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Abstract
Kiwi is becoming one of the most important fruit in subtropical 
regions of South Africa with altitudes that confer sufficient chilling 
requirements. During a survey on biodiversity of plant-parasitic 
nematodes of kiwi in Magoebaskloof in Limpopo Province, several 
plant-parasitic nematodes were discovered, with Meloidogyne 
species occurring at the highest frequency. Nematodes were 
sampled from roots and the rhizosphere of one stunted Kiwi tree, 
extracted using the tray method and then fixed. The morphological 
characters fit well with those of M. hapla. The molecular approach 
using ITS and 28S rDNA, along with the related phylogenetic analysis, 
placed the examined population in a group with other populations of 
M. hapla. Kiwi is being reported as a new host for M. hapla in South 
Africa.
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Worldwide, the kiwi (Actinidia spp.) fruit trees are 
increasingly being cultivated in temperate regions. 
The genus Actinidia comprises more than 70 species 
(Peng et al., 2019), with A. deliciosa being the 
most popular across the world. At Magoebaskloof, 
Limpopo Province, South Africa, kiwifruits are 
produced in subtropical regions much closer to the 
tropical regions in the Southern hemisphere. The 
location has a high altitude that confers temperate 
climatic conditions, which are suitable for the 
production of kiwifruits. Subsequently, the kiwifruit 
is becoming increasingly important outside of 
temperate regions in South Africa.

During November 2019, root samples were 
collected from roots of kiwifruit trees in the 
Magoebaskloof area (S: 23°52′43′′; E: 29°56′13′′) 
(Fig. 1). Roots were washed, cut into pieces and 
mature female specimens were removed using 
a scalpel, using a Zeiss stereomicroscope. The 
specimens were fixed with a hot 4% formaldehyde 
solution and transferred to anhydrous glycerin using 
De Grisse’s (1969) method. The characteristics 

perineal patterns of the second-stage juvenile (J2) 
were used to identify the test Meloidogyne species 
(Perry et al., 2009).

The molecular characterization followed the 
methods described in Álvarez-Ortega et al. (2019). 
The ribosomal ITS and LSU sequences were analyzed 
and aligned using the program BioEdit (Hall, 1999), 
aligned using CLUSTAL W (Thompson et al., 1994). 
The length of each alignment was 946 and 1186 bp 
for ITS rDNA and 28S rDNA, respectively. Bayesian 
inference was used to reconstruct the phylogeny, 
with Bayesian trees generated using the Bayesian 
inference method as implemented in the program 
MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003). The 
GTR + I + G model was selected using jModeltest 2.1.10 
(Guindon and Gascuel, 2003; Darriba et al., 2012). 
Analysis using the GTR + I + G model was initiated with 
a random starting tree and ran with the Markov chain 
Monte Carlo (MCMC) for 106 generations for ITS and 
28S rDNA. The trees were visualized with the TreeView 
program. The original partial ITS rDNA and 28S (D2-
D3 expansion) sequence of M. hapla were deposited 
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in GenBank under the accession numbers MT256109 
and MT258534, respectively. The morphological and 
molecular analyses confirmed that the species was  
M. hapla.

Morphometric mean, standard deviation and range 
values of M. hapla J2 were (n = 10): L = 337 ± 15.5 
(322-353) μ m; a = 30.8 ± 2.4 (28-32); b = 3.7 (n = 1); 
c = 8.5 ± 1.0 (7.4-9.5); stylet length = 12.6 ± 0.6 (11.9-
13.0) μ m; center of the median bulb to anterior 
end = 48.8 ± 2.6 (46-51) μ m; excretory pore to anterior 
end = 67 ± 1.0 (66-68) μ m; length body to the middle 
of genital primordium = 208.3 ± 8.6 (199-216) µm, 
hyaline part of tail length = 11.2 ± 1.3 (10.0-12.6) μ m 
and tail length = 39.6 ± 3.1 (37-43) μ m. The J2 had the 
smooth and spherical head, with a tail tapering to a 
blunt or rounded terminus. This species already has 
been studied from tropical areas of Africa (Whitehead, 
1969), India (Waliullah, 2005), Chile (Carneiro et al., 

2007), Brazil (Somavilla et al., 2011), Italy (D’Errico 
and Giacometti, 2012), and Turkey (Akyazi et al., 
2017). Configuration of perineal patterns of females, 
their morphologies and morphometrics of M. hapla 
J2 were similar to those reported previously for 
isolates of this nematode species from tropical areas 
of Africa (Whitehead, 1969). However, the stylets of 
J2 from South Africa were slightly longer than those 
of the studied by Whitehead (1969). In comparison 
with Turkish population of M. hapla, they differ in 
body length (322-353 vs 340-440 µm), excretory 
pore to anterior end (66-68 vs 60.7-82.4 µm), hyaline 
part of the tail (10-12.6 vs 12-18.5 µm), and tail length 
(37-43 vs 50.2-54.8 µm). Although, our population 
of M. hapla showed no significant differences with 
those second-stage juveniles of M. hapla studied by 
Handoo et al. (2005).

The sequence lengths flanked by the forward 
primer TW81 [5′-GTTTCCGTAGGT GAACCTGC-3′]  
and AB28 [5′-ATATGCTTAAGTTCA GCGGGT-3′]  
(Joyce et al., 1994); D2A (5″-ACAAGTACCGTGA 
GGGAAAGTTG-3″) and the reverse primer D3B 
(5″-TCGGAAGGAACCAGCTACTA-3″) (De Ley et al., 
1999) of the ITS rDNA and 28S region of M. hapla 
isolate 505 and 702 base pairs long, respectively. 
The nBlast test of ITS rDNA showed that the test 
population had only one base pair, which was 
different to those of M. hapla from South Korea 
(MK188473), Japan (LC030357), and Taiwan 
(KJ572385), all with 99% similarity. Despite high 
similarity (99%) with M. hapla populations, our 
sequence of M. hapla showed the lowest similarity, 
85% with M. incognita (KJ739707) and M. javanica 
(KJ739709), and 79% with M. enterolobii (KM046989) 
using ITS rDNA marker. The nBlast of 28S rDNA 
showed four bp differences with 98% similarity with 
the Chinese (MN752204; KJ755183) and Ethiopian 
population (KP410845). Despite high similarity 
(98%) with M. hapla populations, our sequence 
of M. hapla showed the lowest similarity, 89% with 
M. incognita (JX100425), M. javanica (JX100426), 
and M. enterolobii (KJ146862) using 28rDNA marker. 
Therefore, molecular result confirmed our populations 
as M. hapla.

The phylogenetic analysis using ITS and 28S 
rDNA, placed the South African M. hapla population 
in a clade together with other M. hapla populations 
(Figs. 2, 3). The molecular characterization of several 
species of M. hapla suggested that they formed 
a monophyletic group. Findings in the current 
study were in agreement with the phylogenies of 
Meloidogyne species studied using 18S rDNA, ITS, 
28S rDNA and COII of mtDNA (De Ley et al., 2002; 
Tigano et al., 2005; Tao et al., 2017). Two permanent 

Figure 1: Meloidogyne hapla Chitwood, 
1949. (A) Roots of kiwi tree affected. 
(B) Mature female on the root.
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Figure 2: The Bayesian tree inferred from known and newly sequenced Meloidogyne hapla from 
South Africa based on the ITS rDNA region under GTR + I + G model (−lnL = 7,888.3530; K = 80; 
freqA = 0.2366; freqC = 0.2071; freqG = 0.2510; freqT = 0.3053; R(a) [AC] = 1.8343; R(b) 
[AG] = 2.6987; R(c) [AT] = 3.2232; R(d) [CG] = 1.2677; R(e) [CT] = 3.5360; R(f) [GT] = 1.0000; 
p-inv = 0.0000; gamma shape = 0.7770).
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Figure 3: The Bayesian tree inferred from known and newly sequenced Meloidogyne hapla from 
South Africa based on the 28S rDNA region under GTR + I + G model (−lnL = 7,780.8382; K = 122; 
freqA = 0.2627; freqC = 0.2243; freqG = 0.2384; freqT = 0.2747; R(a) [AC] = 0.8857; R(b) 
[AG] = 1.6067; R(c) [AT] = 1.0059; R(d) [CG] = 0.7613; R(e) [CT] = 2.1749; R(f) [GT] = 1.0000; 
p-inv = 0.0000; gamma shape = 1.0490).

microscope slides containing the perennial patterns 
and female and J2 of M. hapla were deposited in the 
Nematology collection of the University of Limpopo, 

South Africa. According to literature, this is the first 
record of M. hapla from kiwifruits in South Africa. 
Besides, ITS and 28S rDNA information of this 
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species are being reported for the first time. M. hapla 
was associated with kiwifruits in Limpopo Province 
and therefore, host-status studies are necessary to 
find out the severity of this root-knot nematode.
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