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Reptiles use pterin and carotenoid pigments to produce yellow,
orange, and red colors. These conspicuous colors serve a diversity of
signaling functions, but their molecular basis remains unresolved.
Here, we show that the genomes of sympatric color morphs of the
European common wall lizard (Podarcis muralis), which differ in
orange and yellow pigmentation and in their ecology and behavior,
are virtually undifferentiated. Genetic differences are restricted to
two small regulatory regions near genes associated with pterin
[sepiapterin reductase (SPR)] and carotenoid [beta-carotene oxygenase
2 (BCO2)] metabolism, demonstrating that a core gene in the house-
keeping pathway of pterin biosynthesis has been coopted for bright
coloration in reptiles and indicating that these loci exert pleiotropic
effects on other aspects of physiology. Pigmentation differences
are explained by extremely divergent alleles, and haplotype anal-
ysis revealed abundant transspecific allele sharing with other
lacertids exhibiting color polymorphisms. The evolution of these
conspicuous color ornaments is the result of ancient genetic
variation and cross-species hybridization.

Podarcis muralis | carotenoid pigmentation | pterin pigmentation |
balanced polymorphism | introgression

Color morphs can be found in thousands of species in nature.
In many animals, color morphs persist over extended periods

of time; co-occur across large geographic regions; and differ in a
range of key morphological, physiological, or behavioral traits
(1–5). These features offer an exceptional framework with which
to investigate central mechanisms of phenotypic diversity and
innovation, with potential insights into a variety of processes,
including adaptation, convergent evolution, sexual selection, and
the early stages of sympatric speciation (1, 6). It is thus of special
interest to understand the evolutionary and mutational mecha-
nisms promoting the emergence and long-term persistence of
sympatric color polymorphisms in nature.
Reptiles are among the most colorful animals. They achieve this

striking color variation in different ways, but their vibrant colors
spanning the gradient of hues between yellow and red are gen-
erated primarily by carotenoid and/or pterin pigments (7). The
colors produced by these pigments serve many biological functions
and are thought to be of key importance in intra- and interspecific
communication (8). Striking colors often differ between closely
related species and have been gained and lost across the reptilian

phylogeny, demonstrating that coloration driven by these types of
pigments can change over short time scales and presumably
evolved multiple times independently. However, despite intense
study of the biochemical basis and ecology of carotenoid- and
pterin-based pigmentation in reptiles (3, 7, 9–11), we have a lim-
ited understanding regarding the genetic changes and molecular
pathways that govern differences among individuals and species.

Significance

Reptiles show an amazing color diversity based on variation in
melanins, carotenoids, and pterins. This study reveals genes
controlling differences between three color morphs (white, or-
ange, and yellow) in the common wall lizard. Orange pigmen-
tation, due to high levels of orange/red pterins in skin, is caused
by genetic changes in the sepiapterin reductase gene. Yellow
skin, showing high levels of yellow carotenoids, is controlled
by the beta-carotene oxygenase 2 locus. Thus, the color poly-
morphism in the common wall lizard is associated with changes
in two small regions of the genome containing genes with
crucial roles in pterin and carotenoid metabolism. These genes
are likely to have pleiotropic effects on behavior and other
traits associated with the different color morphs.
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To investigate the genetic and evolutionary bases of the vivid
colors displayed by reptiles, and to test hypothesis about how and
why color polymorphisms and correlated trait variation persist
within populations, we studied the European common wall lizard

(Podarcis muralis; Fig. 1A): a polymorphic lizard in which the
ventral scales of males and females exhibit one of three distinct
colors (orange, yellow, and white) or a mosaic pattern combining
two colors (orange-yellow and orange-white) (12, 13). These five
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Fig. 1. Color polymorphism in the European common wall lizard, P. muralis. (A, Left) Common wall lizard. (A, Right) Illustrations of the five discrete ventral
morphs. These conspicuous colors likely function as visual ornaments implicated in sexual signaling. The yellow and orange colors are restricted to the ventral
surface, and males and females exhibit marked differences in the extent of pigmentation in some populations. (B) Geographic distribution of the species in
Europe (light green). (C) Ultrastructure of the ventral skin of the three pure morphs. (Top) Close-up view of the ventral scales of each morph under a light
microscope. (Middle) TEM of the three chromatophore layers [xantophores (yellow), iridophores (blue), and melanophores (pink)]. (Bottom) Electromicro-
graphs detailing the structure of xanthophores. Examples of pterinosomes (pte), carotenoid vesicles (cv), and immature vesicles (im) are highlighted. (D) Levels
of colored pterin and carotenoid compounds in the ventral skin of the different morphs obtained by HPLC-MS/MS. O, orange; W, white; Y, yellow.
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color morphs can be found throughout most of the broad geo-
graphic distribution of the species (Fig. 1B), and are shared by
intraspecific sublineages thought to have diverged up to 2.5 Mya
(14). Whereas the white morph is typically the most common
(>50%), the relative frequency of morphs is highly variable even
at small regional scales and the yellow or orange morph may oc-
casionally prevail (15–17) (SI Appendix, Fig. S1). The widespread
distribution and persistence of color variation is thought to be due
to balancing selection and the product of an interplay between
natural and sexual selection (15, 17). Previous work has shown
that morphs mate assortatively with respect to ventral color
(∼75% of pairs) and differ in additional traits, including mor-
phology, behavior, physiology, immunology, and reproduction (12,
18–22). The mode of inheritance of the color morphs is unknown.

Results
Carotenoid and Pterin Pigments Underlie Pigmentation Differences.
We began by determining the biochemical and cellular basis of
pigmentation differences among morphs. Using transmission
electron microscopy (TEM), we found that the ventral skin of all
morphs contained the same set of dermal pigment cells arranged
as three superimposed layers (xantophores, iridophores, and me-
lanophores; Fig. 1C). The iridophore layer was thinner in orange
individuals compared with yellow and white individuals, but the
most noticeable difference among morphs was observed in the
xantophore layer, which usually contains pterins and carotenoid
pigments in reptiles (7). Although two types of morphologically
distinct pigment-containing organelles (pterinosomes and carot-
enoid vesicles) coexisted within many xantophores irrespective of skin
color, their relative abundance varied drastically. Pterinosomes
were abundant in xantophores from orange skin, whereas ca-
rotenoid vesicles of a large size were abundant in yellow skin.
The xantophores of individuals exhibiting white skin were char-
acterized by low numbers of pterinosomes and carotenoid vesi-
cles, as well as by large numbers of immature vesicles of small
size and low electron density under TEM.
Next, we used high-performance liquid chromatography–mass

spectrometry (HPLC-MS/MS) to quantify individual carotenoid and
pterin derivatives (Fig. 1D and SI Appendix, Fig. S2A). In agreement
with microscopy, carotenoids and pterins were present in skin of all
colors, but the relative proportions of specific metabolites varied
according to color morph. Both lutein and zeathanxin, two yellow-
colored carotenoids, were significantly more abundant in yellow
skin relative to white skin (Mann–Whitney U test, P < 0.05 for both
tests; Fig. 1D). By quantifying nine colored and colorless pterin
metabolites, we found no evidence for substantial changes in the
overall pterin profiles between white and yellow individuals (SI
Appendix, Fig. S2 A and B). However, the skin of individuals
expressing orange pigmentation (pure and mosaic) contained sig-
nificantly higher levels of orange/red pterins (riboflavin and
drosopterin) compared with nonorange individuals (Mann–Whitney
U test, P < 0.05 for both tests; Fig. 1D). The observed variation in
colored pterins and carotenoids among morphs provides a bio-
chemical basis for the interindividual differences in orange and
yellow coloration, respectively. Together, the microscopy and bio-
chemical analyses support the hypothesis that chromatic variation is
due to alterations in the metabolism, transport, or deposition of
carotenoids and pterins, or to some combination of these processes.

A Highly Contiguous Genome Sequence for the Common Wall Lizard.
As a backbone for our genetic and evolutionary studies, we se-
quenced and assembled a reference genome for the common wall
lizard (PodMur1.0). The assembly was primarily based on Pacific
Biosciences (PacBio) long-read sequences (∼100-fold coverage)
and complemented with Illumina sequencing (30-fold coverage).
To aid in the assembly of the genome, we generated chromosome
conformation capture sequencing data using CHICAGO and HiC
libraries (23, 24). The combination of these methodologies resulted

in a high-quality, chromosome-scale, genome assembly of 1.51 Gb
with a contig N50 of 714.6 kb and a scaffold N50 of 92.4 Mb (SI
Appendix, Table S1). Our assembly produced 19 scaffolds of large
size (18 larger than 40 Mb and one larger than 10 Mb; SI Appendix,
Table S2), which matches well with the karyotype of the species
(2n = 38) (25). A search for conserved single-copy orthologs
revealed that the assembly included a large percentage of full-
length genes (93.2%; SI Appendix, Table S1), indicating that the
sequence is both highly contiguous and accurate.
Karyotypic analysis demonstrated that the common wall lizard

possesses a ZW/ZZ sex determination system and that the two sex
chromosomes are of similar size and shape (26). To identify the Z
chromosome in our assembly, we compared sequence coverage be-
tween DNA pools of males and females (SI Appendix, Fig. S3). We
found a single chromosome, which we named Z, for which sequence
coverage in females was roughly half that of males throughout most
of the chromosome, as expected from reads mapping on the Z, but
not on the W, chromosome. The results show that Z and W, al-
though similar in size, have likely evolved independently for a long
time and have diverged extensively in sequence.
Finally, the genome assembly was annotated using in silico

predictions and transcriptome data from five tissues and one em-
bryonic stage (SI Appendix, Table S3), which predicted 24,656
protein-coding genes (SI Appendix, Table S1). This high-quality
lizard genome provides an important resource for comparative
genomic analysis within squamate reptiles.

The Distinct Morphs Have Near-Identical Genome Sequences. To
obtain genome-wide polymorphism data, we sampled 154 indi-
viduals from two neighboring localities in the eastern Pyrenees
and performed whole-genome sequencing (Fig. 1B). We se-
quenced 10 DNA pools of individuals grouped by color morph and
locality (mean coverage = ∼16-fold; SI Appendix, Table S4). The
short-sequence reads were aligned to the reference genome for
variant identification and allele frequency estimation, yielding a
total of 12,066,526 variants (SNPs and indels). A neighbor-joining
tree based on these genome-wide data revealed that the overall
genetic structure was predominantly influenced by sampling site as
opposed to color phenotype (Fig. 2A). The low differentiation
between morphs is well demonstrated by an average fixation index
(FST) value close to 0 (0.02) and by a paucity of variants displaying
high allele frequency differences in pairwise comparisons (SI Ap-
pendix, Fig. S4). The different morphs also displayed similar levels
of nucleotide diversity (π) and nearly identical allele frequency
spectra as measured by Tajima’s D (Fig. 2B), as expected from
individuals drawn from a single population. These results dem-
onstrate that the genome-wide impacts of assortative mating are
minor and that rates of gene flow between morphs are sufficiently
high to prevent the buildup of strong genetic differentiation.

High-Resolution Mapping of Genomic Regions Underlying Differences
in Coloration. Encouraged by the overall low levels of genetic
differentiation among morphs, we next carried out population
genomic analysis to identify chromosome regions associated with
color variation. We calculated allele frequency differentiation
(ΔAF) averaged in sliding windows, and guided by our pheno-
typic characterization, we contrasted morphs by the presence/
absence of specific colors (orange and yellow) or by their pat-
terning (mosaic). For both orange and yellow coloration, we
found in each case a single genomic region showing significantly
high ΔAF compared with an empirical null distribution gener-
ated by permutation (Fig. 2C). These regions were small, located
on the autosomes, and embedded within an otherwise undiffer-
entiated genome (Fig. 3A). A Cochran–Mantel–Hanzel (CMH)
test, configured to identify consistent changes in allele frequency
between different samples, corroborated the ΔAF analysis and
revealed the same two regions as the top outliers for orange and
yellow coloration (SI Appendix, Fig. S5).
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The region significantly associated with orange coloration was
located near the SPR gene [chromosome 9 (Chr9); Fig. 3A], which
encodes sepiapterin reductase, a key enzyme in pterin metabolism
(SI Appendix, Fig. S6A). The presence/absence of yellow coloration
mapped to the genomic region around the BCO2 gene (Chr15; Fig.
3A). BCO2 encodes the beta-carotene oxygenase 2 that oxidizes
colorful carotenoids to colorless apocarotenoids during the bio-
synthesis of vitamin A (SI Appendix, Fig. S6B). In light of the
phenotypic differences between morphs, PTS is another gene of
interest that was located near the BCO2 region (Fig. 3A). PTS
encodes the 6-pyruvoyltetrahydropterin synthase, which is also a
key enzyme in pterin metabolism (SI Appendix, Fig. S6A). Although
evolutionary theory predicts that alleles encoding sexually selected
traits, such as color ornaments, should accumulate preferentially on
sex chromosomes (27, 28), particularly for ZZ/ZW systems, our
results demonstrate that the two genomic regions most strongly
associated with orange and yellow pigmentation are not sex-linked.
To confirm the association and to gain additional insight about

the genetic architecture of orange and yellow coloration, we

obtained individual genotypes for high ΔAF variants selected
from the resequencing data (Fig. 3C). This genotyping revealed
that in 56 of 57 cases, orange and mosaic individuals were ho-
mozygous for one allele (hereafter o) at the SPR locus, whereas
yellow and white individuals, with one exception, were either
heterozygous (n = 41) or homozygous (n = 16) for the alternative
allele (hereafter O): a highly significant association (recessive
model, P = 9.3 × 10−29). The association at the BCO2 locus was
also highly significant (recessive model, P = 1.2 × 10−15), with
most individuals displaying yellow coloration (yellow and orange-
yellow) being homozygous (27 of 28 individuals) for one allele
(hereafter y) and 34 of 36 individuals displaying white coloration
(white and orange-white) being heterozygous (n = 21) or ho-
mozygous (n = 13) for the alternative allele (hereafter Y). The
few discordant individuals in both loci can be explained by in-
complete linkage between the genotyped and causal variants,
incomplete penetrance due to environmental effects, or other
interacting genetic factors. We found the three different geno-
typic classes among individuals of the pure orange morph at the

A B

C

Fig. 2. Population structure and genetic basis of color polymorphism in the common wall lizard. (A) Neighbor-joining tree summarizing genetic distance
among individual pools using 250,000 randomly chosen SNPs. The tree was rooted with a DNA pool of individuals sampled from Italy and belonging to a
different intraspecific sublineage. (B) Nucleotide diversity (π) and Tajima’s D estimated for each morph. Both statistics were calculated in 10-kb non-
overlapping windows, and a genome-wide estimate was obtained by averaging all windows across the genome. (C) Genetic mapping based on differences in
allele frequencies (ΔAF) for the orange, yellow, and mosaic phenotypes. The Manhattan plots show the median value of 20-SNP windows (five-SNP overlap)
across the reference genome. The dashed lines represent a 1% significance cutoff based on 1,000 permutations conducted for each dataset.
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BCO2 locus, suggesting that yellow carotenoids, if present, are
likely masked by the stronger pterin-based orange coloration.
Whereas other loci not revealed in our genomic analysis might
play a minor role, these loci explain a large component of the
differences in pterin and carotenoid pigmentation among morphs.
Subsequently, we extended the genotyping to a larger cohort of

common wall lizards covering the broad geographic range of the
species and belonging to several of its intraspecific sublineages
(14). This analysis confirmed that SPR is the primary locus explaining
orange coloration across the species’ range (SI Appendix, Table
S5). In contrast, the variant near BCO2, which was strongly as-
sociated with yellow pigmentation in the Pyrenees, was either not
present in other sublineages or not evidently associated with yel-
low coloration (SI Appendix, Table S5). The absence of an asso-
ciation might be explained by some of the same reasons as above,
or by the possibility that yellow coloration might have evolved
convergently more than once, either through independent muta-
tion events near BCO2 or through a different gene.
By contrast, our genomic analysis (ΔAF and CMH test) did

not reveal any genetic candidate associated with mosaic morphs
(Fig. 2C and SI Appendix, Fig. S5). The mosaic morphs are also

not explained by any combination of alleles between SPR and
BCO2 (Fig. 3C). The lack of genetic signal could be explained by
a polygenic architecture consisting of a few loci with small to
moderate effects that our sequencing efforts might not be pow-
erful enough to detect. Alternatively, this phenotype might not
be directly under genetic control; rather, it might reflect a tem-
porary ontogenetic stage or phenotypic plasticity. In fact, a long-
term study of a natural population showed that many subadult
individuals displaying isolated orange scales, identical to the
orange-white morph, subsequently develop pure orange colora-
tion (12). Additional work is needed to resolve the genetic basis
(or lack thereof) of the mosaic morphs.

Synteny and Gene Content Are Preserved Between Haplotypes Associated
with Coloration. Structural changes could be responsible for the
observed genetic differentiation associated with each color morph.
To explore this possibility, we sequenced an additional individual
homozygous for the haplotypes not represented in the reference
sequence (o and Y) using Nanopore long reads (9.7-fold coverage).
We found that the region immediately upstream of SPR (∼7 kb)
contained two medium-sized indel polymorphisms compared with

A

B

C D

Fig. 3. Regulatory variation explains color polymorphism in the common wall lizard. (A) Differences in allele frequencies (ΔAF) for the orange and yellow
phenotypes around SPR and BCO2 (each dot represents an SNP). (B) Haplotype structure for the same two regions based on the alignment of our reference
genome sequence to consensus sequences of the alternative haplotypes obtained using Nanopore and Sanger sequencing. Black indicates homology, and
light gray indicates mismatches that can originate from point mutations or indel variants. (C) Individual genotypes for the SPR and BCO2 loci among the five
morphs based on high ΔAF variants selected from the whole-genome data. (D) qPCR measurements of SPR, BCO2, and PTS expression in ventral skin.
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the reference sequence (1.4 kb and 2 kb) (Fig. 3B). PCR amplifi-
cation of this region in a larger number of orange individuals (n =
15) revealed two orange alleles of different size (o1 and o2) that
shared the 2-kb indel (Fig. 3B). However, we failed to identify
homologous sequences to the two indels in the chicken or the anole
lizard; thus, they are likely derived insertions lacking any strongly
conserved sequence. In the region associated with yellow colora-
tion surrounding BCO2, the y and Y haplotypes were identical in
their general structure (Fig. 3B). Taken together, we found no
evidence for the existence of large-scale structural differences, copy
number variants, or translocations in both loci. Thus, gene content
is preserved between the haplotypes that control pigmentation
differences, demonstrating that the described multitrait divergence
between morphs is not explained by a supergene organization
implicating many genes.

Cis-Regulatory Sequence Variation Underlies the Color Polymorphism.
Next, we examined in greater detail the region of association
around SPR and BCO2. The signal of association for orange col-
oration was restricted to a noncoding region immediately upstream
of SPR (Fig. 3A). The association for yellow coloration in BCO2
was strong both upstream and overlapping part of the coding re-
gion (Fig. 3A); however, we found no mutations strongly associated
with yellow coloration that could alter the protein structure of
BCO2 (nonsynonymous, stop, splicing, or frameshift). We thus
hypothesized that the pigmentation differences are controlled by
regulatory sequence variation at these loci.
To examine the role of regulatory variation in pigmentation

differences, we studied gene expression in several tissues (ventral
skin, brain, muscle, and liver) harvested from orange, yellow, and
white lizards using quantitative PCR (qPCR) (Fig. 3D and SI
Appendix, Fig. S6C). SPR expression was significantly lower in
orange skin relative to other colors (Mann–Whitney U test, P =
0.002), whereas the same was found for BCO2 in yellow skin
relative to white skin (Mann–Whitney U test, P = 0.03). Low
BCO2 expression is consistent with reduced activity of this en-
zyme that presumably leads to accumulation of colorful carot-
enoids, similar to what has been shown for carotenoid-based
yellow coloration in birds (29). Despite the fact that the strongest
signal of association was located near BCO2 (Fig. 3A), the ex-
pression of PTS was also higher in white individuals compared
with yellow individuals, although not significantly so (Mann–
Whitney U test, P = 0.06). Given that we found no obvious dif-
ferences in pterin content between white and yellow individuals
(SI Appendix, Fig. S2 A and B), it is unclear whether PTS could
play a role in pigmentation differences. In the other tissues, we
found no significant differences between morphs for BCO2,
whereas SPR was slightly up-regulated in the muscle and brain of
orange individuals (opposite to the pattern that was observed in
the skin), and the differences were significant for the muscle and
marginally significant for the brain (SI Appendix, Fig. S6C).
We next examined the expression differences in BCO2 and

SPR by measuring allele-specific expression in the skin. If cis-
acting regulatory mutations are driving expression differences
between morphs, then one haplotype should preferentially be
expressed in the shared cellular environment of individuals het-
erozygous for the Y/y orO/o alleles. Among the individuals used in
the qPCR analysis, we found for each gene one heterozygous in-
dividual containing a polymorphism overlapping the coding region
that could be used to quantify allelic imbalance using cDNA se-
quencing. Corroborating the observed differences in the qPCR
experiments, we found a strong preferential expression of one
allele over the other for both SPR (81% vs. 19%; n = 8,210 reads;
χ2, P < 10−16) and BCO2 (72% vs. 28%; n = 25,026 reads; χ2, P <
10−16). Overall, our expression studies provide evidence that pig-
mentation differences in the skin evolved through one or more cis-
acting mutations affecting the activity of SPR and BCO2, and

possibly PTS. They further suggest that gene expression of SPR in
other tissues might also differ between morphs.

Genetic Variation Upstream of SPR and BCO2 Is Shared Among
Divergent Species. To gain insight into the evolutionary history
of the two regions that explain pterin- and carotenoid-based
pigmentation, we sequenced amplicons (∼550 bp) overlapping
the strong signals of association upstream of SPR and BCO2 in
individuals from the Pyrenees, and used the sequence data to
construct haplotype trees (Fig. 4A). In both BCO2 and SPR, the
haplotypes were typically associated with the presence or ab-
sence of yellow (y and Y) and orange (o and O) coloration
clustered into extremely divergent haplogroups (Fig. 4A). In
SPR, we also uncovered two divergent haplotypes associated with
nonorange coloration. The average number of pairwise differ-
ences (dXY) between the orange and nonorange haplogroups in
SPR (dXY = 5.2–6.9%) and between the yellow and nonyellow
haplogroups in BCO2 (dXY = 3.1%) was approximately eight- to
17-fold higher than the average number of pairwise differences
between sequences within the French population (π ≈ 0.4%; Fig.
2B). To put this into context, the average human–chimpanzee
nucleotide divergence in noncoding regions is ∼1.2% (30). The
magnitude of divergence between haplotypes associated with
pigmentation differences shows that the alleles controlling the
presence or absence of orange and yellow coloration are evolu-
tionary old and not the result of recent mutational events.
Tajima’s D values were also high for both loci (DSPR = 2.1 and
DBCO2 = 2.3), likely as a consequence of the highly differentiated
haplotypes and consistent with a molecular signature of balanc-
ing selection. However, since our sequencing data do not origi-
nate from a random sampling of morphs with respect to their
observed frequencies, this should be interpreted with caution.
Other European lacertids exhibit intraspecific color polymor-

phisms resembling those of the common wall lizard (12). To
study the evolutionary history of the regulatory regions associ-
ated with pigmentation in an extended phylogenetic context, we
sequenced the same amplicons for six additional species of the
genus Podarcis showing color polymorphism. In both SPR and
BCO2, we found a slight nonrandom clustering with respect to
color morph across species. However, assuming the same re-
cessive pattern of inheritance inferred for the common wall liz-
ards, we would not expect to see haplotypes derived from orange
and yellow individuals clustering together with haplotypes from
nonorange and nonyellow individuals. The discrepancy could be
explained by a combination of incomplete linkage between the
sequenced amplicons and the causative mutations, as well as
independent molecular bases for orange and yellow coloration in
some species. Notably, the genealogies at both loci revealed
abundant transspecies polymorphisms, in which haplotypes from
a particular species were more closely related to haplotypes from
a different species (Fig. 4B). For both loci, the average number
of pairwise differences between haplotypes within taxa for sev-
eral Podarcis species was also elevated compared with a set of
31 amplicons randomly distributed across the genome (average
size = 410 bp; Fig. 4C). This pattern was particularly strong at
SPR, where a subset of the comparisons exceeds all values for the
random loci, demonstrating that highly divergent haplotypes also
co-occur in these species.
The patterns of deep haplotype divergence and allele sharing

between species at both pigmentation loci could be explained by
ancient alleles that predate speciation events and/or by inter-
specific hybridization. These scenarios generate different predic-
tions regarding patterns of molecular variation. For example,
introgressed haplotypes are expected to show reduced sequence
divergence between species compared with the genome-wide av-
erage, whereas the maintenance of ancestral polymorphisms,
compatible with a balancing selection scenario or incomplete
lineage sorting, predicts no such reduction. We compared pairwise
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Fig. 4. Evolution of the regulatory regions associated with pterin- and carotenoid-based coloration in the genus Podarcis. (A) Median-joining genealogies of
the genomic regions associated with coloration upstream of SPR (Left) and BCO2 (Right) from common wall lizards from the Pyrenees. The dashes on branches
indicate the number of observed mutations. (B) NeighborNet trees of the genomic regions associated with coloration upstream of SPR (Left) and BCO2 (Right)
combining common wall lizards from the Pyrenees and six other species in the genus Podarcis. Haplotypes are colored orange, yellow, or white, indicating the
color morph of the individual. For representation purposes, only a subset of the sequences is presented. (C) Pairwise nucleotide differences between hap-
lotypes within species for SPR (orange), BCO2 (yellow), and 31 random loci (black). The average is indicated by a green circle. (D) Pairwise nucleotide dif-
ferences between haplotypes of the common wall lizard and other Podarcis species for SPR (orange), BCO2 (yellow), and 31 random loci (black). The contrasts
involving other species are presented in SI Appendix, Fig. S7.
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haplotype differences across species for SPR, BCO2, and the 31
random loci (Fig. 4D and SI Appendix, Fig. S7). In contrasts be-
tween the common wall lizard and other species, the distribution
of haplotype divergence for BCO2 was within the distribution
of values calculated for the random loci, consistent with a
scenario of ancestral genetic variation preserved between spe-
cies. In the case of SPR, however, we found identical haplotypes
between the common wall lizard and Podarcis bocagei, Podarcis
liolepis, Podarcis sicula, and Podarcis vaucheri, a pattern never
observed for the random loci (Fig. 4D). The same pattern was
observed in other interspecific contrasts (SI Appendix, Fig. S7).
Given that these species have diverged from the common wall
lizard for millions of years (>10 Mya) (31), these identical se-
quences strongly suggest that introgression via hybridization
occurred with these or related species. Collectively, these re-
sults suggest that patterns of molecular evolution at the pig-
mentation loci are explained by a combination of ancestral
genetic variation, likely maintained through balancing selec-
tion, and introgression.

Discussion
Reptiles exhibit striking variation in color within and between
species. Here, we combined whole-genome sequencing with gene
expression, biochemical, and microscopy analyses to dissect the
molecular basis of the coloration differences and correlated traits
among morphs of the common wall lizard. Our analysis revealed
genes responsible for production of carotenoid- and pterin-based
pigmentation in reptiles, providing the basis to unravel the evo-
lutionary processes that influenced the emergence of the broad
palette of colors and visual ornaments so prevalently found in the
reptilian world.
Co-option, the recruitment of genes and gene pathways to

serve a different function, is emerging as a major evolutionary
force underlying pigmentation novelty (32). Examples include a
cytochrome P450 enzyme required for color vision and impli-
cated in carotenoid-based red coloration in birds (33, 34), a
polyketide synthase essential for producing yellow psittacofulvins
in parrots (35), and early developmental genes governing wing
patterns in butterflies (36). Pterins are produced through ancient
multistep biosynthetic pathways, and orthologs of SPR exist
throughout the animal kingdom. The SPR enzyme is required to
catalyze one of the three key steps in the synthesis of tetrahy-
drobiopterin (SI Appendix, Fig. S6A), an essential cofactor for a
vast range of enzymatic reactions of key metabolic importance,
including degradation of the amino acid phenylalanine and bio-
synthesis of the neurotransmitters dopamine, serotonin, mela-
tonin, noradrenalin, and adrenalin (37). For example, defects in
pterin metabolism in humans are associated with many neuro-
logical, behavioral, and movement disorders (38). Given that
SPR has housekeeping functions and is expressed constitutively
across the skin and other tissues in vertebrates that do not use
pterin-based compounds in pigmentation (39), our results show
that a key enzyme in pterin metabolism, such as SPR and pos-
sibly PTS, has been co-opted for color variation through changes
in gene regulation.
This study further expands our understanding of the genetic

mechanisms linking color polymorphism to other phenotypic and
fitness-related traits. It is well established that chromosomal
rearrangements, such as inversions, can facilitate the evolution of
multitrait differences by suppressing recombination and preserve
tight physical linkage over extended genomic segments (40–43).
In contrast, genetic divergence between color morphs in the
common wall lizard was restricted to very small and localized
genomic intervals adjacent to pigmentation genes. This impor-
tant result raises an immediate question: How do the described
differences in morphology, physiology, and behavior between
morphs arise? One plausible explanation is pleiotropic effects of
the loci controlling skin pigmentation on other biological pro-

cesses. The alleles associated with pigmentation differences were
characterized by striking sequence divergence, and it is therefore
possible that each variant allele carries multiple mutations af-
fecting the expression of SPR, BCO2, and possibly PTS differ-
ently in the skin and other tissues, for instance, in brain regions
controlling behavioral differences between morphs. Carotenoid
and pterin compounds are known to be involved in a wide range
of vital metabolic processes (37, 44); thus, alterations in the
regulation of their biosynthetic pathways may form the basis of
the multitrait divergence often observed between color morphs
in many species of reptiles.
Finally, we show that transspecific allele sharing in both pig-

mentation loci was frequent among several species harboring color
polymorphisms identical to those of the common wall lizard. Our
results indicate that a combination of balancing selection and in-
trogressive hybridization played a role in the evolution of coloration
in the genus Podarcis and led to an unusually long-term mainte-
nance of genetic variation at these pigmentation loci. Other ex-
amples of the combination of these two processes in reptiles include
highly divergent haplotypes underlying alternate venom types in
rattlesnakes (45) and signals of positive selection and introgression
at the MHC locus in green lizards (46). Since polymorphic ventral
coloration is common in lacertid lizards from multiple genera other
than Podarcis, our results raise the intriguing possibility that hy-
bridization might be a frequent mechanism promoting cross-species
transfer of visual ornaments and associated traits, which are sub-
sequently kept by balancing selection within species. This fits the
emerging paradigm that hybridization and transfer of ancient alleles
contribute to adaptive evolution, as shown by a growing list of
studies on multiple traits and taxonomic groups, such as the venom
types in rattlesnakes (45), wing coloration in Heliconius butterflies
(47), seasonal coat color change in hares (48), and beak shape in
Darwin’s finches (49). As genomic data accumulate, the molecular
determinants of color variation in other polymorphic systems and
the role of hybridization and balancing selection in the evolution of
visual ornaments can be evaluated systematically.

Materials and Methods
Fully detailed and referenced methods are available in SI Appendix. Permits
for sampling and killing these lizards were provided by the Prefecture des
Pyrénées Orientales (arrêté no. 2016-2-09) and the Servei de Biodiversitat i
Protecció dels Animals (SF/474).

Phenotypic Characterization. We characterized the phenotype in detail using
both TEM and biochemical analyses of pigments, using ventral skin harvested
from individuals of all morphs of P. muralis (n = 22). TEM was performed
following standard procedures in skin portions collected from animals
exhibiting different color morphs. Carotenoid and pteridine content in the
skin of all morphs was determined using HPLC-MS/MS.

Reference Genome Sequencing, Assembly, and Annotation. To generate a
reference genome sequence for the common wall lizard, we sequenced a
yellowmale individual from the Pyrenees region using PacBio single-molecule
real-time sequencing at ∼100-fold coverage. To improve the accuracy of the
genome sequence, we sequenced the same individual at 30-fold coverage
using Illumina reads. Proximity ligation data (CHICAGO and HiC libraries)
from an additional individual from the same location were used for scaf-
folding the draft assembly. To identify the Z chromosome, we compared
sequence coverage at each scaffold between DNA pools of males and fe-
males. For the annotation of the genome, we obtained RNA-sequencing
(RNA-seq) data of five tissues (brain, duodenum, muscle, skin, and testis)
using Illumina technology. RNA-seq data from two embryos at the 31-somite
stage, incubated at 15 °C or 24 °C, were obtained from a previous publica-
tion (50) and combined with the newly generated data. The annotation was
performed using an ab initio-based annotation strategy combining gene
predictions with the available evidence data.

Population Genomics and Association Mapping. Genome-wide polymorphism
datawere obtainedusingwhole-genome resequencingofDNApools (Illumina).
We sampled male individuals of the five color morphs at two localities in the
eastern Pyrenees (France). Individuals were pooled by morph and locality in
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equimolar concentrations and sequenced (10 pools, plus one pool from a lo-
cation in northern Italy to serve as an outgroup). The number of individuals
included in each pool varied from nine to 21, and each pool was sequenced to
an effective coverage of 15- to 18-fold. We constructed a neighbor-joining tree
based on Nei’s standard genetic distances to infer patterns of population
structure among sampled localities and among color morphs, and compared
levels and patterns of genetic diversity between localities and morphs using
Tajima’s D and genetic diversity using nucleotide diversity (π). Genetic differ-
entiation was summarized using FST. To test for the association between each
color morph and specific genomic regions, we calculated the median value of
the allele frequency difference (ΔAF) at each SNP between each relevant
comparison based on the phenotypic data: (i) presence or absence of orange
pigmentation, (ii) presence or absence of yellow pigmentation, and (iii) mosaic
patterning or uniform coloration. We then used a sliding window approach
(20 SNPs and steps of five SNPs) to identify regions with consistent differen-
tiation across many SNPs. To estimate whether windows displayed higher ΔAF
than expected by chance, we conducted 1,000 permutation tests for each
contrast. We further conducted a CMH test, which assesses consistent allele
frequency changes across biological or technical replicates. To combine the
results for each CMH test, we summarized P values using Fisher’s combined
probability test, and we performed the same sliding window analysis as for the
ΔAF analysis. We confirmed the genotype/phenotype associations in individ-
uals from the Pyrenees through individual-based genotyping using Sanger
sequencing. To investigate structural variation around the candidate loci, we pre-
pared Oxford Nanopore libraries of an orange-white individual for sequencing in a
MinION device (9.7-fold coverage) and mapped the reads to our reference as-
sembly. We retrieved reads that mapped within and around SPR and BCO2, and
manually realigned the reads to the reference (a yellow individual) for
analysis. Additionally, for the pool-sequencing dataset, we further
performed functional annotation of the variants to check for SNP and indel
variants with potential functional significance around the candidate regions.

Gene Expression and Allelic Imbalance Analysis. Gene expression for SPR,
BCO2, PTS, and 18S (a housekeeping gene for expression normalization) was
quantified using qPCR. We sampled 26 individuals belonging to all five
morphs. After dissection, several organs (skin, brain, liver, and muscle) were
harvested and stored for RNA extraction and cDNA synthesis. For the anal-
ysis on the skin, we focused only on the pure morph animals so as to avoid
possible variation in expression across skin patches of mosaic animals.
Quantification cycle (Cq) values of three technical replicates were averaged,
and the expression of each focal gene for each sample was normalized to
the expression of 18S using a −ΔCq approach.

We also assessed levels of gene expression by analyzing allele imbalance.
For all individuals among our cohort of samples used for the qPCR analysis
that were heterozygous O/o and Y/y, we screened part of the coding se-
quence to detect polymorphisms that could be used to quantify the relative
expression of each allele. We then designed primers to amplify small frag-
ments from cDNA overlapping these polymorphisms and sequenced these

amplicons on a MiSeq system. To calculate the relative proportion of alleles
expressed in the skin of each individual for each transcript, we counted the
number of reads corresponding to the reference and alternative alleles.

Amplicon Sequencing Overlapping Regions of Association. We sequenced
amplicons (∼550 bp) overlapping the regions of association for the two loci
recovered in the genome-wide association mapping for a set of samples (n =
48) that included common wall lizard samples from our primary study location
in the eastern Pyrenees (n = 16) and other Podarcis species (n = 32) that are
known to exhibit ventral color polymorphism. After individual amplification
and barcoding, samples were pooled and sequenced on a MiSeq system. We
constructed median-joining haplotype networks and calculated values of dxy
and Tajima’s D for each locus. To explore patterns of sequence evolution in a
broader phylogenetic context, we constructed neighbor-net networks using
an extended dataset with additional sequences from other Podarcis species.
Finally, we estimated pairwise sequence divergence between haplotypes of
the SPR and BCO2 amplicons within P. muralis and between P. muralis and six
additional Podarcis species. The same calculations were also performed for
31 amplicons randomly distributed in the genome (255–667 bp).
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