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In this article, we consider the development of
unbiased estimators of the Hessian, of the log-
likelihood function with respect to parameters,
for partially observed diffusion processes. These
processes arise in numerous applications, where
such diffusions require derivative information,
either through the Jacobian or Hessian matrix.
As time-discretizations of diffusions induce a
bias, we provide an unbiased estimator of the
Hessian. This is based on using Girsanov’s Theorem
and randomization schemes developed through
Mcleish (2011 Monte Carlo Methods Appl. 17, 301–315
(doi:10.1515/mcma.2011.013)) and Rhee & Glynn
(2016 Op. Res. 63, 1026–1043). We demonstrate our
developed estimator of the Hessian is unbiased, and
one of finite variance. We numerically test and verify
this by comparing the methodology here to that of a
newly proposed particle filtering methodology. We
test this on a range of diffusion models, which include
different Ornstein–Uhlenbeck processes and the
Fitzhugh–Nagumo model, arising in neuroscience.

1. Introduction
In many scientific disciplines, diffusion processes [1]
are used to model and describe important phenomena.
Particular applications where such processes arise
include biological sciences, finance, signal processing
and atmospheric sciences [2–5]. Mathematically, diffusion
processes take the general form

dXt = aθ (Xt)dt + σ (Xt) dWt, X0 = x� ∈ Rd, (1.1)
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Figure 1. Simulation of FHN model for t = 50. Purple crosses in the top subplot represent discrete-time observations. (Online
version in colour.)

where Xt ∈ Rd, θ ∈Θ is a parameter, X0 = x� is the initial condition with x� given, a :Θ × Rd → Rd

denotes the drift term, σ : Rd → Rd×d denotes the diffusion coefficient and {Wt}t≥0 is a standard
d-dimensional Brownian motion. In practice, it is often difficult to have direct access to such
continuous processes, where instead one has discrete-time partial observations of the process
{Xt}t≥0, denoted as Yt1 , . . . , Ytn , where 0< t1 < . . . < tn = T, such that Ytp ∈ Rdy . Such processes
are referred to as partially observed diffusion processes (PODPs), where one is interested
in doing inference on the hidden process (1.1) given the observations. In order to do such
inference, one must time-discretize such a process which induces a discretization bias. For (1.1),
this can arise through common discretization forms such as an Euler or Milstein scheme [6].
Therefore, an important question, related to inference, is how one can reduce, or remove the
discretization bias. Such a discussion motivates the development and implementation of unbiased
estimators.

(a) Motivating example
To help motivate unbiased estimation for PODPs, we provide an interesting application, for which
we will test in this work. Our model example is the Fitzhugh–Nagumo (FHN) model for a neuron,
which is a second-order ODE model arising in neuroscience, describing the actional potential
generation within a neuronal axon. We consider a stochastic version of it, which is represented as
the following: [

dX(1)
t

dX(2)
t

]
=
[
θ1(X(1)

t − (X(1)
t )3 − X(2)

t )
θ2X(1)

t − X(2)
t + θ3

]
dt +

[
σ1
σ2

]
dWt, X0 = u0, (1.2)

where Xt is the membrane potential. There has been some interest in parameter estimation
[7–9], related to various variants of the FHN model. This particular model is well known within
the community, and commonly acts as a toy problem in the field of mathematical neurosciences.
For this reason, we will use this example within our numerical experiments. In figure 1, we
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provide a simulation of (1.2), for arbitrary choices of Θ = (θ1, θ2, θ3), which demonstrates the
interesting behaviour and dynamics. In the plot, we have also plotted non-noisy observations
for X(1)

t .

(b) Methodology
The unbiased estimation of PODPs has been an important, yet challenging topic. Some original
seminal work on this has been the idea of exact simulation, proposed in various works [10–12].
The underlying idea behind exact simulation is that, through a particular transformation, one can
acquire an unbiased estimator, subject to certain restrictions on the form of the diffusion and its
dimension. Since then there have been a number of extensions aimed at going beyond this, w.r.t.
to more general multidimensional diffusions and continuous-time dynamics [13,14]. However,
attention has recently been paid to unbiased estimation, for Bayesian computation, through the
work of Rhee and Glynn [15,16], in which they provide unbiased and finite variance estimators
through introducing randomization. In particular, these methods allow us to unbiasedly estimate
an expectation of a functional, by randomizing on the level of the time-discretization in a type
of multilevel Monte Carlo (MLMC) approach [17], where there is a coupling between different
levels. As a result, this methodology has been considered in the context of both filtering and
Bayesian computation [18–21] and gradient estimation [22]. One advantage of this approach is
that, with couplings, it is relatively simple to use & implement computationally, while exploiting
such methodologies on a range of different model problems or set-ups.

In this work, we are interested in developing an unbiased estimator of the Hessian for PODPs.
Typically, the Hessian is not required for PODPS but currently this is of interest as current state-
of-the-art stochastic gradient methodologies exploit Hessian information for an improved speed
of convergence. Methods using this information include Newton type methods [23,24], which
have improved rates of convergence over first-order stochastic gradient methods. It is also well
known that these methods are typically biased as one does not fully require the whole Hessian,
due to the computational burden. Therefore, this provides our motivation for firstly developing
an unbiased estimator, and secondly for the Hessian. In order to develop an unbiased estimator,
our methodology will largely follow that described in [22], with the extension of this from the
score function to the Hessian. Other works that consider unbiased estimation of the gradient
include [25,26]. In particular, we will exploit the use of the conditional particle filter (CPF), first
considered by Andrieu et al. [27,28]. We provide an expression for the Hessian of the likelihood,
while introducing an Euler time-discretization of the diffusion process in order to implement
our unbiased estimator. We then describe how one can attain unbiased estimators, which is
based on various couplings of the CPF. From this, we test this methodology to that of using the
methods of [18,29] for the Hessian computation, as for a comparison, where we demonstrate the
unbiased estimator through both the variance and bias. This will be conducted on both a single
and multidimensional Ornstein–Uhlenbeck (OU) process, as well as a more complicated form of
the FHN model. We remark that our estimator of the hessian is unbiased, but if the inverse hessian
is required, it is possible to adapt the forthcoming methodology to that context as well.

(c) Outline
In §2, we present our setting for our diffusion process. We also present a derived expression for
the Hessian, with an appropriate time-discretization. Then, in §3, we describe our algorithm in
detail for the unbiased estimator of the Hessian. This will be primarily based on a coupling of a
coupled CPF. This will lead to §4 where we present our numerical experiments, which provide
variance and bias plots. We compare the methodology of this work with that of the Delta particle
filter. This comparison will be tested on a range of diffusion processes, which include an OU
process and the FHN model. We summarize our findings in §5.
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2. Model
In this section, we introduce our setting and notation regarding our partially observed diffusions.
This will include a number of assumptions. We will then provide an expression for the Hessian of
the likelihood function, with a time-discretization based on the Euler scheme. This will include a
discussion on the stochastic model where we define the marginal likelihood. Finally, we present
a result indicating the approximation of the Hessian computation as we take the limit of the
discretization level.

(a) Notation
Let (X,X ) be a measurable space. For ϕ : X→ R, we write Bb(X) as the collection of bounded
measurable functions, Cj(X) are the collection of j-times, j ∈ N continuously differentiable functions

and we omit the subscript j if the functions are simply continuous; if ϕ : X→ Rd we write Cj
d(X) and

Cd(X). Let ϕ : Rd → R, Lip||·||2 (Rd) denote the collection of real-valued functions that are Lipschitz
w.r.t. || · ||2 (|| · ||p denotes the Lp−norm of a vector x ∈ Rd). That is, ϕ ∈ Lip||·||2 (Rd) if there exists a
C<+∞ such that for any (x, y) ∈ R2d

|ϕ(x) − ϕ(y)| ≤ C||x − y||2.

We write ||ϕ||Lip as the Lipschitz constant of a function ϕ ∈ Lip||·||2 (Rd). For ϕ ∈Bb(X), we write
the supremum norm ||ϕ|| = supx∈X |ϕ(x)|. P(X) denotes the collection of probability measures on
(X,X ). For a measure μ on (X,X ) and a ϕ ∈Bb(X), the notation μ(ϕ) = ∫

X ϕ(x)μ(dx) is used. B(Rd)
denote the Borel sets on Rd. dx is used to denote the Lebesgue measure. Let K : X × X → [0, ∞) be
a non-negative operator and μ be a measure, then we use the notations μK(dy) = ∫

X μ(dx)K(x, dy)
and for ϕ ∈Bb(X), K(ϕ)(x) = ∫

X ϕ(y)K(x, dy). For A ∈X , the indicator is written IA(x). UA denotes
the uniform distribution on the set A. Ns(μ,Σ) (resp. ψs(x;μ,Σ)) denotes an s-dimensional
Gaussian distribution (density evaluated at x ∈ Rs) of mean μ and covariance Σ . If s = 1 we
omit the subscript s. For a vector/matrix X, X∗ is used to denote the transpose of X. For A ∈X ,
δA(du) denotes the Dirac measure of A, and if A = {x} with x ∈ X, we write δx(du). For a vector-
valued function in d-dimensions (resp. d-dimensional vector), ϕ(x) (resp. x) say, we write the
ith−component (i ∈ {1, . . . , d}) as ϕ(x)(i) (resp. x(i)). For a d × q matrix x, we write the (i, j)th−entry
as x(ij). For μ ∈P(X) and X a random variable on X with distribution associated with μ we use the
notation X ∼μ(·).

(b) Diffusion process
Let θ ∈Θ ⊆ Rdθ be fixed and we consider a diffusion process on the probability space
(Ω , F , {F }t≥0, Pθ ), such that

dXt = aθ (Xt) dt + σ (Xt) dWt, X0 = x� ∈ Rd, (2.1)

where Xt ∈ Rd, X0 = x� with x� given, a :Θ × Rd → Rd is the drift term, σ : Rd → Rd×d is the
diffusion coefficient and {Wt}t≥0 is a standard d-dimensional Brownian motion. We assume that
for any fixed θ ∈Θ , a(i)

θ ∈ C2(Rd) and σ (ij) ∈ C2(Rd) for (i, j) ∈ {1, . . . , d}2. For fixed x ∈ Rd, we have
aθ (x)(i) ∈ C(Θ) for i ∈ {1, . . . , d}.

Furthermore, we make the following additional assumption, termed (D1).

(i) Uniform ellipticity: Σ(x) := σ (x)σ (x)∗ is uniformly positive definite over x ∈ Rd.
(ii) Globally Lipschitz: for any θ ∈Θ , there exists a positive constant C<∞ such that

|aθ (x)(i) − aθ (x′)(i)| + |σ (x)(ij) − σ (x′)(ij)| ≤ C||x − x′||2,

for all (x, x′) ∈ Rd × Rd, (i, j) ∈ {1, . . . , d}2.
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Let 0< t1,< . . . 0 be a given collection of time points. Following [22], by the use of Girsanov
Theorem, for any Pθ -integrable ϕ :Θ × Rnd → R,

Eθ [ϕθ (Xt1 , . . . , Xtn )] = EQ

[
ϕθ (Xt1 , . . . , Xtn )

dPθ

dQ
(XT)

]
, (2.2)

where Eθ denotes the expectation w.r.t. Pθ , set XT = {Xt}t∈[0,T], and the change of measure is
given by

dPθ

dQ
(XT) = exp

{
− 1

2

∫ T

0
||bθ (Xs)||22 ds +

∫ T

0
bθ (Xs)∗ dWs

}
,

with bθ (x) =Σ(x)−1σ (x)∗aθ (x) is a d-dimensional vector. Below, we consider a change of measure
to the law Q, which is induced by using that dXt = σ (Xt) dWt, where Xt solves such a process.
Since Pθ and Q are equibilant, therefore by Girsanov’s Theorem

ρθ (XT) = ϕθ (Xt1:tn )
dPθ

dQ
(XT),

where the corresponding Radon–Nikodym derivative is

dPθ

dQ
(XT) = exp

{
− 1

2

∫ T

0
||bθ (Xs)||22 ds +

∫ T

0
bθ (Xs)∗Σ(Xs)−1σ (Xs)∗ dXs

}
.

Now if we assume that ϕθ is differentiable w.r.t. θ , then one has for i ∈ {1, . . . , dθ }

G
(i)
θ := ∂

∂θ (i)

(
log{Eθ [ϕθ (Xt1 , . . . , Xtn )]}

)
= E

Pθ

[
∂

∂θ (i)

(
log{ρθ (XT)}

)]
, (2.3)

where Pθ = ϕθPθ /Pθ (ϕθ ) and Pθ [ϕθ (Xt1 , . . . , Xtn )] is the law of the diffusion process (1.1). From
herein, we will use the short-hand notation ϕθ (Xt1 , . . . , Xtn ) = ϕθ (Xt1:tn ) and also set, for i ∈
{1, . . . , dθ },

Gθ (XT)(i) = ∂

∂θ (i)

(
log {ρθ (XT)}

)
.

(c) Hessian expression
Given the expression (2.3) our objective is now to write the matrix of second derivatives, for
(i, j) ∈ {1, . . . , dθ }2

H
(ij)
θ := − ∂2

∂θ (i)∂θ (j)

(
log{Eθ [ϕθ (Xt1:tn )]}

)
,

in terms of expectations w.r.t. Pθ .
We have the following simple calculation:

∂2

∂θ (i)∂θ (j)

(
log{Eθ [ϕθ (Xt1:tn )]}

)
= ∂

∂θ (i)

( (∂/∂θ (j)){Eθ [ϕθ (Xt1:tn )]}
Eθ [ϕθ (Xt1:tn )]

)

=
∂2

∂θ (i)∂θ (j) {Eθ [ϕθ (Xt1:tn )]}
Eθ [ϕθ (Xt1:tn )]

−
∂
∂θ (i) {Eθ [ϕθ (Xt1:tn )]}(∂/∂θ (j)){Eθ [ϕθ (Xt1:tn )]}

Eθ [ϕθ (Xt1:tn )]2

=: T1 − T2.

Under relatively weak conditions, one can express T1 and T2 as

T1 = E
Pθ

[∂ log{ρθ (XT)}
∂θ (i)

∂ log{ρθ (XT)}
∂θ (j)

]
+ E

Pθ

[
∂2

∂θ (i)∂θ (j)

(
log{ρθ (XT)}

)]
and

T2 = E
Pθ

[
∂ log{ρθ (XT)}

∂θ (i)

]
E

Pθ

[
∂ log{ρθ (XT)}

∂θ (j)

]
.
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Therefore, we have the following expression:

H
(ij)
θ = E

Pθ

[
∂ log{ρθ (XT)}

∂θ (i)

]
E

Pθ

[
∂ log{ρθ (XT)}

∂θ (j)

]

− E
Pθ

[∂ log{ρθ (XT)}
∂θ (i)

∂ log{ρθ (XT)}
∂θ (j)

]
− E

Pθ

[
∂2

∂θ (i)∂θ (j)

(
log{ρθ (XT)}

)]
. (2.4)

Defining, for (i, j) ∈ {1, . . . , dθ }2

Hθ (XT)(ij) := ∂2

∂θ (i)∂θ (j)

(
log{ρθ (XT)}

)
,

one can write more succinctly

H
(ij)
θ = E

Pθ
[Gθ (XT)(i)]E

Pθ
[Gθ (XT)(j)] − E

Pθ
[Gθ (XT)(i)Gθ (XT)(j)] − E

Pθ
[Hθ (XT)(ij)].

(d) Stochastic model
Consider a sequence of random variables (Yt1 , . . . , Ytn ) where 0< t1 < . . . < tn = T, where Ytp ∈
Rdy , which are assumed to have the following joint conditional Lebesgue density

pθ (yt1 , . . . , ytn |{xs}0≤s≤T) =
n∏

p=1

gθ (ytp |xtp ),

where g :Θ × Rd × Rdy → R+ for any (θ , x) ∈Θ × Rd,
∫
Rdy gθ (y|x)dy = 1 such that dy is the

Lebesgue measure. Now if one considers instead realizations of the random variables
(Yt1 , . . . , Ytn ), in the conditioning of the joint density we have a state-space model with marginal
likelihood

pθ (yt1 , . . . , ytn ) := Eθ

[ n∏
p=1

gθ (ytp |Xtp )
]

.

Note that the framework to be investigated in this article is not restricted to this special case, but
we shall focus on it for the rest of the paper. So to clarify ϕθ (xt1 , . . . , xtn ) =∏n

p=1 gθ (ytp |xtp ) from
herein.

In reference to (2.3) and (2.4), we have that

∂ log{ρθ (XT)}
∂θ (i)

=
n∑

p=1

∂

∂θ (i)

(
log{gθ (ytp |xtp )}

)
− 1

2

∫ T

0

∂

∂θ (i)

(
||bθ (Xs)||22

)
ds

+ ∂

∂θ (i)

( ∫ T

0
bθ (Xs)∗Σ(Xs)−1σ (Xs)∗ dXs

)
and

∂2

∂θ (i)∂θ (j)

(
log{ρθ (XT)}

)
=

n∑
p=1

∂2

∂θ (i)∂θ (j)

(
log{gθ (ytp |xtp )}

)

− 1
2

∫ T

0

∂2

∂θ (i)∂θ (j)

(
||bθ (Xs)||22

)
ds + ∂2

∂θ (i)∂θ (j)

( ∫ T

0
bθ (Xs)∗Σ(Xs)−1σ (Xs)∗ dXs

)
.

(e) Time-discretization
From herein, we take the simplification that tp = p, p ∈ {1, . . . , n}, T = n. Let l ∈ N0 be a given level
of discretization, and consider the Euler discretization of step size l = 2−l, k ∈ {1, 2, . . . ,−1

l T}
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with X̃0 = x�:

X̃kl = X̃(k−1)l + aθ (X̃(k−1)l )l + σ (X̃(k−1)l )[Wkl − W(k−1)l ]. (2.5)

Set xl
T = (x�, x̃l , . . . , x̃T). We then consider the vector-valued function Gl :Θ × (Rd)

−1
l T+1 → Rdθ

and the matrix-valued function Hl :Θ × (Rd)
−1
l T+1 → Rdθ×dθ defined as, for (i, j) ∈ {1, . . . , dθ }2

Gl
θ (xl

T)(i) =
n∑

p=1

∂

∂θ (i)

(
log{gθ (yp|x̃p)}

)
− l

2

−1
l T−1∑
k=0

∂

∂θ (i)

(
||bθ (x̃kl )||22

)

+
−1

l T−1∑
k=0

∂

∂θ (i)

(
bθ (x̃kl )

∗Σ(x̃kl )
−1σ (x̃kl )

∗[x̃(k+1)l − x̃kl ]
)

and

Hl
θ (xl

T)(ij) =
n∑

p=1

∂2

∂θ (i)∂θ (j)

(
log{gθ (yp|x̃p)}

)
− l

2

−1
l T−1∑
k=0

∂2

∂θ (i)∂θ (j)

(
||bθ (x̃kl )||22

)

+
−1

l T−1∑
k=0

∂2

∂θ (i)∂θ (j)

(
bθ (x̃kl )

∗Σ(x̃kl )
−1σ (x̃kl )

∗[x̃(k+1)l − x̃kl ]
)

.

Then, noting (2.4), we have an Euler approximation of the Hessian

H
l,(ij)
θ := Eθ [ϕθ (X̃1:n)Gl

θ (Xl
T)(i)]

Eθ [ϕθ (X̃1:n)]

Eθ [ϕθ (X̃1:n)Gl
θ (Xl

T)(j)]

Eθ [ϕθ (X̃1:n)]

− Eθ [ϕθ (X̃1:n)Gl
θ (Xl

T)(i)Gl
θ (Xl

T)(j)]

Eθ [ϕθ (X̃1:n)]
− Eθ [ϕθ (X̃1:n)Hl

θ (Xl
T)(ij)]

Eθ [ϕθ (X̃1:n)]
.

In the context of the model in §d, if one sets

π l
θ (dxl

T) ∝
⎧⎨⎩

n∏
p=1

gθ (yp|x̃p)pl
θ (x̃p−1|x̃p)

⎫⎬⎭ dxl
T,

where pl
θ is the transition density induced by discretized diffusion process (2.5) (over unit time),

and we use the abuse of notation that dxl
T is the Lebesgue measure on the coordinates (x̃l , . . . , x̃T),

then one has that
H

l,(ij)
θ = π l

θ (Gl,(i)
θ )π l

θ (Gl,(j)
θ ) − π l

θ (Gl,(i)
θ Gl,(j)

θ ) − π l
θ (Hl,(ij)

θ ), (2.6)

where we are using the short-hand Gl,(i)
θ = Gl

θ (Xl
T)(i) and Hl,(ij)

θ = Hl
θ (Xl

T)(ij) etc.
We have the following result whose proof and assumption (D2) is in appendix A.

Proposition 2.1. Assume (D1-D2). Then for any (i, j) ∈ {1, . . . , dθ }2, we have

lim
l→∞

H
l,(ij)
θ = H

(ij)
θ .

The main strategy of the proof is by strong convergence, which means that one can characterize

an upper-bound on |Hl,(ij)
θ − H

(ij)
θ | of O(1/2

l ) but that rate is most likely not sharp, as one expects
O(l).

3. Algorithm
The objective of this section, using only approximations of (2.6), is to obtain an unbiased estimate

of H
(ij)
θ for any fixed θ ∈Θ and (i, j) ∈ {1, . . . , dθ }2. Our approach is essentially an application of the

methodology in [22] and so we provide a review of that approach in the sequel.



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210710

..........................................................

(a) Strategy
To focus our description, we shall suppose that we are interested in computing an unbiased
estimate of G

(i)
θ for some fixed i; we remark that this specialization is not needed and is only

used for notational convenience. An Euler approximation of G
(i)
θ is π l

θ (Gl,(i)
θ ) =: Gl,(i)

θ . To further

simplify the notation, we will simply write Gl
θ instead of Gl,(i)

θ .
Suppose that one can construct a sequence of random variables (π̂ l

θ (Gl
θ ))l∈N0 on a potentially

extended probability space with expectation operator Eθ , such that for each l ∈ N0, Eθ [π̂ l
θ (Gl

θ )] =
π l
θ (Gl

θ ). Moreover, consider the independent sequence of random variables, (Ξ l
θ )l∈N0 which are

constructed so that for l ∈ N0

Eθ [Ξ l
θ ] := Eθ [π̂ l

θ (Gl
θ )] − Eθ [π̂ l−1

θ (Gl−1
θ )] = π l

θ (Gl
θ ) − π l−1

θ (Gl−1
θ ), (3.1)

with Eθ [π̂−1
θ (G−1

θ )] := π−1
θ (G−1

θ ) := 0. Now let PL be a positive probability mass function on N0
and set PL(l) =∑∞

p=l PL(p). Now if,

∑
l∈N0

1

PL(l)

{
Varθ [Ξ l

θ ] + (Gl,(i)
θ − G

(i)
θ )2

}
<+∞, (3.2)

then if one samples L from PL independently of the sequence (Ξl)l∈N0 then by e.g. ([17],
Theorem 5) the estimate

Ĝ
(i)
θ :=

L∑
l=0

Ξ l
θ

PL(l)
, (3.3)

is an unbiased and finite variance estimator of G
(i)
θ . Before describing in fuller detail our approach,

which requires numerous techniques and methodologies, we first present our main result which
is an unbiased theorem related to our estimator of the Hessian. This is given through the following
proposition.

Proposition 3.1. Assume (D1-D2). Then there exists choices of PL so that (3.9) is an unbiased and

finite variance estimator of H
(ij)
θ for each (i, j) ∈ Dθ .

Proof. This is the same as ([22], theorem 2), except one must repeat the arguments of that paper
given lemma A.3 in the appendix and given the rate in the proof of proposition 2.1. Since the
arguments and calculations are almost identical, they are omitted in their entirety. �

The main point is that the choice of PL is as in [22], which is: in the case that σ is constant PL(l) ∝
l(l + 1) log2(2 + l)2 and in the non-constant case PL(l) ∝1/2

l (l + 1) log2(2 + l)2; both choices
achieve finite variance and costs to achieve an error of O(ε) with high probability as in ([16],
propositions 4 and 5).

The main issue is to construct the sequence of independent random variables (Ξ l
θ )l∈N0 such

that (3.1) and (3.2) hold and that the expected computational cost for doing so is not unreasonable
as a functional of l: a method for doing this is in [22] as we will now describe.

(b) ComputingΞ 0
θ

The computation of Ξ0
θ is performed by using exactly the coupled conditional particle filter

(CCPF) that has been introduced in [30]. This is an algorithm which allows one to construct a
random variable π̂0

θ (G0
θ ) such that Eθ [π̂0

θ (G0
θ )] = π0

θ (G0
θ ) and we will set Ξ0

θ = π̂0
θ (G0

θ ).
We begin by introducing the Markov kernel Cl :Θ × Xl →P(Xl) in algorithm 1. To that end, we

will use the notation xi,l
l:k

∈ (Rd)k−1
l , where l ∈ N0 is the level of discretization, i ∈ {1, . . . , N} is

a particle (sample) indicator, k ∈ {1, . . . , n} is a time parameter and xi,l
l:k

= (xi,l
l

, xi,l
2l

, . . . , xi,l
k ). The

kernel described in algorithm 1 is called the called the CPF, as developed in [27], and allows one
to generate, under minor conditions, an ergodic Markov chain of invariant measure π l

θ . By itself,
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Algorithm 1 . Conditional Particle Filter at level l ∈ N0.

1. Input xl:n
′ ∈ Xl. Set k=1, xi

0=x�, ai
0=i for i ∈ {1, . . . , N − 1}.

2. Sampling: for i ∈ {1, . . . , N − 1} sample xi
k−1+l:k

|xai
k−1

k−1 using the Markov kernel pl
θ . Set

xN
k−1+l:k

=xk
′ and for i ∈ {1, . . . , N − 1}, xi

l:k
=(x

ai
k−1
l:k−1, xi

k−1+l:k
). If k=n go to 4.

3. Resampling: Construct the probability mass function on {1, . . . , N}:

ri
1=

gθ (yk|xi
k)∑N

j=1 gθ (yk|xj
k)

.

For i ∈ {1, . . . , N − 1} sample ai
k from ri

1. Set k=k+1 and return to the start of 2.
4. Construct the probability mass function on {1, . . . , N}:

ri
1=

gθ (yn|xi
n)∑N

j=1 gθ (yn|xj
n)

.

Sample i ∈ {1, . . . , N} using this mass function and return xi
l:n.

it does not provide unbiased estimates of expectations w.r.t. π l
θ , unless π l

θ is the initial distribution
of the Markov chain. However, the kernel will be of use in our subsequent discussion.

Our approach generates a Markov chain {Zm}m∈N0 on the space Z0 := X0 × X0, Zm ∈ Z0. In order
to describe how one can simulate this Markov chain, we introduce several objects which will
be needed. The first of these is the kernel p̌l :Θ × R2d →P(R2d), which we need in the case l = 0
and its simulation is described in algorithm 2. The Markov kernel is used to simulate intermediate
points from xk−1 to the next observations at time k, with time stepl. We will also need to simulate
the maximal coupling of two probability mass functions on {1, . . . , N}, for some N ∈ N, and this is
described in algorithm 3.

Remark 3.2. Step 4 of algorithm 3 can be modified to the case where one generates the
pair (i, j) ∈ {1, . . . , N}2 from any coupling of the two probability mass functions (r4, r5). In our
simulations in §4, we will do this by sampling by inversion from (r4, r5), using the same uniform
random variable. However, to simplify the mathematical analysis that we will give in the
appendix, we consider exactly algorithm 3 in our calculations.

To describe the CCPF kernel, we must first introduce a driving CCPF, which is presented in
algorithm 4. The driving CCPF is nothing more than an ordinary coupled particle filter, except
the final pair of trajectories is ‘frozen’ as is given in the algorithm (that is (x′

1:n, x̄′
1:n) as in step 1 of

algorithm 4) and allowed to interact with the rest of the particle system. Given the ingredients in
algorithms 2–4, we are now in a position to describe the CCPF kernel, which is a Markov kernel
K0 :Θ × Z0 →P(Z0), whose simulation is presented in algorithm 5. We will consider the Markov
chain {Zm}m∈N0 , Zm = (X1:n(m), X̄1:n(m)), generated by the CCPF kernel in algorithm 5 and with
initial distribution

ν0
θ

(
d(x1:n, x̄1:n)

)
=
∫
Z0

( n∏
k=1

p0
θ (x′

k−1, x′
k)
)( n∏

k=1

p0
θ (x̄′

k−1, x̄′
k)
)

C0
θ (x′

1:n, dx1:n)δ{x̄′
1:n}(dx̄1:n), d(x1:n, x̄1:n), (3.4)

where x′
0 = x̄′

0 = x�.

We remark that in algorithm 5, marginally, xi
1:n (resp. x̄j

1:n) has been generated according to
C0
θ (x1:n, ·) (resp. C0

θ (x̄1:n, ·)). A rather important point is that if the two input trajectories in step 1
of algorithm 5 are equal, i.e. x1:n = x̄1:n, then the output trajectories will also be equal. To that end,
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define the stopping time associated with the given Markov chain

τ 0 = inf{m ≥ 1 : x1:n(m) = x̄1:n(m)}.
Then, setting m∗ ∈ {2, 3, . . .} one has the following estimator:

π̂0
θ (G0

θ ) := G0
θ (X1:n(m∗)) +

τ 0−1∑
m=m∗+1

{G0
θ (X1:n(m)) − G0

θ (X̄1:n(m))}, (3.5)

and one sets Ξ0
θ = π̂0

θ (G0
θ ). The procedure for computing Ξ0

θ is summarized in algorithm 6.

Algorithm 2 . Simulating the Kernel p̌l
θ .

1. Input (x0, x̄0) ∈ R2d and the level l ∈ N0.

2. Generate Vkl

i.i.d.∼ Nd(0,lId), for k ∈ {1, . . . ,−1
l }.

3. Run the two recursions, for k ∈ {1, . . . ,−1
l }:

&Xkl=X(k−1)l+aθ (X(k−1)l )l+σ (X(k−1)l )Vkl

&X̄kl=X̄(k−1)l+aθ (X̄(k−1)l )l+σ (X̄(k−1)l )Vkl .

4. Return (x1, x̄1) ∈ R2d.

Algorithm 3 . Simulating a Maximal Coupling of Two Probability Mass Functions on {1, . . . , N}.
1. Input: Two probability mass functions (PMFs) (r1

1, . . . , rN
1 ) and (r1

2, . . . , rN
2 ) on {1, . . . , N}.

2. Generate U ∼ U[0,1].
3. If U<

∑N
i=1 min{ri

1, ri
2} =: r̄ then generate i ∈ {1, . . . , N} according to the probability mass

function:

ri
3=

1
r̄

min{ri
1, ri

2}

and set j=i.
4. Otherwise generate i ∈ {1, . . . , N} and j ∈ {1, . . . , N} independently according to the probability

mass functions

ri
4=

1
1 − r̄

(ri
1 − min{ri

1, ri
2})

and
rj

5=
1

1 − r̄
(rj

2 − min{rj
1, rj

2}),

respectively.

5. Output: (i, j) ∈ {1, . . . , N}2. i, marginally has PMF ri
1 and j, marginally has PMF rj

2.

(c) Computing (Ξ l
θ )l∈N

We are now concerned with the task of computing (Ξ l
θ )l∈N such that (3.1)–(3.2) are satisfied.

Throughout the section l ∈ N is fixed. We will generate a Markov chain {Žl
m}m∈N0 on the space

Zl × Zl−1, where Zl = Xl × Xl and Žl
m ∈ Zl × Zl−1. In order to construct our Markov chain kernel, as in

the previous section, we will need to provide some algorithms. We begin with the Markov kernel

q̌l :Θ × R4d →P(R
−1
l 2d × R

−1
l−12d) which will be needed and whose simulation is described in

algorithm 7. We will also need to sample a coupling for four probability mass functions on
{1, . . . , N} and this is presented in algorithm 8.
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To continue onwards, we will consider a generalization of that in algorithm 4. The driving
CCPF at level l is described in algorithm 10. Now given algorithms 7–10, we are in a position to
give our Markov kernel, Ǩl :Θ × Zl × Zl−1 →P(Zl × Zl−1), which we shall call the coupled-CCPF
(C-CCPF) and it is given in algorithm 11. To assist the subsequent discussion, we will introduce
the marginal Markov kernel

q̌(l)
θ

(
[xl

0, xl−1
0 ], d[xl

l:1, xl−1
l−1:1]

)
:=
∫

(Rd)
−1
l ×(Rd)

−1
l−1

q̌l
θ

(
[(xl

0, x̄l
0), (xl−1

0 , x̄l−1
0 )], d[(xl

l:1, x̄l
l:1), (xl−1

l−1:1, x̄l−1
l−1:1)]

)
. (3.6)

Given this kernel, one can describe the CCPF at two different levels l, l − 1 in algorithm 9.
Algorithm 9 details a Markov kernel Čl :Θ × Xl × Xl−1 →P(Xl × Xl−1) which we will use in the
initialization of our Markov chain to be described below.

We will consider the Markov chain {Žl
m}m∈N0 , with

Žl
m =

(
(Xl
l:n(m), X̄l

l:n(m)), (Xl−1
l−1:n(m), X̄l−1

l−1:n(m))
)

,

generated by the C-CCPF kernel in algorithm 11 and with initial distribution

ν̌l
θ

(
d[(xl

l:n, x̄l
l:n), (xl−1

l−1:n, x̄l−1
l−1:n)]

)
=
∫
Zl×Zl−1

( n∏
k=1

q̌(l)
θ

(
[xl,′

k−1, xl−1,′
k−1 ], d[xl,′

k−1+l:k
, xl−1,′

k−1+l−1:k]
))

×
( n∏

k=1

q̌(l)
θ

(
[x̄l,′

k−1, x̄l−1,′
k−1 ], d[x̄l,′

k−1+l:k
, x̄l−1,′

k−1+l−1:k]
)

Čl
θ

(
[xl,′
l:n, xl−1,′

l−1:n], d[xl
l:n, xl−1

l−1:n]
)

× δ{x̄l,′
l :n,x̄l−1,′

l−1:n}(d[x̄l
l:n, x̄l−1

l−1:n]), (3.7)

where xl,′
0 = xl−1,′

0 = x̄l,′
0 = x̄l−1,′

0 = x�. An important point, as in the case of algorithm 5, is that if
the two input trajectories in step 1 of algorithm 11 are equal, i.e. xl

l:n = x̄l
l:n, or xl−1

l−1:n = x̄l−1
l−1:n,

then the associated output trajectories will also be equal. As before, we define the stopping times
associated with the given Markov chain (Žl

m)m∈N0 , s ∈ {l, l − 1}

τ s = inf{m ≥ 1 : Xs
s:n(m) = X̄s

s:n(m)}.

Then, setting m∗ ∈ {2, 3, . . .} one has the following estimator:

π̂ s
θ (Gs

θ ) := Gs
θ (Xs

s:n(m∗)) +
τ s−1∑

m=m∗+1

{Gs
θ (Xs

s:n(m)) − Gs
θ (X̄s

s:n(m))}, (3.8)

and one sets Ξ l
θ = π̂ l

θ (Gl
θ ) − π̂ l−1

θ (Gl−1
θ ). The procedure for computing Ξ l

θ is summarized in
algorithm 12.

(d) Estimate and remarks
Given the commentary above we are ready to present the procedure for our unbiased estimate

of H
(ij)
θ for each (i, j) ∈ Dθ := {(i, j) ∈ {1, . . . , dθ }2 : i ≤ j}; Hθ is a symmetric matrix. The two main

algorithms we will use (algorithms 6 and 12) are stated in terms of providing Ξ l
θ for one specified

function Gl,(i)
θ (recall that i was suppressed from the notation). However, the algorithms can be

run once and provide an unbiased estimate of π l
θ (Gl,(i)

θ ) − π l−1
θ (Gl−1,(i)

θ ) for every i ∈ {1, . . . , dθ }, of
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π l
θ (Gl,(i)

θ Gl,(j)
θ ) − π l−1

θ (Gl−1,(i)
θ Gl−1,(j)

θ ) and π l
θ (Hl,(ij)

θ ) − π l−1
θ (Hl−1,(ij)

θ ) for every (i, j) ∈ Dθ . To that end,

we will write Ξ l
θ (Gl,(i)

θ ), Ξ l
θ (Gl,(i)

θ Gl,(j)
θ ) and Ξ l

θ (Hl,(ij)
θ ) to denote the appropriate estimators.

Our approach consists of the following steps, repeated for k ∈ {1, . . . , M}:

(i) Generate (Lk, L̃k) according to PL ⊗ PL.

(ii) Compute Ξ k,0
θ (G0,(i)

θ ) for every i ∈ {1, . . . , dθ } and Ξ
k,0
θ (G0,(i)

θ G0,(j)
θ ), Ξ k,0

θ (H0,(ij)
θ ) for every

(i, j) ∈ Dθ using algorithm 6. Independently, compute Ξ̃ k,0
θ (G0,(i)

θ ) for every i ∈ {1, . . . , dθ }
using algorithm 6.

(iii) If Lk > 0 then independently for each l ∈ {1, . . . , Lk} and independently of step 2, calculate

Ξ
k,l
θ (Gl,(i)

θ ) for every i ∈ {1, . . . , dθ } and Ξ k,l
θ (Gl,(i)

θ Gl,(j)
θ ), Ξ k,l

θ (Hl,(ij)
θ ) for every (i, j) ∈ Dθ using

algorithm 12.
(iv) If L̃k > 0 then independently for each l ∈ {1, . . . , L̃k} and independently of steps 2 and 3,

calculate Ξ̃ k,l
θ (Gl,(i)

θ ) for every i ∈ {1, . . . , dθ } using algorithm 12.
(v) Compute for every (i, j) ∈ Dθ

Ĥ
k,(ij)
θ =

( Lk∑
l=0

Ξ
k,l
θ (Gl,(i)

θ )

PL(l)

)( L̃k∑
l=0

Ξ̃
k,l
θ (Gl,(i)

θ )

PL(l)

)
−

Lk∑
l=0

Ξ
k,l
θ (Gl,(i)

θ Gl,(j)
θ )

PL(l)

−
Lk∑

l=0

Ξ
k,l
θ (Hl,(ij)

θ )

PL(l)
.

Then our estimator is for each (i, j) ∈ Dθ

Ĥ
(ij)
θ = 1

M

M∑
k=1

Ĥ
k,(ij)
θ . (3.9)

The algorithm and the various settings are described and investigated in detail in [22] as well
as enhanced estimators. We do not discuss the methodology further in this work.

Remark 3.3. As we will see in the succeeding section, we will compare our methodology which
is based on the C-CCPF to that of another methodology, which is thePF, within particle Markov
chain Monte Carlo. Specifically, it will be a particle marginal Metropolis Hastings algorithm. We
omit such a description of the latter, as we only use it as a comparison, but we refer the reader
to [18] for a more concrete description. However, we emphasize that it is only asymptotically
unbiased, in relation to the Hessian identity (2.4).

Remark 3.4. It is important to emphasize that with inverse Hessian, which is required for
Newton methodologies, we can debias both the C-CCPF and the PF. This can be achieved by
using the same techniques which are presented in the work of Jasra et al. [21].

4. Numerical experiments
In this section, we demonstrate that our estimate of the Hessian is unbiased through various
different experiments. We consider testing this through the study of the variance and bias of
the mean square error, while also providing plots related to the Newton-type learning. Our
results will be demonstrated on three underlying diffusion processes: a univariate OU process,
a multivariate OU process and the FHN model. We compare our methodology to that using the
PF instead of the coupled-CCPF within our unbiased estimator.
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Figure 2. Experiments for the OU model. (a) True values of the Hessian. (b) Estimated values of the Hessian. (Online version in
colour.)

(a) Ornstein–Uhlenbeck process
Our first set of numerical experiments will be conducted on a univariate OU process, which takes
the form

dXt = −θ1Xt dt + σ dWt

and
X0 = x0,

where x0 ∈ R+ is our initial condition, θ1 ∈ R is a parameter of interest and σ ∈ R is the diffusion
coefficient. For our discrete observations, we assume that we have Gaussian measurement
errors, Yt|Xt ∼ gθ (·|Xt) =N (Xt, θ2) for t ∈ {1, . . . , T} and for some θ2 ∈ R+. Our observations
will be generated with parameter choices defined as θ = (θ1, θ2) = (0.46, 0.38), x0 = 1 and T =
500. Throughout the simulation, one observation sequence {Y1, Y2, . . . , YT} is used. The true
distribution of observations can be computed analytically, therefore the Hessian is known. In
figure 2, we present the surface plots comparing the true Hessian with the estimated Hessian,
obtained by the Rhee & Glynn estimator (3.9) truncated at discretization level L = 8, this is done by
letting PL(l) ∝lI(l ≤ L). We use M = 104 to obtain the estimate Hessian surface plot. Both surface
plots are evaluated at θ1, θ2 ∈ {0.2, 0.3, 0.4, . . . , 1.0}. In figure 3, we test out the convergence of bias
of the Hessian estimate (3.9) with respect to its truncated discretization level. This essentially tests
the result in lemma A.2. We use L = {2, 3, 4, 5, 6, 7} and plot the bias against L.

The bias is obtained by using M = 104 i.i.d. samples, and taking its entry-wise difference with
the true Hessian entry-wise value. Note that the Hessian estimate here is evaluated with true
parameter choice. As the parameter θ is two-dimensional, we present four log-log plots where
the rate represents the fitted slope of log-scaled bias against log-scaled L. We observe that the
Hessian estimate bias is of order αL where α ∈ {0.9629, 0.7536, 0.7361, 0.8949} respectively for the
four entries, which verifies our result in lemma A.2. We also compare the wall-clock time cost of
obtaining one realization of Hessian estimate (3.9) with the cost of obtaining one realization of
score estimate (see [22]), both truncated at the same discretization levels L = {2, 3, 4, 5, 6, 7}, here
M = 100. The comparison result is provided in figure 4a.

We observe that the cost of obtaining the Hessian estimate is on average three times more
expensive than obtaining a score estimate. The reason for this is that we need to simulate
three CCPF paths in order to obtain one summand in the Hessian estimate, while to estimate
the score function, we need only one path. We also record the fitted slope of log-scaled cost
against log-scaled L for both estimates, the cost for Hessian estimates is roughly proportional
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Figure 3. Experiments for the OU model: bias values of Hessian estimate. (Online version in colour.)
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Figure 4. Experiments for the OU model. (a) Cost of Hessian & score estimate. (b) Incremental Hessian estimate variance
summed over all entries. (Online version in colour.)

to −0.9
L . To verify the rate obtained in lemma A.3, we compare the variance of the Hessian

incremental estimate with respect to discretization level L ∈ {1, 2, 3, 4, 5, 6}. The incremental
variance is approximated with the sample variance over 103 repetitions, and we sum over all 2 × 2
entries and present the log-log plot of the summed variance against L on the right of figure 4.
We observe that the incremental variance is of order1.15

L for the OU process model. This verifies
the result obtained in lemma A.3. It is known that when truncated, the Rhee & Glynn method
essentially serves as a variance reduction method. As a result, compared to the discrete Hessian
estimate (2.6), the truncated Hessian estimate (3.9) will require less cost to achieve the same MSE
target.

We present on figure 5a, the log-log plot of cost against MSE for discrete Hessian estimate
(2.6) and the Rhee & Glynn (R&G) Hessian estimate (3.9). We observe that (2.6) requires much
lower cost for an MSE target compared to (3.9). For (2.6), the cost is proportional to O(ε−2.974) for
an MSE target of order O(ε2). While for (3.9), the cost is proportional to O(ε−2.428). The average
cost ratio between (3.9) and (2.6) under the same MSE target is 5.605. In figure 5b, we present the
log-log plot of cost against MSE for (3.9) and the Hessian estimate obtained by the PF method.
We observe that under similar MSE target, the latter method on average has cost 5.054 times
less than (3.9). In figure 6, we present the convergence plots for the stochastic gradient descent
(SGD) method with score estimate and Newton method with score & Hessian estimate. For both
methods, the parameter is initialized at (0.1, 0.1), and the learning rate for the SGD method is set
to 0.002. Our conclusion from figure 5a is that firstly the methodology using R&G has a better
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rate, relating the MSE to computational cost, which favours our methodology. For figure 5b, we
note that the methodology exploiting the PF and our methodology, i.e. ‘R&G Hessian’, result in
the same rate. As we know the former is unbiased, this comparison indicates our methodology is
also unbiased, despite being more expensive by 5.054 times. For figure 6, we observe as expected
that the Newton method requires fewer iterations (five compared to 132 which uses SGD) to reach
the true parameters of interest, i.e. θ1 and θ2.
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(b) Multivariate Ornstein–Uhlenbeck process model
Our second model of interest is a two-dimensional OU process defined as[

dX(1)
t

dX(2)
t

]
=
[
θ1 − θ2X(1)

t

−θ3X(2)
t

]
dt +

[
σ1
σ2

]
dWt, X0 = x0,

where x0 ∈ R2 is the initial condition and (σ1, σ2) ∈ R+ × R+ are the diffusion coefficients.
We assume Gaussian measurement errors, Yt|Xt ∼ gθ (·|Xt) =N2(Xt, θ4I2), where I2 is a two-
dimensional identity matrix. We generate one sequence of observations up to time T = 500
with parameter choice θ = (θ1, θ2, θ3, θ4) = (0.48, 0.78, 0.37, 0.32), σ1 = 0.8, σ2 = 0.6, x0 = (1, 1)T. As
before, we study various properties of (3.9) with the true parameter choice. In figure 7, we
present the log-log plot of bias against L for (3.9), where the five points are evaluated with
L ∈ {2, 3, 4, 5, 6}. The bias is approximated by the difference between (3.9) and the true Hessian
with M = 104, we sum over all entry-wise bias and present it on the plot. We observe that the
summed bias is of order 0.972

L . This verifies the result in lemma A.2. In figure 8a, we present a
log-log plot of cost againstL for (3.9) and the R&G score estimate both with M = 10. We observe
that the cost of (3.9) is proportional to −0.866

L . This rate is similar to that of the score estimate, on
average the cost ratio between (3.9) and the score estimate is 3.495.

In figure 8, we present on the left the log-log plot of summed incremental variance of
Hessian estimate against L. We compute the entry-wise sample variance of the incremental
Hessian estimate for 103 times, and plot the summed variance against L. We observe that the
Hessian incremental variance is proportional to 1.068

L . This verifies the result in lemma A.3. In
figure 9a, we present the log-log plot of the cost against MSE for (3.9) and (2.6), where the MSE is
approximated through averaging over 103 i.i.d. repetitions of both estimators. We observe that
under a summed MSE target of O(ε2), the cost for (3.9) is of order O(ε−2.362), while the cost
for (2.6) is of order O(ε−2.958). On average, the cost ratio between (2.6) and (3.9) is 3.575. This
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verifies the variance reduction effect of truncated R&G scheme. In figure 9b, we present the log-
log plot of the cost against MSE for (3.9) and Hessian estimate using PF. We observe that under
a similar MSE target, the latter method on average costs 3.165 times less than that of (3.9). In
figure 10, we present the convergence plots for the SGD and Newton methods. Both the score
estimate and the Hessian estimate (3.9) are obtained with M = 2 × 103, truncated at level L = 8.
The learning rate for the SGD is set to 0.005. The training reaches convergence when the relative
Euclidean distance between trained and true θ is no bigger than 0.02. We initialize the training
parameter at (0.1, 0.1, 0.1, 0.1), and we observe that the SGD method reaches convergence with 122
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iterations, compared to four iterations of the modified Newton method. The actual training time
until convergence for the Newton method is roughly 7.6 times faster than the SGD method.

(c) FitzHugh–Nagumomodel
Our next model will be a two-dimensional ordinary differential equation, which arises in
neuroscience, known as the FHN model [7,31]. It is concerned with the membrane potential
of a neuron and a (latent) recovery variable modelling the ion channel kinetics. We consider a
stochastic perturbed extended version, given as⎡⎣dX(1)

t

dX(2)
t

⎤⎦=
⎡⎣θ1(X(1)

t − (X(1)
t )3 − X(2)

t )

θ2X(1)
t − X(2)

t + θ3

⎤⎦ dt +
⎡⎣σ1

σ2

⎤⎦ dWt, X0 = u0.

For the discrete observations, we assume Gaussian measurement errors, Yt|Xt ∼ gθ (·|Xt) =
N2(Xt, θ4I2), where (θ1, θ2, θ3, θ4) ∈ R+ × R × R × R+, (σ1, σ2) ∈ R+ × R+ are the diffusion
coefficients and, as before, {Wt}t≥0 is a Brownian motion. We generate one observation
sequence with parameter choices θ = (θ1, θ2, θ3, θ4) = (0.89, 0.98, 0.5, 0.79), σ = (0.2, 0.4). As the
true distribution of the observation is not available analytically, we use L = 10 to simulate out
{Y1, Y2, . . . , YT} where T = 500.

In figure 11, we compared the bias of (3.9), truncated at discretization level L ∈ {2, 3, 4, 5, 6, 7}
and plot it against L (log-log plot). The summed bias is obtained by taking element-wise
difference between an average of 103 i.i.d. realizations of the Hessian estimate and the true
Hessian, then summed over all the element-wise difference. The true Hessian is approximated by
(3.9) with M = 104 and L = 10. We observe that the summed bias is of order O(1.402

L ). This verifies
the result in lemma A.2. In figure 12a, we present the log-log plot of cost against L for (3.9) and
the R&G score estimate both with M = 10. We observe that the cost of (3.9) is of order O(−0.866

L ),
while the cost for score estimate is of order O(−0.867

L ). The average cost ratio between (3.9) and
the score estimate is 3.495. In figure 12b, we present the log-log plot of the summed incremental
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variance with L. We observe that the summed incremental variance is of order O(1.118
L ). This

verifies the result in lemma A.3.
In figure 13a, we again present a log-log plot of the cost against the summed MSE of (3.9) over

all entries for both (3.9) and (2.6). We observe that under an MSE target of ε2, (3.9) requires cost
of order O(ε−2.482), while (2.6) requires cost of order O(ε−2.97). The average cost ratio between
(3.9) and (2.6) under the same MSE target is 3.987. This verifies the variance reduction effect of
truncated R&G scheme. In figure 13b is the log-log plot of cost against summed MSE for (3.9) and
Hessian estimate using the PF. We observe that under similar MSE target, the latter method on
average costs 4.627 times less than that of (3.9). In figure 14, we present the convergence plots



20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210710

..........................................................

of SGD and the modified Newton method. For the modified Newton method, we set all the off-
diagonal entries to zero for the Hessian estimate, and add 0.0001 to the diagonal entries to avoid
singularity. When the L2 norm of the score is smaller than 0.1, we scale the searching step by a
learning rate of 0.002. Both the score estimate and the Hessian estimate (3.9) are obtained with M =
2 × 103, truncated at level L = 8. The learning rate for the SGD is set to 0.001. The training reaches
convergence when the relative Euclidean distance between trained and true θ is no bigger than
0.02. We initialize the training parameter at (0.8, 0.8, 0.8, 0.8), and observe that the SGD method
reaches convergence with fewer iterations than the stochastic Newton method.

5. Summary
In this work, we were interested in developing an unbiased estimator of the Hessian, related
to PODPs. This task is of interest, as computing the Hessian is primarily biased, due to its
computational cost, but also it has improved convergence over the score function. We presented
a general expression for the Hessian and proved, in the limit of discretization level, that it is
consistent with the continuous form. We demonstrated that we were able to reduce the bias,
arising from the discretization. This was shown through various numerical experiments that
were tested on a range of diffusion processes. This not only highlighted the reduction in bias,
but also that convergence is better compared to computing and using the score function. In terms
of research directions beyond what we have done, it would be nice firstly to extend this to more
complicated diffusion models, such as ones arising in mathematical finance [32,33]. Such diffusion
models would be rough volatility models. Another potential direction would be to consider
diffusion bridges, and analyse how one can could use the tools here and adapt them. This has
been of interest, with recent works such as [34,35]. One could also aim to derive similar results for
unbiased estimation using alternative discretization schemes, such as the Milstein scheme. This
should result in different rates of convergence, however the analysis would be different. To do
so, one would also require such a newly developed analysis for the score function [22]. Finally,
one could aim to apply this to other applications, which are Monte Carlo methods being exploited
such as phylogenetics. In particular, as we have tested our methodology on various OU processes,
one could test this further on an SDE arising in phylogenetics, presented ad discussed in [36,37].
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Appendix A. Proofs for proposition 2.1
In this section, we will consider a diffusion process {Xx

t }t≥0 = Xx
T which follows (2.1) and has an

initial condition X0 = x ∈ Rd and we will also consider Euler discretizations (2.5), at some given
level l, which are driven by the same Brownian motion as {Xx

t }t≥0 and the same initial condition,
written (X̃x

l
, X̃x

2l
, . . .). We also consider another diffusion process {Xx�

t }t≥0 which also follows

(2.1), initial condition X0 = x� ∈ Rd with the same Brownian motion as {Xx
t }t≥0 and associated

Euler discretizations, at level l, which are driven by the same Brownian motion as {Xx�
t }t≥0 and

the same initial condition, written (X̃x�
l

, X̃x�
2l

, . . .). The purpose of signifying the initial condition
will be made apparent later on in the appendix. The expectation operator for the described process
is written Eθ .

https://github.com/fangyuan-ksgk/Hessian_Estimate
https://github.com/fangyuan-ksgk/Hessian_Estimate
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We require the following additional assumption called (D2) and all derivatives are assumed to
be well defined.

— [Σ−1]j,k ∈Bb(Rd) ∩ Lip||·||2 (Rd) (j, k) ∈ {1, . . . , d}2.

— For any θ ∈Θ , aj
θ ∈Bb(Rd), σ j,k ∈Bb(Rd), (j, k) ∈ {1, . . . , d}2.

— For any θ ∈Θ , there exists 0<C<C<+∞ such that for any (x, y) ∈ Rd × Rdy , C ≤
gθ (y|x) ≤ C. In addition for any (θ , y) ∈Θ × Rdy , gθ (y|·) ∈ Lip||·||2 (Rd).

— For any (θ , y) ∈Θ × Rdy , ∂
∂θ (i) (log{gθ (y|·)}) ∈Bb(Rd) ∩ Lip||·||2 (Rd), i ∈ {1, . . . , dθ }.

— For any θ ∈Θ ,

∂

∂θ (i)
(b(j)
θ ),

∂

∂θ (i)
(b(j)
θ )2,

∂2

∂θ (i)∂θ (k)
(b(j)
θ ),

∂2

∂θ (i)∂θ (k)
(b(j)
θ )2 ∈Bb(Rd) ∩ Lip||·||2 (Rd)

(i, k, j) ∈ {1, . . . , dθ }2 × {1, . . . , d}.

The following result is proved in [22] and is lemma 1 of that article.

Lemma A.1. Assume (D1-2). Then for any (n, r, θ , i) ∈ N × [1, ∞) ×Θ × {1, . . . , dθ }, there exists a
C<∞ such that for any (l, x) ∈ N0 × Rd

Eθ [|Gl
θ (Xl,x

T )(i) − Gθ (Xx
T)(i)|r]1/r ≤ C1/2

l .

We have the following result which can be proved using very similar arguments to lemma A.1.

Lemma A.2. Assume (D1-2). Then for any (n, r, θ , i, j) ∈ N × [1, ∞) ×Θ × {1, . . . , dθ }2, there exists a
C<∞ such that for any (l, x) ∈ N0 × Rd:

Eθ [|ϕθ (X̃x
1:n)Gl

θ (Xl,x
T )(i) − ϕθ (Xx

1:n)Gθ (Xx
T)(i)|r]1/r ≤ C1/2

l ,

Eθ [|ϕθ (X̃x
1:n)Hl

θ (Xl,x
T )(ij) − ϕθ (Xx

1:n)Hθ (Xx
T)(ij)|r]1/r ≤ C1/2

l

and Eθ [|ϕθ (X̃x
1:n)Gl

θ (Xl,x
T )(i)Gl

θ (Xl,x
T )(j) − ϕθ (Xx

1:n)Gθ (Xx
T)(i)Gθ (Xx

T)(j)|r]1/r ≤ C1/2
l .

Proof of proposition 2.1. In the following proof, we will suppress the initial condition from the
notation. We have

H
l,(ij)
θ − H

(ij)
θ =

3∑
j=1

Tj,

where

T1 = Eθ [ϕθ (X̃1:n)Gl
θ (Xl

T)(i)]

Eθ [ϕθ (X̃1:n)]

Eθ [ϕθ (X̃1:n)Gl
θ (Xl

T)(j)]

Eθ [ϕθ (X̃1:n)]

− Eθ [ϕθ (X1:n)Gθ (XT)(i)]
Eθ [ϕθ (X1:n)]

Eθ [ϕθ (X1:n)Gθ (XT)(j)]
Eθ [ϕθ (X1:n)]

,

T2 = Eθ [ϕθ (X̃1:n)Gl
θ (Xl

T)(i)Gl
θ (Xl

T)(j)]

Eθ [ϕθ (X̃1:n)]
− Eθ [ϕθ (X1:n)Gθ (XT)(i)Gθ (XT)(j)]

Eθ [ϕθ (X1:n)]

and T3 = Eθ [ϕθ (X̃1:n)Hl
θ (Xl

T)(ij)]

Eθ [ϕθ (X̃1:n)]
− Eθ [ϕθ (X1:n)Hθ (XT)(ij)]

Eθ [ϕθ (X1:n)]
.

We remark that

|Eθ [ϕθ (X̃1:n)] − Eθ [ϕθ (X1:n)]| ≤ C1/2
l , (A 1)



22

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210710

..........................................................

by using (D2) and convergence of Euler approximations of diffusions. For T1, we have

T1 =
(

Eθ [ϕθ (X̃1:n)Gl
θ (Xl

T)(i)]

Eθ [ϕθ (X̃1:n)]
− Eθ [ϕθ (X1:n)Gθ (XT)(i)]

Eθ [ϕθ (X1:n)]

)
Eθ [ϕθ (X̃1:n)Gl

θ (Xl
T)(j)]

Eθ [ϕθ (X̃1:n)]

+ Eθ [ϕθ (X1:n)Gθ (XT)(i)]
Eθ [ϕθ (X1:n)]

(
Eθ [ϕθ (X̃1:n)Gl

θ (Xl
T)(j)]

Eθ [ϕθ (X̃1:n)]
− Eθ [ϕθ (X1:n)Gθ (XT)(j)]

Eθ [ϕθ (X1:n)]

)
.

So one can easily deduce by ([22], theorem 1) and (D2) that for some C that does not depend
upon l

T1 ≤ C1/2
l .

Now for any real numbers, a, b, c, d with b, d non-zero, we have the simple identity

a
b

− c
d

= a
bd

[d − b] + 1
d

[a − c].

So for T2, T3 combining this identity with lemma A.2, (A 1) and (D2) one can easily conclude that
for some C that does not depend upon l

max{T2, T3} ≤ C1/2
l .

From here, the proof is easily concluded. �

We end the section with a couple of results which are more-or-less direct corollaries of ([22],
remarks 1 & 2). We do not prove them.

Lemma A.3. Assume (D1–D2). Then for any (i, j, r, θ ) ∈ {1, . . . , dθ }2 × [1, ∞) ×Θ , there exists a C<
∞ such that for any (l, x, x�) ∈ N × R2d

Eθ [|Hl
θ (Xl,x

T )(ij) − Hl−1
θ (Xl−1,x�

T )(ij)|r]1/r ≤ C
(


1/2
l + ||x − x�||2

)
Eθ [|Gl

θ (Xl,x
T )(i)Gl

θ (Xl,x
T )(j) − Gl−1

θ (Xl−1,x�
T )(i)Gl−1

θ (Xl−1,x�
T )(j)|r]1/r

≤ C
(


1/2
l + ||x − x�||2

)
.

Appendix B. Algorithms

Algorithm 4 . Driving Coupled Conditional Particle Filter at level 0.

1. Input (x1:n
′, x̄1:n

′) ∈ Z0. Set k=1, (xi
0, x̄i

0)=(x�, x�), ai
0=āi

0=i for i ∈ {1, . . . , N − 1}.
2. Sampling: for i ∈ {1, . . . , N − 1} sample (xi

k, x̄i
k)|(xai

k−1
k−1, x̄

āi
k−1

k−1) using the Markov
kernel p̌0

θ in Algorithm 2. Set (xN
k , x̄N

k )=(xk
′, x̄k

′) and for i ∈ {1, . . . , N − 1},
(xi

1:k, x̄i
1:k)=((x

ai
k−1

1:k−1, xi
k), (x̄

āi
k−1

1:k−1, x̄i
k)). If k=n stop.

3. Resampling: Construct the two probability mass functions on {1, . . . , N}:

ri
1=

gθ (yk|xi
k)∑N

j=1 gθ (yk|xj
k)

ri
2=

gθ (yk|x̄i
k)∑N

j=1 gθ (yk|x̄j
k)

i ∈ {1, . . . , N}.

For i ∈ {1, . . . , N − 1} sample (ai
k, āi

k) from the maximum coupling of the two given probability
mass functions, using Algorithm 3. Set k=k+1 and return to the start of 2.
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Algorithm 5 . The Coupled Conditional Particle Filter at level 0.

1. Input (x1:n, x̄1:n) ∈ Z0.
2. Run Algorithm 4.
3. Construct the two probability mass functions on {1, . . . , N}:

ri
1=

gθ (yn|xi
n)∑N

j=1 gθ (yn|xj
n)

ri
2=

gθ (yn|x̄i
n)∑N

j=1 gθ (yn|x̄j
n)

i ∈ {1, . . . , N}.

Sample (i, j) ∈ {1, . . . , N}2 from the maximum coupling of the two given probability mass

functions, using Algorithm 3. Return (xi
1:n, x̄j

1:n) which are the path of samples at indices i
and j in step 2 of Algorithm 4 when k=n.

Algorithm 6 . Computing Ξ0
θ .

1. Initialize the Markov chain by generating Z0 using (3.4). Set m=1
2. Generate Zm|Zm−1 using the Markov kernel described in Algorithm 5. If x1:n(m)=x̄1:n(m) stop

and return Ξ0=π̂0
θ (G0

θ ) as in (3.5). Otherwise set m=m+1 and return to the start of 2.

Algorithm 7 . Simulating the Kernel q̌l
θ .

1. Input (xl
0, x̄l

0, xl−1
0 , x̄l−1

0 ) ∈ R4d and the level l ∈ N0.

2. Generate Vkl

i.i.d.∼ Nd(0,lId), for k ∈ {1, . . . ,−1
l }.

3. Run the two recursions, for k ∈ {1, . . . ,−1
l }:

Xl
kl

&=&Xl
(k−1)l

+aθ (Xl
(k−1)l

)l+σ (Xl
(k−1)l

)Vkl

X̄l
kl

&=&X̄l
(k−1)l

+aθ (X̄l
(k−1)l

)l+σ (X̄l
(k−1)l

)Vkl .

4. Run the two recursions, for k ∈ {1, . . . ,−1
l−1}:

Xl−1
kl

&=&Xl−1
(k−1)l

+aθ (Xl−1
(k−1)l

)l+σ (Xl−1
(k−1)l

)[V(2k−1)l+V2kl ]

X̄l−1
kl

&=&X̄l−1
(k−1)l

+aθ (X̄l−1
(k−1)l

)l+σ (X̄l−1
(k−1)l

)[V(2k−1)l+V2kl ].

5. Return (xl
l:1

, x̄l
l:1

, xl−1
l−1:1, x̄l−1

l−1:1) ∈ R
−1
l 2d × R

−1
l−12d.
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Algorithm 8. Simulating a Maximal Coupling of Maximal Couplings associated with Four
Probability Mass Functions on {1, . . . , N}.

1. Input: Four PMFs (r1
1, . . . , rN

1 ), . . . , (r1
4, . . . , rN

4 ) on {1, . . . , N}.
2. If ri

1=ri
3 for every i ∈ {1, . . . , N} and there exists at least one i ∈ {1, . . . , N} such that ri

2 �= ri
4 then sample (i1, i2) according

to the maximal coupling of (ri1
1 , r

i2
2 ) in Algorithm 3. Implement 5. with ri

5=ri
1 and ri

6=ri
4, i ∈ {1, . . . , N} and i5=i1. Set

(i3, i4)=(i5, i6) where (i5, i6) have been computed from step 5. Go to 7.
3. If ri

2=ri
4 for every i ∈ {1, . . . , N} and there exists at least one i ∈ {1, . . . , N} such that ri

1 �= ri
3 then sample (i1, i2) according

to the maximal coupling of (ri1
1 , r

i2
2 ) in Algorithm 3. Implement 5. with ri

5=ri
2 and ri

6=ri
3, i ∈ {1, . . . , N} and i5=i2. Set

(i3, i4)=(i6, i5) where (i5, i6) have been computed from step 5. Go to 7.
4. Otherwise implement 6. with ri

j+6=ri
j, (i, j) ∈ {1, . . . , N} × {1, . . . , 4}. Set (i1, . . . , i4)=(i7, . . . , i10) where (i7, . . . , i10) have been

computed from step 6. Go to 7.
5. Conditional Algorithm based on [38].

(a) Input two PMFs (r1
5, . . . , rN

5 ), (r1
6, . . . , rN

6 ) on {1, . . . , N} and i5 ∈ {1, . . . , N} drawn according to r5.

(b) Sample U ∼U
[0,r

i5
5 ]

. If U< r
i5
6 set i6=i5 and go to (c). Otherwise go to (b).

(c) Sample i6 ′ from r
i6

′
6 . Sample U′ ∼U

[0,r
i6

′
6 ]

. If U′ > r
i6

′
5 set i6=i6 ′ and go to (c). Otherwise start (b) again.

(d) Output: (i5, i6).

6. Sampling Maximal Couplings of Maximal Couplings

(a) Input four PMFs (r1
7, . . . , rN

7 ), . . . , (r1
10, . . . , rN

10) on {1, . . . , N}. For j ∈ {7, 9} define the PMFs

řj(ij, ij+1)=r
ij
j ∧ r

ij+1
j+1 +

r
ij
j − r

ij
j ∧ r

ij
j+1

1 −∑N
i=1 ri

j ∧ ri
j+1

{
r

ij+1
j+1 − r

ij+1
j ∧ r

ij+1
j+1

}
.

(b) Sample (i7, i8) according to the maximal coupling of (ri7
7 , r

i8
8 ) in Algorithm 3. Generate U ∼U[0,ř7(i7,i8)]. If

U< ř9(i7, i8) set (i9, i10) = (i7, i8) and go to (d). Otherwise go to (c).

(c) Sample (i9 ′, i10
′) according to the maximal coupling of (r

i9
′

9 , r
i10

′
10 ) in Algorithm 3. Sample U′ ∼U[0,ř9(i9

′ ,i10
′ )]. If

U′ > ř7(i9 ′, i10
′) set (i9 ′, i10

′)=(i9, i10) and go to (d). Otherwise start (c) again.
(d) Output: (i7, i8, i9, i10).

7. Output: (i1, i2, i3, i4) ∈ {1, . . . , N}4. ij, marginally has PMF ri
j, j ∈ {1, . . . , 4}.

Algorithm 9 . Coupled Conditional Particle Filter at level l, l − 1, l ∈ N.

1. Input (xl:n
′, x̄l−1:n

′) ∈ Xl × Xl−1. Set k=1, (xi
0, x̄i

0)=(x�, x�), ai
0=āi

0=i for i ∈ {1, . . . , N − 1}.
2. Sampling: for i ∈ {1, . . . , N − 1} sample (xi

k−1+l:k
, x̄i

k−1+l−1:k)|(xai
k−1

k−1, x̄
āi

k−1
k−1) using the

Markov kernel q̌(l)
θ in (3.6). Set (xN

k−1+l:k
, x̄N

k−1+l−1:k)=(xk−1+l:k
′, x̄k−1+l−1:k

′) and for

i ∈ {1, . . . , N − 1}, (xi
l:k

, x̄i
l−1:k)=((x

ai
k−1
l:k−1, xi

k−1+l:k
), (x̄

āi
k−1
l−1:k−1, x̄i

k−1+l−1:k)). If k=n go
to 4.

3. Resampling: Construct the two probability mass functions on {1, . . . , N}:

ri
1=

gθ (yk|xi
k)∑N

j=1 gθ (yk|xj
k)

ri
2=

gθ (yk|x̄i
k)∑N

j=1 gθ (yk|x̄j
k)

i ∈ {1, . . . , N}.

For i ∈ {1, . . . , N − 1} sample (ai
k, āi

k) from the maximum coupling of the two given
probability mass functions, using Algorithm 3. Set k=k+1 and return to the start
of 2.

4. Construct the two probability mass functions on {1, . . . , N}:

ri
1=

gθ (yn|xi
n)∑N

j=1 gθ (yn|xj
n)

ri
2=

gθ (yn|x̄i
n)∑N

j=1 gθ (yn|x̄j
n)

i ∈ {1, . . . , N}.

Sample (i, j) ∈ {1, . . . , N}2 from the maximum coupling of the two given probability mass

functions, using Algorithm 3. Return (xi
l:n, x̄j

l−1:n) which are the path of samples at indices i
and j in step 2. when k=n.
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Algorithm 10 . Driving Coupled Conditional Particle Filter at level l ∈ N.

1. Input ((xl
l:n, x̄l

l:n), (xl−1
l−1:n, x̄l−1

l−1:n)) ∈ Zl × Zl−1. Set k=1, (xi,l
0 , x̄i,l

0 )=(x�, x�)=(xi,l−1
0 , x̄i,l−1

0 ),

ai,l
0 =āi,l

0 =ai,l−1
0 =āi,l−1

0 =i for i ∈ {1, . . . , N − 1}.
2. Sampling: for i ∈ {1, . . . , N − 1} sample(

(xi,l
k−1+l:k

, x̄i,l
k−1+l:k

), (xi,l−1
k−1+l−1:k, x̄i,l−1

k−1+l−1:k)
)∣∣∣(

(x
ai,l

k−1,l
k−1 , x̄

āi,l
k−1,l

k−1 ), (x
ai,l−1

k−1 ,l−1
k−1 , x̄

āi,l−1
k−1 ,l−1

k−1 )
)

using the Markov kernel q̌l
θ in Algorithm 7. Set(
(xN,l

k−1+l:k
, x̄N,l

k−1+l:k
), (xN,l−1

k−1+l−1:k, x̄N,l−1
k−1+l−1:k)

)
=(

(xl
k−1+l:k, x̄l

k−1+l:k), (xl−1
k−1+l−1:k, x̄l−1

k−1+l−1:k)
)

and for i ∈ {1, . . . , N − 1}

(xi,l
l:k

, x̄i,l
l:k

)&=
(

(x
ai,l

k−1,l
l:k−1, xi,l

k−1+l:k
), (x̄

āi,l
k−1,l−1
l:k−1 , x̄i,l

k−1+l:k
)
)

,

(xi,l−1
l−1:k, x̄i,l−1

l−1:k)&=
(

(x
ai,l−1

k−1 ,l
l−1:k−1, xi,l−1

k−1+l−1:k), (x̄
āi,l−1

k−1 ,l−1
l−1:k−1, x̄i,l−1

k−1+l:k
)
)

.

If k=n stop.
3. Resampling: Construct the four probability mass functions on {1, . . . , N}:

ri
1=

gθ (yk|xi,l
k )∑N

j=1 gθ (yk|xj,l
k )

ri
3=

gθ (yk|x̄i,l
k )∑N

j=1 gθ (yk|x̄j,l
k )

i ∈ {1, . . . , N},

and

ri
2=

gθ (yk|xi,l−1
k )∑N

j=1 gθ (yk|xj,l−1
k )

ri
4=

gθ (yk|x̄i,l−1
k )∑N

j=1 gθ (yk|x̄j,l−1
k )

i ∈ {1, . . . , N}.

For i ∈ {1, . . . , N − 1} sample (ai,l
k , ai,l−1

k , āi,l
k , āi,l−1

k ) using Algorithm 8. Set k=k+1 and return to
the start of 2.

Algorithm 11 . The Coupled-CCPF at level l ∈ N.

1. Input ((xl
l:n, x̄l

l:n), (xl−1
l−1:n, x̄l−1

l−1:n)) ∈ Zl × Zl−1.
2. Run Algorithm 10.
3. Construct the four probability mass functions on {1, . . . , N}:

ri
1=

gθ (yn|xi,l
n )∑N

j=1 gθ (yn|xj,l
n )

ri
3=

gθ (yn|x̄i,l
n )∑N

j=1 gθ (yn|x̄j,l
n )

i ∈ {1, . . . , N},

and

ri
2=

gθ (yn|xi,l−1
n )∑N

j=1 gθ (yn|xj,l−1
n )

ri
4=

gθ (yn|x̄i,l−1
n )∑N

j=1 gθ (yn|x̄j,l−1
n )

i ∈ {1, . . . , N}.

Sample (i1, i2, i3, i4) ∈ {1, . . . , N}4 using Algorithm 8. Return ((xi1,l
l:n, x̄i3,l

l:n), (xi2,l−1
l−1:n, x̄i4,l−1

l−1:n))
which are the path of samples at indices i1:4 in step 2. of Algorithm 10 when k=n.
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Algorithm 12 . Computing Ξ l
θ .

1. Initialize the Markov chain by generating Žl
0 using (3.7). Set m=1

2. Generate Žl
m|Žl

m−1 using the Markov kernel described in Algorithm 11. If xl
l:n(m)=x̄l

l:n(m)

and xl−1
l−1:n(m)=x̄l−1

l−1:n(m) stop and return Ξ l
θ=π̂ l

θ (Gl
θ ) − π̂ l−1

θ (Gl−1
θ ) where π̂ s

θ (Gs
θ ), s ∈ {l, l − 1},

is as (3.8). Otherwise set m=m+1 and return to the start of 2.
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