which for

the symmetric case with α < 2 assumes the form

p(x) ∝
σα sin(πα

2 )Γ(α + 1)/π

|x|α+1 . (4)

Note that for α < 2, any α-stable density is characterized by the diverging standard deviation.
Moreover, for α < 1, the mean value also diverges.

Definition 3. A stochastic process ({X(t), t > 0}) is known as α-stable Lévy motion (Lévy flight) if X(0) = 0
and the process has independent increments ∆X, distributed according to the α-stable law ∆X ≡ X(t)−X(s) ∼
S(α,β)((t− s)1/α) for any t, s, such that 0 6 s 6 t 6 ∞.

Following this definition, the formal time derivative of the symmetric α-stable motion defines
a generalization of the Gaussian white noise, i.e., a symmetric Markov α-stable noise which turns
into a standard Gaussian form for α = 2. Lévy flights thus extend the Brownian motion paradigm
to self-similar motions ({X(ct), t > 0} and {c1/αX(t), t > 0} have the same distributions) with
uncorrelated random steps. However, unlike standard Brownian motions for which the mean-squared
displacement (MSD) grows in time (〈∆X2(t)〉 ∝ t), the dispersion of the position in the Lévy motion
diverges, and the width of the resulting asymptotic Lévy (super)-diffusion must be characterized by
some fractional moments [30] or the interquantile distance (see Figure 1). This fact indicates that the
Lévy flight, i.e., the stochastic process defined by Equation (5), displays some non-physical properties,
which are especially visible for α < 2. Due to the heavy tails of α-stable densities, with α < 2, there is a
significant probability of extremely long jumps leading to the divergence of variance of Lévy flights.
The resulting infinite propagation velocity can be eliminated through the spatio-temporal coupling
of jump lengths and associated waiting or travel times resulting in so-called Lévy walks [33,34].
The non-Markovian character of Lévy walks, however, impedes the stochastic thermodynamics
analysis of these systems. Here, we focus on the study of fluctuation dissipation relations for Lévy
flights and direct the interested reader to the further discussion of differences and analogies between
Lévy walks and Lévy flights in Ref. [35].

Lévy flights and Lévy fluctuations are ubiquitous in nature. They occur in turbulent flows [36],
incoherent radiation trapping [37] diffusion of particles in random media [38], the spreading of
epidemics and human travel behavior [39], in economic and paleoclimatic time series [40,41] and
in random movements of the cell cytoskeleton generated by motor proteins [42]. The evidence for
bursty, Lévy flight-like behavior in human cognition retrieval from semantic memory and mental
searches have been recently documented [18,19,43]. Despite their omnipresence, the thermodynamics
of non-Gaussian stable fluctuations poses several objectives [44,45] beyond the standard description
typical for Gaussian cases. In the forthcoming brief resume, we comment on some unusual properties
of Lévy fluctuations and their thermodynamic consequences.
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Figure 1. Visualizations of 1-dimensional α-stable processes for α = (2; 1.5; 1; 0.5). Along with
ten exemplary sample trajectories, the median (red) and quantile areas (gray and violet) are plotted.
The quantiles were obtained from 105 sample trajectories integrated with the Euler method (∆t = 0.01).

2. Lévy Flights and Detailed Balance

Let (Xt)t>0 be a stochastic process that is solved by the following Langevin equation:

dXt = −aXtdt + dS(α)
t , (5)

where dS(α)
t stands for increments of the Lévy–Wiener process (Lévy motion) defined above.

Equation (5) describes the overdamped motion of the random walker in the static harmonic potential
subjected to the action of the α-stable (Lévy) noise. Since the system is overdamped, its state is fully
determined by position x(t) which is a random variable. Alternatively, the probability density function
(PDF) of the process p(x, t) obeys [30,45–47] the corresponding fractional Smoluchowski–Fokker–Planck
Equation (SFPE):

∂t p(x, t|x0) = σα
0

∂α

∂|x|α
p(x, t|x0) + a

∂

∂x
(xp(x, t|x0)) , (6)

which is conditioned on the value of the stochastic process at time t0 = 0 (the process is time
homogeneous). Parameter a sets the time constant of the deterministic part of the system. For the sake
of brevity, in the following, we put a = 1. The fractional operator ∂α

∂|x|α with 0 < α 6 2 stands for the

Riesz fractional derivative, defined by the Fourier transform [28,29]: Fk

(
∂α f (x)
∂|x|α

)
= −|k|αFk( f (x)).

Accordingly, in the (fractional) diffusion equation (Equation (6)), the term σα
0 can be interpreted as the

generalized diffusion constant [3,48], where σ0 is the scale parameter that characterizes the underlying
Lévy noise in the overdamped Langevin Equation (5). The generalized diffusion coefficient is related
to the distribution asymptotics (see Equation (4) and Ref. [48]). Please note, that in situations when
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finite propagation velocity is assumed, one can calculate the constrained or “moving” mean squared
displacement [49] which differs from the generalized diffusion coefficient (compare with Refs. [48,49]).
The solution of this SFPE is given by

p(x, t|x0) =
1

σ(t)
Sα

(
x− µ(t)

σ(t)

)
, (7)

where Sα(·) is the standard symmetric α-stable distribution whose Fourier transform is

F{Sα}(k) = e−|k|
α
. (8)

The time-dependent location (µ(t)) and scale (σ(t)) parameters read

µ(t) = x0e−t (9)

and

σ(t) = σ0

(
1− e−αt

α

)1/α

. (10)

The unique stationary state is denoted ps(x) = limt→∞ ps(x, t|x0). The stationary state is given by
the α-stable density with a different scale parameter than in the noise term, i.e., σ∞ = σ0/α1/α, which
is the t→ ∞ limit of Equation (10).

A dynamic system driven by fluctuating forces (Equation (5)) is said to be microscopically
reversible if the probability of its trajectory and its time reversal are identical, so that the work imposed
by external forcing equals the change in free energy [50,51]. Here, we examine the flow of probability
between the states and show that the relative probabilities of trajectories in the Lévy–Wiener process
do not fulfill the detailed balance condition.

Definition 4. We say that there is a detailed balance if the following condition is met:

∀x,y∈R,t>0 : p(x, t|y)ps(y) = p(y, t|x)ps(x). (11)

Theorem 1. The detailed balance holds for the solution of (5) if α = 2.

Proof. The following calculations show that the detailed balance condition (11) is trivially fulfilled for
α = 2. (For the sake of clarity we have assumed σ0 = 1/

√
2 here which corresponds to the standard

normal density N(0, 1), see Equation (2). It is trivial to prove that a change in the parameter does not
change the result (Theorem 1)).

∀x,y∈R,t>0 : ln
(

p(x, t|y)ps(y)
p(y, t|x)ps(x)

)
= ln

exp
(
− (x−ye−t)2

2(1−e−2t)

)
exp

(
− y2

2

)
exp

(
− (y−xe−t)2

2(1−e−2t)

)
exp

(
− x2

2

)
 =

= − (x− ye−t)2 − (y− xe−t)2 + (1− e−2t)y2 − (1− e−2t)x2

2(1− e−2t)
= 0 .

Now, let us turn to the case with α < 2. From (11) it follows that, in particular,

g(x, t) ≡ p(x, t|0)ps(0)
p(0, t|x)ps(x)

= 1 (12)

and thus
h(x) ≡ lim

t→0
g(x, t) = 1. (13)
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Conditions (12) and (13) are necessary, but not sufficient, for the detailed balance to hold. For α < 2
and |x| > 0, we have (note that limt→0 σ(t) = 0)

lim
t→0

p(x, t|0)
p(0, t|x) = lim

t→0

Sα

(
x

σ(t)

)
Sα

(
− µ(t)

σ(t)

) = lim
t→0

(
σ(t)
|x|

)1+α ( |x|e−t

σ(t)

)1+α

= 1. (14)

Intuitively, this means that for very short times, the propagator does not depend on the
deterministic force felt by the particle (see Equation (5)). By plugging this into (12) and (13), we
arrive at (x > 0):

h(x) =
Sα(0)
Sα(x)

> 1, (15)

which shows that the detailed balance does not hold for α < 2 (note that for a symmetric stable variable,
h(x) takes its maximum value at x = 0 and decays beyond this value). This observation can be easily
checked for the Cauchy–Wiener process (α = 1) whose propagator (p(x, t|x0)) satisfying Equation (6) reads

p(x, t|x0) =
σ(t)

π

1
(x− µ(t))2 + σ2(t)

(16)

with σ(t) = σ0(1− e−t) and µ(t) = e−tx0. Accordingly, Figure 2 displays the sample ratios (g(x, t))
for this case and various values of x. For small t and moderate values of x, clear deviations from
g(x, t) = 1 are visible. A similar result was obtained a particle subjected to Cauchy (α = 1) white
noise in the parabolic potential well in Ref. [52], where the nonzero flow of probability between the
segments of the well was demonstrated.

Note that for a system governed by Gaussian fluctuations (dS(2)
t ), the corresponding SFPE takes

on the form of the conservation law of the probability (∂t p(x, t|x0) +∇J(x, t) = 0) with the current
(J(x, t) = −xp(x, t|x0)− σ2

0 ∂x p(x, t|x0)) and σ0, representing the intensity of the noise at the level of
the Langevin equation [53]. At steady state, the divergence of the flow has to vanish [54]. For a trivial
case (J ≡ 0), this implies that −xps(x)− σ2

0 ∂x ps(x) = 0, and the driving force can be written as

− x =
σ2

0
∂

∂x ps(x)
ps(x)

= −σ2
0

∂

∂x
(− log ps(x)) = − ∂

∂x
U(x) (17)

with a potential U(x)

U(x) = −σ2
0 (ln ps(x) + lnZ) . (18)

In other words, under Gaussian fluctuations, the detailed balance condition (J ≡ 0) is equivalent
to the requirement that at equilibrium, the Boltzmann relationship between the weight of the state
(equilibrium probability) and underlying potential surface exists (clearly, this condition does not need
to be satisfied for general nonequilibrium systems [54]).

Condition J ≡ 0 implies a further thermodynamic relationship [25,26] between the probability
density function and the relative or distance entropy that measures deviation from the stationary
state (ps(x)):

σ2
0

∫
p(x, t) ln

p(x, t)
ps(x)

dx = 〈U(x)〉 − σ2
0 (−

∫
p(x, t) ln p(x, t)dx) + σ2

0 lnZ , (19)

where Z ≡
∫

exp(−U(x)/σ2
0 )dx is the partition function, F ≡ −σ2 lnZ stands for the free energy

function, and the second term on the RHS denotes the Shannon entropy. If the strength of fluctuations
(σ2) can be related to the ambient temperature T, the left-hand-side of the expression above achieves a
simple interpretation of the instantaneous free energy of the stochastic system [25,50] at hand.
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Notably, the relative entropy (or the instantaneous free energy of the system) defined above
plays a role in the Lyapunov function (H-functional) [44] for a general class of stochastic Markovian
systems described by Equations (5) and (6). Through an analogy to the Gibbs equilibrium state
(cf. Equations (18) and (19)), it is thus tempting to interpret the functional Φ ≡ − ln ps(x) as a
nonequilibrium pseudo-potential [25,50,52,55,56] from which the equivalents of “internal” and “free”
energies of the system can be identified as in Equation (19) above. This approach yields Φ 6= F (x)m
and is incompatible with the requirement that the reference (stationary) state should correspond
to the Gibbs equilibrium with ps(x) fulfilling Equation (18). Indeed, the issue of thermalization
or equilibration of Lévy flights can be only addressed by predefined confinement of the motion
in properly “tailored” potentials [31,32,44,57–59], or otherwise described by nonextensive Tsallis’
thermodynamics [60]. There are also known “non-Langevin” scenarios [61,62] based on a master
equation that result in Levy flights fulfilling a detailed balance with the stationary state of the
Boltzmann–Gibbs type.

The scaling properties (Equation (7)) of the time dependent density p(x, t) result for the general
case in dynamic (Shannon) entropy (cf. Equation (17)) taking on the form

S [p(x, t)] = −
∫

Sα(z) ln Sα(z)dz + ln σ(t), z = x/σ(t), (20)

thus indicating the entropy production rate:

dS [p(x, t)]
dt

=
σ̇(t)
σ(t)

. (21)

In the case of the free Lévy flights described by the stability index α, the above rate formula results
in d

dtS [p(x, t)] ∝ (αt)−1, i.e., the entropy production rate is positive, decreases for increasing α, and
attains a minimal value for α = 2, corresponding to generic Gaussian fluctuations, typical for states
close to equilibrium [63,64]. Similarly, for Lévy flights in the quadratic potential, the evaluation of
Equation (21) yields d

dtS [p(x, t)] = 1
eαt−1 which coincides with the rate of a free Lévy process for short

times (t� 1).
These significant differences in the statistical properties of systems driven by non-Gaussian Lévy

fluctuations, and, in particular, divergence of the second moment, imply the lack of a simple Einstein’s
fluctuation–dissipation relationship between fluctuation strength and the magnitude of dissipation.
In a forthcoming section, we review the linear relaxation theory based on the identity derived by
Hatano and Sasa [65] for dynamic Markov systems and present an extension of the generalized
fluctuation–dissipation theorem to the nonequilibrium system subjected to thermal (Gaussian noise)
and nonthermal (external Cauchy noise) fluctuations.
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3. Linear Response and Fluctuation–Dissipation Relationship under Lévy Noise

Relation between externally induced and spontaneous fluctuations in systems close to equilibrium
is described by the concept of the response function [66,67]. Linear response of a generic observable
X(t) measured at time t to small perturbations f (t) and the correlation between unperturbed
observable is characterized by the susceptibility measured in the reference, unperturbed state:

χ(t, t′) ≡ − 1
kBT

d
dt
〈δX(t)δX(t′)〉

∣∣∣
f=0

(22)

where

δX(t) = 〈X(t)〉 − 〈X(t′)〉
∣∣∣

f=0
∝
∫ t

0
χ(t− t′)δ( f (t′))dt′. (23)

As a result, the celebrated Green–Kubo fluctuation–dissipation theorem Equation (22) links relaxation
properties of the system to correlations of spontaneous fluctuations around the equilibrium state.

For systems described by the Hamiltonian H(x) and manipulated by weak forces f (t), the generic
observable X(t) is identified as a “conjugate variable” in the Onsager’s theory and can be interpreted

as the fluctuation of the quantity ∂H(x, f )
∂ f

∣∣∣
f=0

, i.e.,

X(x) =
1

kBT

[
∂H(x, f )

∂ f
−
〈

∂H
∂ f

∣∣∣
f=0

〉]
=

1
kBT

∂[H(x, f )−F ( f )]
∂ f

∣∣∣
f=0

. (24)

Here, in line with Equations (18) and (19), the free energy is F = −σ2
0 lnZ = −kBT lnZ =

−kBT ln
∫

dxZ−1δ(H(x)−U(x))e−
H

kBT .
Onsager’s theory and Green–Kubo relationships are grounded on the expansion around

equilibrium states, which restricts their applicability to systems close to equilibrium. However,
the generalization of the fluctuation–dissipation theorem to out of equilibrium systems has been
established in a number of cases [65,68,69]. In their seminal paper from 2001, Hatano and Sasa [65]
proposed an identity for Markov dynamic systems evolving between two steady states. The identity
has been further explored [55,68] to derive the general form of the fluctuation–dissipation theorem
for non-energy conserving dynamics. In what follows, we discuss an extension of this formalism
to the generalized fluctuation–dissipation theorem for systems away from equilibrium and under
the action of non-equilibrated environment (heat bath). We model interactions of the particle with
the reservoir by assuming that there are two statistically independent sources of noise affecting the
particle: a white Gaussian noise and a white Cauchy noise. The latter introduces large impulses,
leading, effectively, to infinite moments of the position of the particle and also, infinite average energy.
Accordingly, the statistical temperature of the system cannot be properly defined, i.e., the system is
out of equilibrium even in its stationary state. Yet, despite those peculiarities, by properly identifying
variables conjugated with external perturbations, the generalized form of the fluctuation–dissipation
theorem can be re-established and the validity of linear response to perturbations can be verified.

We focus our attention on the system described the following Langevin equation

dXt = −aXtdt + f (t)dt + dS(2)
t + dS(1)

t , (25)

where (S(2)
t )t>0, and (S(1)

t )t>0 denote Wiener and symmetric Cauchy processes, respectively, with the
scale parameters σ(2) = σ0 and σ(1) = γ0 standing for noise magnitudes and f (t) defining the external
deterministic force field. Since the Langevin Equation (25) is linear, its solution depends linearly on
two statistically independent noises and the corresponding probability distribution function (p(x, t))
of the dynamic variable (x(t)) attains the convoluted form of two Lévy PDFs with the stability indices
α = 1 and α = 2. The corresponding characteristic function is expressed by a product
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p̂(k, t) = eikµ(t)−σ2(t)|k|2−γ(t)|k|, (26)

and fulfills [56,70,71] the generalized Smoluchowski–Fokker–Planck equation

∂ p̂(k, t)
∂t

= −ak
∂

∂k
p̂(k, t) + ik[µ(t) + f (t)] p̂(k, t)− σ2

0 |k|2 p̂(k, t)− γ0|k| p̂(k, t). (27)

The Lévy jump statistics entering dynamics through the noise term S(1)
t lead to an inherently

nonequilibrium situation (note that due to the presence of the Cauchy noise, the expected value
(E[Xt]) does not exist for γ0 6= 0), and the overall probability distribution of the process deviates
from the Gibbs–Boltzmann form, exhibiting bulk Gaussian part and asymptotic heavy tails. Inserting
Equation (26) into the Smoluchowski–Fokker–Planck Equation (27) yields evolution equations for the
scale and location parameters:

µ̇(t) = −aµ(t) + f (t)

γ̇(t) = γ0 − aγ(t) (28)

dσ2(t)
dt

= σ2
0 − 2aσ2(t)

where we assume µ(0) = 0 at time t = 0. For a constant force ( f (t) = f ), the long time limit of these
equations gives the stationary parameters limt→∞ µ(t) = f /a, limt→∞ γ(t) = γ0/a, limt→∞ σ2(t) =
σ2

0 /(2a) characterizing a non-equilibrium steady state ps(x, f ) = limt→∞ pXt(x) of the system.
We further assume that the system is initially prepared in this stationary state. The question we

are going to address is whether the generalized form of the fluctuation–dissipation theorem can be
used here to test the linear response of the system to external drivings. This problem is addressed
below in the framework of stochastic thermodynamics [25,26,50,52–54].

In line with Onsager’s theory, we first introduce a non-equilibrium pseudo-potential [55,56]
Φ(x, f ) = − ln ps(x, f ) and use it to define a variable XGC that is conjugated to the perturbation f :

XGC ≡ −
∂ ln ps(x)

∂ f

∣∣∣
f=0

=
∂Φ(Xt, f )

∂ f

∣∣∣∣
f=0

= −1
a

∂Φ(x, 0)
∂x

∣∣∣∣
x=Xt

, (29)

where

ps(x) =
1

2
√

πσ∞
<
(

w
(
−x + iγ∞

2σ∞

))
. (30)

w(x) = e−x2
erfc(−ix) is the complex error function [1,29], and the second equality in Equation (29)

follows from the linearity of Equation (25). Thus, the conjugate variable XGC defines a new stochastic
process related to the original {Xt, t > 0} by a nontrivial transformation:

XGC = − x
2σ2

∞a
− γ∞

2σ2
∞a

=
(

w(−x+iγ∞
2σ∞

)
)

<
(

w(−x+iγ∞
2σ∞

)
) . (31)

In Figure 3, the functional dependence (XGC(x)) is displayed for σ0 = 1, a = 1 and several different
values of the Cauchy noise strength (γ0). In contrast to the pure Gaussian case (cf. Equations (26)
and (29) with γ(t) ≡ 0), when the conjugate variable reads XG = −2x/σ2

0 , the variable XGC is a
nonmonotonic function of x. This is related to the heavy tails of the noise distribution and not to the
mixing of two types of noise, as can be seen from the form of the conjugate variable in the case of
σ0 = 0, a = 1 [55,72]

XC(x) = − 2x
γ2

0 + x2
. (32)
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The fluctuation–dissipation theorem (or its generalized form) is expected to link the
autocorrelation function of the conjugate variable 〈XGC(t)XGC(0)〉 to a generalized susceptibility

χ(t) =
d
dt
〈XGC(t)XGC(0)〉

∣∣∣
f=0

, (33)

where the averaging is performed over the stationary (unperturbed f = 0) state. The expected response
of the conjugate variable to the perturbation f (t) can be then either determined exactly from

〈XGC(t)〉 =
∞∫
−∞

pXt(x, t)XGC(x)dx, (34)

where pXt(x, t) is calculated including f (t) and under stationary initial conditions or otherwise,
estimated from the linear response function

〈XGC(t)〉LR =

t∫
0

χ(t− s) f (s)ds. (35)

The susceptibility and the corresponding linear response (LR) of the conjugate variable (35) can be
easily derived analytically [55] if either γ(t) = 0 or σ(t) = 0. Remarkably, although the linear system
with pure Cauchy noise (σ(t) = 0, γ(t) 6= 0) has a nonlinear conjugate variable (32), its susceptibility is
proportional to e−t, as in the case of pure Gaussian noise ((σ(t) 6= 0, γ(t) = 0)) with a linear conjugate
variable. We confirmed that prediction with simulations (see Figure 4). In other cases χ(t) can be
obtained by averaging over a large number of simulations of the unperturbed stochastic differential
equation (SDE). Importantly, the simulations show that the combination of Gaussian and Cauchy
noise (25) preserves the exponential time dependence of the susceptibility. This seems to be a general
property of the susceptibility of linear systems driven by additive white noise and can be investigated
by spectral decomposition of the fractional Fokker–Planck equation [73]. Similarly, exact responses
according to Equation (34) can be obtained by means of stochastic simulations of the perturbed SDE.

-6 -4 -2 0 2 4 6
x
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0
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0
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0
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Figure 3. The nonlinear transformation defining the conjugate variable (29) for σ0 = 1, a = 1 and
different values of γ0. Note that XGC(x) is nonmonotonic for γ0 > 0.
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Figure 4. (Left) Autocorrelation functions of different nonlinear transformations of process Xt,
which evolves according to Equation (25) with f (t) = 0. (Right) Average reactions of various
observables (hi(xt)) to external driving of the form f (t) = sin t/10 + t/30, as tested by a linear
response. The function R∗(t) represents the linear response (R∗(t) = A

∫ t
0 e−s f (s)ds) with a constant

A used to scale the data. All results were obtained by means of stochastic simulations with a = 1,
σ0 = 0, γ0 = 1, and the integration time step ∆t = 10−2, averaged over 107 independent realizations of
the process.

We performed tests of the generalized fluctuation–dissipation theorem by analyzing the response
of the system to the sum of a small periodic and a linearly increasing force ( f (t)). The integrals in
Equation (35) were evaluated numerically and compared with the exact results of Equation (34) (see
Figure 5). A comparison between the exact Equation (34) response and the one evaluated by means
of the generalized fluctuation–dissipation theorem Equation (35) clearly indicates that the theory
holds for small forcing ( f (t)). This observation seems, at first sight, rather counterintuitive: Unlike
standard Gaussian uncorrelated fluctuations, Lévy noises introduce bursty-like large jumps to the
overall displacement (dXt) causing divergence of the mean-squared displacement [45,52]. However,
suitably chosen conjugate variable provided by the generalized fluctuation dissipation theorem (FDT)
allow the response of the system to be analyzed using the concept of susceptibility (χ(t)). It should be
noted that although the exact response can be derived using Equation (34) directly, the formulas are
cumbersome and can be solved numerically in the simplest cases only. Therefore, the generalized FDT
is a practical tool [55].

This is, however, not without a price. The conjugate variable used in the framework of FDT
represents the change in the probability distribution of the system under the action of external
disturbances. Close to equilibrium, such change is related to the energy absorbed by the system
from external forcing. For non-equilibrium systems driven by Lévy fluctuations, this interpretation
may be invalid. First, the conjugate variable is not just a displacement related to the external forcing
(cf. Figure 3). Next, its proper identification requires knowledge of the stationary state which might
be a demanding task for nonlinear systems. Last, but not least, divergence of the moments of dynamic
variable x plague the system with infinite energy [72,74,75] (e.g., the potential energy of the system in
the harmonic potential studied above).

We have checked whether the linear response function (35) can be used to predict responses of
different nonlinear transformations (observables) of the dynamic variable, see Figure 4. To our surprise,
some of the observables responded closer to the prediction of the linear response function than the
conjugate variable. This suggests that the conjugate variable is not necessarily the best observable to
monitor linear response and more detailed research is required to identify the conditions under which
the linear response works.
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Figure 5. Response of the system to external driving f (t) = sin(t)/10 + t/100 evaluated by Monte
Carlo solution to the Langevin equation (red line) and compared with the result of the linear response
theory (black line). The graphs represent the results obtained for constant scale parameters (σ2

0 = 1 and
γ0 = 1). The deterministic relaxation time a−1 was set to 1.

4. Summary and Conclusions

We analyzed the peculiarities of jump-like Lévy noises with heavy tail statistics and demonstrated
their distinctively different features from their Gaussian counterparts. For probability density functions
generated by Langevin equation with non-Gaussian noise (Poisson shot noise or Lévy noises), violations
of conventional steady states and transient fluctuation relations have been demonstrated [56,74–76], and
the athermal character of non-Gaussian random forces has been investigated [77]. Here, we showed
that despite the strong nonequilibrium character of Lévy flights, the generalized version of Onsager’s
theory and fluctuation–dissipation theorem can be adapted to capture the dynamic responses of the
system subjected to this type of noise. The linear response to external perturbation can be correctly
predicted if the system is properly analyzed, i.e., one should transform the observables into the
corresponding conjugate variables.

We predict that studying the fluctuations and linear responses of nonequilibrium systems
with heavy-tailed noise will be useful for understanding active transport phenomena in biology.
Lévy flights-like patterns have been observed in movement data of diverse organisms, including
albatrosses [78], humans [79], honeybees [80], swarms of bacteria [81], and many others [82]. This is
being commonly explained by the fact that this kind of behavior can constitute an advantageous
random foraging strategy [20,21,24,83]. Although many models have been proposed [22,82,84], most
of them apply to very specific cases and are yet to be tested experimentally. Therefore, the generative
mechanisms behind Lévy patterns are still obscure. The linear response theory with nonlinear conjugate
variables may be a fruitful way of looking at these systems, helping to identify the source of Lévy
noise by applying perturbative interventions and inferring the underlying mechanisms.

The framework described in this paper is limited to white noise. Generalizations of the
linear response theory to non-Markovian processes, such as subdiffusive continuous time random
walks [47,48] and superdiffusive Lévy walks [33] are needed. Another interesting avenue for future
research are systems with stochastic resetting [20,21,85,86], in which the particle is transported back to
the initial position at random times. The stochastic thermodynamics of resetting has recently been
analyzed [87]. However, it seems likely that the linear response cannot be directly applied in systems
subject to stochastic resetting. For example, the nonequilibrium steady state of one-dimensional
diffusion with stochastic resetting is given by the Laplace distribution, which leads to a noninformative
conjugate variable that is proportional to the sign of the position.
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