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A likely requirement for a protective vaccine against human immunodeficiency virus type 1 (HIV-1)/AIDS is, in addition to elic-
iting antibody responses, induction of effective T cells. To tackle HIV-1 diversity by T-cell vaccines, we designed an immunogen,
HIVconsv, derived from the most functionally conserved regions of the HIV-1 proteome and demonstrated its high immunoge-
nicity in humans and rhesus macaques when delivered by regimens combining plasmid DNA, nonreplicating simian (chimpan-
zee) adenovirus ChAdV-63, and nonreplicating modified vaccinia virus Ankara (MVA) as vectors. Here, we aimed to increase the
decision power for iterative improvements of this vaccine strategy in the BALB/c mouse model. First, we found that prolonging
the period after the ChAdV63.HIVconsv prime up to 6 weeks increased the frequencies of HIV-1-specific, gamma interferon
(IFN-�)-producing T cells induced by the MVA.HIVconsv boost. Induction of strong responses allowed us to map comprehen-
sively the H-2d-restricted T-cell responses to these regions and identified 8 HIVconsv peptides, of which three did not contain a
previously described epitope and were therefore considered novel. Induced effector T cells were oligofunctional and lysed sensi-
tized targets in vitro. Our study therefore provides additional tools for studying and optimizing vaccine regimens in this com-
monly used small animal model, which will in turn guide vaccine improvements in more expensive nonhuman primate and hu-
man clinical trials.

The quest for a safe and effective vaccine against human immu-
nodeficiency virus type 1 (HIV-1)/AIDS continues (1). Both

prophylactic and particularly therapeutic vaccines will likely re-
quire induction of effective cytotoxic CD8� T cells in addition to
protective antibodies. There is strong evidence showing that HIV-
1-specific CD8� T cells contribute to the control of HIV-1 repli-
cation during acute and chronic stages of infection by killing vi-
rus-infected cells and by producing a number of soluble factors
with antiviral activities (2). However, the initial CD8� T-cell re-
sponse, though strong, is typically directed toward a few immu-
nodominant variable epitopes (3) often driving selection of virus
escape mutations (4–6) and substantially contributing to the evo-
lution of a large number of HIV-1 quasispecies detected in most
infected individuals (7).

To tackle HIV-1 diversity and escape, we designed a novel im-
munogen, HIVconsv, assembled from the 14 most conserved re-
gions of the HIV-1 proteome and encompassing consensus amino
acid sequences derived from the four major alternating HIV-1
clades A, B, C, and D (8, 9). This immunogen was presented to the
immune system using a variety of vaccine vectors such as plasmid
DNA with and without electroporation, human and simian ad-
enoviruses, poxvirus modified vaccinia virus Ankara (MVA), al-
phavirus Semliki Forest virus replicons, and modalities such as
adjuvanted synthetic long peptides (9–15). These HIVconsv vac-
cines were used as a standalone delivery and more often in heter-
ologous prime-boost regimens to enhance transgene product-
specific responses while avoiding boost of responses against the
delivery vectors. In human studies, conserved regions delivered by
a combination of plasmid DNA pSG2.HIVconsv, simian (chim-
panzee) adenovirus ChAdV63.HIVconsv, and MVA.HIVconsv
elicited high frequencies of oligofunctional T-cell responses with
broad specificities, which correlated with inhibition of 2 out of 8
tested HIV-1 isolates in an in vitro HIV-1 inhibition assay in the
majority of vaccine recipients (16). While these initial preclinical

and phase I clinical trial results are highly encouraging for the
conserved region strategy, there is room for improvement, for
example, in terms of the breadth of HIV-1 variant inhibition.
Thus, vaccine modalities, conserved immunogen designs, regi-
mens, routes of delivery, and adjuvantation will need to be mod-
ified and tested first in iterative preclinical studies to improve the
vaccine performance.

To date, we have used predominantly a single immunodomi-
nant CD8� T-cell epitope, H-2Dd- and Ld-restricted RGPGRAF
VTI, designated P18-I10 (17, 18) or historically by us as the H
epitope (19), which was added to the C terminus of candidate
HIV-1-derived immunogens HIVA and HIVconsv to inform vac-
cine development in the BALB/c mouse model (9, 20). The study
presented here describes powering of this model for further vac-
cine and regimen improvements by detailed mapping of vaccine-
induced T-cell specificities supported by functional characteriza-
tion of the HIVconsv vaccine-induced cellular responses, which
provides comprehensive and sensitive tools for further vaccine
advances.

MATERIALS AND METHODS
Mouse immunizations. Six-week-old female BALB/c mice were immu-
nized intramuscularly with doses of recombinant ChAdV63.HIVconsv or
recombinant MVA.HIVconsv as indicated for each experiment. Animal
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care and procedures conformed to the United Kingdom Home Office
Guidelines under the Animals (Scientific Procedures) Act 1986. The pro-
tocol was approved by the local Research Ethics Committee (Clinical
Medicine, University of Oxford). Experiments were carried out under
project license no. 30/2833 held by T.H. with a strict implementation of
the Replacement, Reduction, and Refinement (3Rs) principles.

Preparation of splenocytes. Spleens were collected, and cells were
isolated by pressing organs individually through a 70-�m nylon cell
strainer (BD Falcon) using a 5-ml syringe rubber plunger. Following the
removal of red blood cells with RBC Lysing Buffer Hybri-Max (Sigma),
splenocytes were washed and suspended in R10 (RPMI 1640 supple-
mented with 10% fetal calf serum [FCS], penicillin-streptomycin, and
�-mercaptoethanol).

Peptides and peptide pools. One hundred ninety-nine HIVconsv-
derived peptides (15/11) were divided into 6 pools of 32 to 35 individual
peptides and were used at a final concentration of 1.5 �g/ml in all assays as
described previously (16). Groups of truncated peptides were treated
identically. All peptides were synthesized by GenScript HK Limited (Hong
Kong), purified to �90% purity, and confirmed by high-performance
liquid chromatography (HPLC)–mass spectrometry.

IFN-� ELISPOT assay. The enzyme-linked immunospot (ELISPOT)
assay was performed using the mouse gamma interferon (IFN-�)
ELISPOT kit (Mabtech) according to the manufacturer’s instructions.
Spots were visualized using sequential applications of a biotin-conjugated
secondary anti-IFN-� monoclonal antibody (MAb) (R4-6A2, rat IgG1),
alkaline phosphatase, and a chromogenic substrate (Bio-Rad) and
counted using the AID ELISpot reader system (Autoimmun Diagnostika).
While all 15-mer peptides were tested on cells from individual mice, op-
timal epitope mapping employed pooled samples.

Intracellular cytokine staining (ICS). One million splenocytes or
pooled peripheral blood mononuclear cells (PBMCs) were stimulated
with peptides or peptide pools at 37°C and 5% CO2 for 90 min, before
addition of Golgi Stop (BD Bioscience). CD107a-fluorescein isothiocya-

nate (FITC) antibody was added at the start of stimulation. After a 5-h
incubation, the cells were washed with fluorescence-activated cell sorting
(FACS) buffer (phosphate-buffered saline [PBS], 1% FCS, 0.01% azide),
blocked with anti-CD16/32 antibodies (eBioscience) at 4°C for 20 min,
and then stained with anti-CD8 MAb (eBioscience). The cells were
washed, permeabilized, and stained for intracellular cytokines: anti-tu-
mor necrosis factor alpha (anti-TNF-�), anti-IFN-�, and anti-interleu-
kin-2 (anti-IL-2) MAbs (eBioscience). Following a wash and fixation, the
cells were acquired using an LSR II flow cytometer (BD Biosciences) and
analyzed with the FlowJo (Tree Star) and SPICE programs.

Ex vivo killing assay. Equal numbers of P815 target cells were differ-
entially labeled with either 800 nM or 32 nM carboxyfluorescein succin-
imidyl ester (CFSE) according to the manufacturer’s specifications. The
P815 cells labeled with 800 nM CFSE were pulsed with peptides for 2 h and
washed several times. Splenocytes from immunized mice were prepared as
described above, mixed with the differentially CFSE-labeled target cells at
an effector-to-target (ET) ratio of 10:1 or 5:1, and incubated overnight at
37°C. The cells were washed, stained with a LIVE/DEAD marker, and
analyzed using flow cytometry. Cytotoxicity was calculated as follows: %
specific lysis � 100 � (number of unpulsed control cells 	 number of
peptide-pulsed cells)/number of unpulsed control cells.

Statistical analysis. Statistical analyses were performed using Prism 6
for Mac X version 6. Multiple comparisons utilized one-way analysis of
variance (ANOVA), while group pairs were compared using the two-
tailed unpaired t test with Welch’s correction. A P value of 
0.05 was
considered significant.

RESULTS
A longer interval after ChAdV63.HIVconsv administration
benefits MVA.HIVconsv boost. BALB/c mice were immunized
with single decreasing doses of MVA.HIVconsv (Fig. 1A) or
ChAdV63.HIVconsv (Fig. 1B), and the splenocytes were tested in

FIG 1 Optimization of ChAdV63.HIVconsv-MVA.HIVconsv vaccine delivery. (A and B) Groups of BALB/c mice were immunized with indicated doses of either
MVA.HIVconsv (A) or ChAdV63.HIVconsv (B), and responses to peptide H were assessed in an IFN-� ELISPOT assay after 1 or 3 weeks, respectively. The dosage
groups were significantly different with P � 0.011, n � 5 (A), and P 
 0.0001, n � 4 (B). (C) Mice received a single injection of 108 vp of ChAdV63.HIVconsv,
and the induction of IFN-� (black bars)-, CD107a (white bars)-, and TNF-� (gray bars)-positive cells at various time points after vaccine administration was
determined using pooled PBMCs in an ICS assay after stimulation with peptide H. (D) The same mice were boosted with 106 PFU of MVA.HIVconsv 1 week after
the bleed, and control naive mice received MVA.HIVconsv alone without prior priming (M). Peptide H (black bars)- and G1 (AMQMLKDTI; gray bars)-specific
splenocytes were enumerated in an IFN-� ELISPOT assay 1 week after administration of MVA.HIVconsv. Groups are significantly different with P 
 0.0001, n �
4. Data for peptide H in panels A, B, and D were analyzed using one-way ANOVA, and column pairs were compared using a two-tailed unpaired t test with
Welch’s correction.
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immunogenicity assays after 1 or 3 weeks, respectively. Immuno-
genicity was measured by the frequency of HIVconsv-induced T
cells recognizing the immunodominant H-2Kd/H-2Ld-restricted
HIV-1 epitope H originating from the hypervariable loop 3 of Env
(residues 311 to 320) (18, 19) in an IFN-� ELISPOT assay. We
found that the frequency of peptide H-specific T cells increased
with increasing dose of MVA.HIVconsv, and at the highest dose of
108 PFU, an average of 1,016 IFN-� spot-forming units (SFU)/106

splenocytes were detected (Fig. 1A). Likewise, following ChAdV63.
HIVconsv immunization, the frequency of IFN-�-producing cells
increased steadily with increasing vaccine dose and reached an
average of 378 SFU/106 splenocytes at a dose of 109 virus particles
(vp) (Fig. 1B). For subsequent experiments, ChAdV63.HIVconsv
and MVA.HIVconsv vaccines were used at 108 vp and 106 PFU,
respectively; we did not choose the maximum doses to avoid sat-
urating the system, which might obscure detection of possible
enhancements.

The overall magnitude of responses at 1 week after ChAdV63.
HIVconsv immunization was much lower than that after MVA.
HIVconsv immunization. We therefore sought to define the opti-
mal time for achieving a peak multifunctional response following
ChAdV63.HIVconsv administration. Groups of mice were immu-
nized with a single dose of 108 vp of ChAdV63.HIVconsv, and
peptide H-specific T-cell responses in pooled PBMCs were deter-
mined using an intracellular cytokine staining (ICS) assay for
IFN-�, CD107a, and TNF-�, at 1 to 5 weeks postimmunization.
Indeed, vaccine-specific T-cell frequencies peaked at 20% of
IFN-�� CD8� cells of total CD8� cells at week 5 after immuniza-
tion (Fig. 1C), suggesting prolonged antigenic stimulation, possi-
bly due to persistence of low levels of transcriptionally active
ChAdV63.HIVconsv genomes, as previously described (21). One
week after the bleed, the mice were boosted with 106 PFU MVA.
HIVconsv to assess the impact of the interval between the
ChAdV63.HIVconsv prime and the MVA.HIVconsv boost on the
magnitude of T-cell responses. A strong synergistic effect between
the two vaccines, which peaked at 1,217 SFU/106 splenocytes at a
6-week gap, was observed (Fig. 1D). These experiments indicated
that a 5- to 6-week interval between the ChAdV63.HIVconsv
prime and MVA.HIVconsv boost should be used for eliciting high
frequencies of T-cell responses, which will in turn allow detailed
mapping of subdominant epitopes. Subsequent experiments were
thus performed using a 6-week interval.

Specificity mapping of HIVconsv-elicited T cells. We next as-
sessed the magnitude, breadth, and functional spectrum of T-cell
responses following the ChAdV63.HIVconsv-prime and MVA.
HIVconsv-boost regimen (Fig. 2A), using 199 15-mer peptides
overlapping by 11 amino acids (15/11) spanning the entire
HIVconsv immunogen. These peptides were combined into pools
P1 to P6 containing 32 to 35 individual 15/11 peptides and tested
in an IFN-� ELISPOT assay. High-magnitude responses to pep-
tide pools P2, P4, and P6 were detected (Fig. 2B), thus further
confirming the synergistic effect of ChAdV63.HIVconsv and
MVA.HIVconsv vaccines. Mapping of the single peptides in each
pool confirmed a high-frequency response to epitope H contained
in peptides 197/198, which reached for the latter an average of
2,354 SFU/106 splenocytes, and revealed two other dominant re-
sponses averaging 1,233 and 1,635 SFU/106 cells for peptides 42
(Gag amino acids 126 to 140) and 112 (Pol amino acids 174 to
186/560-561, i.e., containing a two-region junction), respectively.
Also, peptides 9, 15, 55, 151, and 164 induced weaker, but definite,

positive vaccine-elicited responses (Fig. 2C), which may not have
been detected using a less potent regimen (10, 22). These re-
sponses were confirmed in an independent experiment yielding
average frequencies of 163, 210, 199, 90, and 180 SFU/106 spleno-
cytes, respectively (Fig. 2D). Peptide 9 (VGGHQAAMQMLK
DTI) contains a known epitope; while the AMQMLKETI is the
index epitope (23, 24), the AMQMLKDTI variant present in the
vaccine is much weaker (10, 24), which likely explains its low
immunogenicity in these experiments. Peptides 42 (KAIGTVLV
GPTPVNI), 151 (VHVASGYIEAEVIPA), and 164 (VQMAVFIH
NFKRKGGI) do not contain any known epitope and are therefore
considered novel. Optimal epitope mapping for peptides 42 and
112 using sequentially truncated peptides identified the respective
9-mer binding epitopes as LVGPTPVNI and YYDPSKDLI (Fig.
2E). Thus, the ChAdV63.HIVconsv-MVA.HIVconsv (CM) regi-
men elicited broadly specific T-cell responses.

ChAdV63.HIVconsv-MVA.HIVconsv regimen induces oli-
gofunctional T cells. The functional diversity of HIVconsv-spe-
cific T cells elicited by the ChAdV63.HIVconsv-MVA.HIVconsv
regimen was assessed using the ICS assay. Examples of dot plots
for the 3 immunodominant epitopes are shown in Fig. 3A. As
expected, the total frequencies of CD8� T cells expressing
CD107a, IFN-�, or TNF-� functions were dominated by peptide
pool P6 (Fig. 3B), which contains the immunodominant peptide
H. This peptide pool showed a remarkably high frequency of spe-
cific degranulating CD107a� CD8� T cells, which exceeded 20%
of the total CD8� T cells. Strong responses to peptide pools P2 and
P4 were also observed (Fig. 3B). Characterization of CD8� T-cell
polyfunctionality for peptide pools P2, P4, and P6 revealed that a
large proportion of the responding cells expressed all three func-
tions comprising CD107a, TNF-�, and IFN-� (Fig. 3C). We fur-
ther assessed the cytotoxic potential of HIVconsv-induced T cells
in an ex vivo killing assay using peptide-pulsed cells as targets and
demonstrated that freshly harvested, unstimulated splenocytes
could efficiently kill peptide-pulsed P815 target cells, achieving
medians of 44%, 47%, and 79% lysis of target cells sensitized with
peptides 42, 112, and H, respectively, at an effector-to-target cell
ratio of 10:1 (Fig. 4). These lysis data concur with the high fre-
quency of degranulating CD107a� CD8� T cells observed in Fig.
3B and C and further define the functionality of HIVconsv-spe-
cific effector T cells.

DISCUSSION

Nonreplicating vaccine vectors for delivery of pathogen-derived
subunit immunogens are in the forefront of vaccine development
for many infections. These vectors are most efficiently used in
heterologous prime-boost regimens to avoid buildup of antivec-
tor antibodies, which dampen induction of immune responses
against the transgene product (8). Although some general rules for
combining heterologous vectors into a prime-boost regimen are
emerging, optimization of vaccination regimens is mostly empir-
ical. Incremental vaccination improvements are best assessed first
in small-animal models such as the BALB/c mice.

This study indicated an ongoing expansion of ChAdV63.HIVconsv-
elicited T-cell frequencies for at least 6 weeks postadministration.
This was also reflected in the requirement for a long interval of 5 to
6 weeks after ChAdV63.HIVconsv priming to achieve high fre-
quencies of HIVconsv-specific T cells by an MVA.HIVconsv boost
and confirmed the impressive immunogenicity of a simple heter-
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FIG 2 Breadth, magnitude, and fine specificity of T-cell responses induced by the HIVconsv vaccines. (A) Immunization schedule of BALB/c mice: C and M
represent 108 vp of ChAdV63.HIVconsv and 106 PFU of MVA.HIVconsv, respectively. (B and C) Splenocytes were tested for IFN-� production in an ELISPOT
assay upon restimulation with peptide pools P1 to P6 (B) or individual 15/11 HIVconsv peptides derived from the HIVconsv immunogen (C). Data in panel B
are represented as means � standard errors of the means, n � 4 (mice); panel C shows means � standard errors of the means, n � 3 (triplicate of pooled samples),
with one-way ANOVA, P 
 0.0001. (D) An independent experiment using the same CM regimen for immunization confirmed responses induced to the 8
peptides identified in panel C with the one-way ANOVA, P 
 0.0001. (E) Mapping of minimal epitopes for peptide 42, corresponding to Gag amino acids 126
to 140, and peptide 112, corresponding to Pol amino acids 174 to 186/560-561 (containing a two-region junction), of the HXB2 sequence using progressively
truncated peptides in an IFN-� ELISPOT assay. Pooled splenocyte samples were employed as effectors.
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ologous ChAdV63-prime and MVA-boost regimen observed in
humans (16, 25, 26).

A comprehensive screening of peptides covering the entire
HIVconsv immunogen identified several novel H-2d-restricted
immunogenic regions recognized by the BALB/c mice. While the
specificities of the stronger epitopes were described before (18,
27–29), responses to peptides 42, 151, and 164 would likely be
missed using a vaccine delivery weaker than the CM regimen. This
information increases the analysis “granularity” of T cells elicited

by the conserved region as well as other HIV-1 vaccine candidates.
More detailed and comprehensive study of cell-mediated re-
sponses aids further iterative improvements of the magnitude,
breadth, functionality, and longevity of this important arm of im-
mune defenses against microorganisms and may help shed light
on more fundamental questions such as immunodominance and
antigen processing.

Given the differences between the H-2d and HLA major histo-
compatibility complex molecules, only some peptides immuno-

FIG 3 Functional characterization of T cells stimulated by the HIVconsv vaccines. BALB/c mice were vaccinated by the ChAdV63.HIVconsv-MVA.HIVconsv
regimen. One week after MVA.HIVconsv, oligofunctional profiles of HIVconsv-elicited T cells were assessed by ICS assay. (A) Representative FACS plots for
TNF-� or CD107a versus IFN-� in response to peptides H, 42, and 112. (B) Frequencies of CD8� T cells expressing TNF-�, CD107a, or IFN-� upon stimulation
using either peptide pools P1 to P6 (left) or individual peptides 42, 112, and H (right). Data are represented as means � standard errors of the means (n � 3). (C)
Oligofunctional profiles of CD8� T cells specific for peptide pools P2, P4, and P6. Data are represented as means (n � 3). The intragroup variations were low as
shown in panel B and were not plotted for this analysis.
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genic in the BALB/c mouse are also presented by the human
HLAs. Thus, peptide H is unusual in that it has four anchor resi-
dues for H-2Dd (30, 31) and displays “promiscuous” binding to
four different H-2Dd, H-2Dp, H-2u, and H-2q murine determi-
nants (32) as well as human HLA-A2 (33), although in our hands,
in human volunteers (16, 34–43) or HLA-A2-transgenic HHD
mice (unpublished data), such responses were never detected for

either the HIVA (20) or the HIVconsv (9) immunogens. No re-
sponses were detected in 23 human recipients of the HIVconsv
vaccine to peptide 42 or 112, while T cells were induced to peptides
151 and 164 (16). Although not directly comparable or translat-
able between mouse and humans, these results increase the con-
fidence about the usefulness of optimizing new vaccine strategies
first in a small and well-defined model.

FIG 4 Cytotoxic potential of peptide 42-, 112-, and H-specific T cells induced by the HIVconsv vaccines. BALB/c mice were immunized with
ChAdV63.HIVconsv followed by MVA.HIVconsv as shown in Fig. 2A. One week after MVA.HIVconsv, the splenocytes were tested for their potential to kill
peptide-pulsed P815 cell targets. (A) Representative FACS plots showing the gating strategy. SSC, side scatter; FSC, forward scatter. (B) Percent specific lysis of
peptide-pulsed P815 target cells at an effector-to-target ratio of 10:1 (left panel) or 5:1 (right panel). The horizontal lines represent the medians.
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