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Abstract: The Western diet, characterized by excessive consumption of animal protein and reduced
intake of vegetables and fruits, is also rich in sulfur, chlorine, and organic acids, which are the main
sources of dietary acid load. A relationship between dietary acid load, renal function, and progression
of chronic kidney disease has been demonstrated. Dietary modifications seem to contribute to a
reduction in dietary acid load, and are associated with improved outcomes in individuals with
chronic kidney disease (CKD). The aim of this paper was to review the existing evidence concerning
the association between dietary acid load and renal function in nondialyzed individuals with CKD. A
systematic review was conducted by gathering articles in electronic databases (MEDLINE/PubMed,
Scopus, and Web of Science) from January 2018 to May 2021. Dietary acid load and GFR and/or
albuminuria were analyzed. A total of 1078 articles were extracted, of which 5 met the inclusion
criteria. Only one study found no statistically significant associations between the study variables.
The remaining showed a negative association between dietary acid load and renal function. This
systematic review confirmed the existence of an association between dietary acid load and renal
function, with a high dietary acid load contributing to a decreased renal function.

Keywords: chronic renal insufficiency; acidosis; diet

1. Introduction

Chronic kidney disease (CKD) is a widespread public health problem throughout
the Western world, and is growing in the community [1]. This condition affects about
10% of the world’s population. There are several risk factors associated with CKD, with
diabetes being the main one, followed by hypertension (HT) and glomerulonephritis. The
first two are responsible for 60% of the aetiology of this disease. About 1 in 3 people
with diabetes and 1 in 5 people with hypertension have CKD. Cardiovascular disease and
obesity are, together with the above, important diet-related risk factors that can condition
the progression of CKD [2,3].

The estimated prevalence of CKD worldwide is 9.1%, contributing to 1.2 million deaths
in 2017. According to the 2017 Global Burden of Disease Study, CKD is the 12th leading
cause of death, out of 133 diseases [4]. The prevalence of CKD at stages 1–3 is 1.29 times
higher in females than in males. On the other hand, mortality is 1.39 times higher in males,
suggesting that men progress more rapidly to more advanced stages of CKD [4].

Diet is considered the most important individual factor affecting individual’s acid–
base status. Typical Western diets, rich in protein of animal origin, provide about 1mmol/kg
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body weight/day of endogenous excretion of H+, mainly due to the metabolism of sulfur-
rich amino acids (methionine and cysteine). On the other hand, food constituents that
are precursors of bases are mostly of plant origin (involves the metabolism of organic
anions such as citrate and malate). Total acid excretion is analytically quantified by the 24-h
urine collection, whereby the urinary excretion of ammonia is quantified. The analytical
determination of total acid excretion reflects the renal acid load in healthy individuals [5].

On the other hand, total urinary acid excretion can be reasonably estimated through
dietary intake, intestinal absorption, and urinary metabolism of major inorganic anions
and cations. Taking these observations into account, Remer and Manz developed a model
known as the Renal Acid Load Potential (PRAL) [6,7]. With the use of nutrient intake data,
this method assesses the acid load produced by the diet. Thus, it is possible to estimate the
total acidity of the diet.

This model takes into account the intake of protein, phosphorus, potassium, magne-
sium, and calcium, and is based on the average intestinal absorption rate of each nutrient
and the urinary excretion of organic acids (OA) [6,7]. When the PRAL value for a certain
food is below 0, it can be assumed that it increases the alkalinity of body fluids. On the
contrary, when it is above 0, the production of acids is potentiated by this food. In general,
foods such as meat, eggs, cheese, and cereals increase acid production, while fruits and
vegetables enhance the production of alkaline compounds in the body. Milk and milk
products, sugar, and fat are considered neutral, since they have a reduced effect on the
acid–base balance [6–8].

Nutritional therapy is an essential component in the prevention and treatment of CKD,
with intervention in the predialysis phase focusing on the reduction of some nutrients such
as protein, phosphorus, and sodium [9,10]. These dietary modifications, recommended by
current guidelines, lead to a reduction in dietary acid load (DAL) and are associated with
improved outcomes in individuals with CKD [9,11].

Since acid–base homeostasis is maintained through urinary acidification, as renal
function degrades, the need for acidification by the residual nephrons increases. This leads
to an increase in ammonia production, partly controlled by endothelin, causing injury to the
residual nephrons [12]. Acid retention also has the potential to promote muscle degradation
as part of the homeostatic process to normalize the acid–base balance. Metabolic acidosis
increases proteolysis in skeletal muscle, contributing to an adverse impact on the patient’s
nutritional status. Based on these mechanisms, individuals with CKD stages 1 to 4 should
follow the KDOQI guidelines which suggest reducing endogenous acid production (NEAP)
through dietary intake of fruit and vegetables to slow down the rate of residual renal
function decline [13].

The aim of this paper was to conduct a systematic review to analyze possible as-
sociations between dietary acid load and renal function. There is already a systematic
review with a meta-analysis on the same topic, but which only included observational
study articles published up to 2018. Since there is high scientific production on the subject
of kidney disease, we expected that studies published in recent years would corroborate or
refute this association.

2. Materials and Methods
2.1. Protocol and Registration

The protocol for this systematic review was registered in the International Prospective
Register of Systematic Reviews (PROSPERO) under the registration number CRD42021270640.

2.2. Search Strategy

A systematic literature search was conducted using the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) checklist [14] to assess the updated
scientific evidence concerning the association between dietary acid load and renal function
in nondialyzed CKD patients.
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The latest systematic review on this topic data was published in 2018, thus, articles
published between January 2018 and May 2021 in the MEDLINE/PubMed, Scopus and
Web of Science databases were considered.

The search query was divided into 2 parts and included the MeSH terms chronic
renal insufficiency, chronic kidney failure, kidney diseases, renal insufficiency, albuminuria,
proteinuria, glomerular filtration rate, acid base imbalance, metabolic acidosis, Western
diet, high-protein diet and plant-base diet. Non-MeSH terms such as CKI, CRF, ESRD, CKD,
serum creatinine, serum albumin, microalbuminuria, urine albumin, serum bicarbonate,
urine albumin excretion rate, urine protein, urine protein excretion, urine albumin to
creatinine ratio, urine creatinine, urine albumin, serum pH, dietary acid load, potential
renal acid load, net endogenous acid production, net acid excretion, gastrointestinal alkali
absorption, were also included.

2.3. Study Selection and Eligibility Criteria

Regarding the inclusion criteria, studies with the following criteria were selected:
Original studies; articles published in Portuguese (the authors, natural language) and
English; studies published between 1 January 2018 and 30 May 2021; studies containing
the calculation of dietary acid load (obtained by PRAL and/or NAE) and simultaneously
calculation of renal function (albuminuria and/or GFR); studies with adult individuals
with chronic renal insufficiency; and studies conducted in adults (age ≥18 years).

Studies with the following characteristics were excluded: articles such as commen-
taries, letters to the editor, reviews, conference proceedings, opinion articles; studies that
did not present results or prevalence; studies carried out in pregnant women; and studies
in patients undergoing renal function replacement therapy.

2.4. Risk of Bias Assessment

The evaluation of the articles was carried out independently by two researchers (L.S.
and A.F.). Articles in which there was no consensus between the two investigators on
whether to include or exclude them were discussed with a third investigator (A.C.M.).
Analysis of the articles was performed using the Rayyan software.

Full-text included articles were assessed for their methodological quality using the
Newcastle–Ottawa scale [15]. In this systematic review, studies with scores higher than 6
were considered as high-quality studies.

3. Results

Initially, 1409 articles were identified; 435 in PubMed, 595 in Scopus, and 378 in Web of
Science, of which 329 were duplicates. After assessment of title and abstract, 1065 articles
were excluded for being review papers, animal studies, studies conducted with children,
and irrelevant studies regarding the topic (studies that did not assess CKD or markers that
did not include the defined outcomes). In the end, the eligibility of 12 articles gathered was
assessed by reading them in full. After exclusion of seven publications, five articles were
finally included in the systematic review. Of the seven excluded articles, two were written
in a language other than English or Portuguese, two assessed variables other than those
defined, and three were excluded for not fitting the type of study criterion.

The organigram for the selection of articles is shown in Figure 1, and the results are de-
scribed in Table 1. The total scores regarding the methodological quality of the analyzed articles
are presented in Table 1 and partial scores can be found in supplementary material Table S1.



Nutrients 2022, 14, 170 4 of 11
Nutrients 2021, 13, x  4 of 11 
 

 

 
Figure 1. Diagram for the selection of articles. 

Table 1. Analyzed studies. 

Reference Study Type Population n 
Clinical 

Characteristics 
(%) 

Intervention 
(Calculation 

of) 
Results ES 

[16] Cross-sectional 
cohort 

Patients followed 
between 2008 and 

2014 in Niigata, 
Japan 

95 DM2: 64  
HTA: 100 

NEAP and 
GFR 

The reduction in 
mean GFR was 

significantly 
greater in patients 

with a higher 
NEAP 

8 

[17] Cross-sectional 
cohort 

African American 
patients in the 

Jacson Heart study, 
2000 to 2004 in 

Mississippi, USA 

3275 
DM2: 20,6  
HT: 61,3  
CVD: 7,8 

NAE, PRAL, 
GFR, and 

ACR 

A higher DAL was 
associated with 
reduced renal 

function 

8 

[18] Cross-sectional 
cohort 

Participants in the 
Uonuma Cohort 

study, 2012 to 2015 
in Niigata, Japan 

6684 DM2: 6,6  
HT: 51,2 

NEAP, PRAL, 
GFR, and 

ACR 

A higher NEAP 
was associated 

with a higher ACR; 
a higher NEAP was 

9 

Figure 1. Diagram for the selection of articles.

Table 1. Analyzed studies.

Reference Study Type Population n
Clinical Char-

acteristics
(%)

Intervention
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Japan
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HTA: 100
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The reduction in
mean GFR was

significantly greater
in patients with a

higher NEAP

8

[17] Cross-sectional
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Table 1. Cont.

Reference Study Type Population n
Clinical Char-

acteristics
(%)

Intervention
(Calculation

of)
Results ES

[19]
Prospective

observational
study

African American
participants in the
CRIC study, 2003

to 2008, USA

1048
DM2: 50
HT: 93,3
CVD: 38

PRAL, NEAP,
and GFR

No association
between PRAL and
CKD progression

was found

9

[20] Cohort
Participants in the
CRIC study, 2003

to 2008, USA
978 DM2: 50,7 NAE and

GFR

A higher NAE was
associated with a

higher GFR
9

DM2 = diabetes mellitus 2; HT = hypertension; CVD= cardiovascular disease; NAE = net acid excretion;
NEAP = net endogenous acid production; PRAL = potential renal acid load; ACR = albumin/creatinine ra-
tio; DAL = dietary acid load; OR = odds ratio; ES = evidence score.

The included studies were published between 2018 and 2019 and were conducted in
the United States of America (USA) (n = 3) or Japan (n = 2). All assessed the association
of dietary acid load (DAL) in individuals of both genders in samples ranging from 95 to
6684 individuals. DAL was assessed using PRAL (n = 3), NEAP (n = 3), or NAE (n = 2),
with three studies using both PRAL and NEAP [16–19].

In 2019, Pike and colleagues [19] conducted a prospective observational study aiming
to assess possible associations between metabolic acidosis or dietary acid load and CKD
progression according to APOL1 genotype. This study had a mean follow-up period of
7 years, evaluating 1048 African American participants. Regarding the intervention, dietary
acid load was calculated by applying a Food Frequency Questionnaire (FFQ) validated
for the study population, and subsequent calculation of PRAL (by the Remer and Manz
equation) [6,7] and NEAP (Frassetto equation) [21,22]. Participants were divided into
quartiles according to NEAP, and the outcomes defined were GFR and development of
acute kidney injury. After adjustment for confounding variables, no associations were
detected between dietary acid load and kidney disease progression in any APOL1 genotype
(HR, 0.98; 95% CI, 0.93–1.04 and HR, 1.03; 0.95% CI, 0.92–1.15).

Similar to the previous study, in 2018, Banerjee and colleagues [17] also assessed
a sample of African American individuals (3275 subjects) included in a cross-sectional
cohort study that ran from 2000 to 2004. Dietary intake was assessed using a validated
FFQ for the study population, and dietary acid load was calculated using the PRAL and
urinary acid excretion equation [6,7]. Subjects were divided into tertiles according to dietary
acid load. Primary outcome variables were reduced renal function defined by GFR and
albuminuria. Among participants with hypertensive nephropathy, it was further explored
whether endothelin and aldosterone production mediated the association between DAL
and GFR. After adjustment for potential confounders, although the highest tertile of DAL
showed 1.2 times more likelihood of having albuminuria (OR 1.15; 95% CI: 0.75–1.70),
this association was not statistically significant. Only after multivariable analysis with
adjustment for confounders, the highest and the middle tertile of DAL was found to be
almost three times more likely to have reduced renal function compared with the lowest
tertile (OR 2.82; 95% CI: 1.40–4.75). A higher DAL was still statistically associated with
reduced renal function, even after adjustment for potential confounders (p = 0.02). Finally,
in the final models adjusted for aldosterone and endothelin, the statistical significance of
the association between dietary acid load and albuminuria was attenuated.

In 2019, Kabasawa and colleagues [18] conducted a cross-sectional cohort study with
6684 residents of the Uonuma region in Japan, including data from 2012 to 2015. Regarding
outcomes, GFR and albuminuria were analyzed, establishing cutoff values to define three
albuminuria intervals. Dietary acid load was calculated based on a validated FFQ for the
study population and PRAL and NEAP equations [6,7], both analyzed in quartiles. The
association between NEAP quartiles and the three levels of albuminuria was analyzed:
regarding the presence of microalbuminuria, the highest quartile of NEAP was associated
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with a higher risk (odds ratio) in men (OR 1.47; 95% CI: 1.08–1.99; p = 0.0130) and women
(OR 1.54; 95% CI: 1.11–2.14; p = 0.0014) in the fully adjusted model; regarding the presence of
high albuminuria, the highest NEAP quartile was associated with a higher risk (odds ratio)
in women (OR 1.34; 95% CI: 1.05–1.70; p = 0.0163), but not in men (OR 1.18; 95% CI: 0.93–1.51;
p = 0.2391); finally, regarding the presence of elevated albuminuria or microalbuminuria,
the highest quartile of NEAP was associated with a higher risk (odds ratio) in men (OR
1.28; 95% CI: 1.02–1.59; p = 0.0407) and women (OR 1.39; 95% CI: 1.11–1.74; p = 0.0028). An
analysis was also performed regarding the nutrients found to be associated with NEAP
and albuminuria, with an association between the highest quartile of potassium intake and
lower risk (odds ratio) for microalbuminuria. The odds ratio adjustment for the presence
of elevated albuminuria or microalbuminuria comparing the highest and lowest quartile
of potassium intake was 0.73 (95% CI: 0.57–0.94, p = 0.0094) for men and 0.75 (95% CI:
0.59–0.95, p = 0.0304) for women. In summary, there was a negative relationship between
potassium intake in early stages of albuminuria and DAL.

Toba and colleagues [16] conducted a cross-sectional cohort study published in 2019
with data from 95 patients followed at Niigata University Hospital in Japan from 2008
to 2014 to investigate the association between dietary acid load and CKD progression.
They also analyzed which types of food significantly affected DAL. A validated FFQ for
the study population was used to calculate DAL, and then the Frassetto equation was
used to estimate NEAP [22], and patients were categorized into two groups based on the
mean NEAP value. As for the outcome, the GFR was calculated. The mean GFR was
slightly higher in individuals with a higher NEAP when compared with individuals with
lower NEAP. A significant interaction (p = 0.035) was observed between time and NEAP,
showing that the decline in mean GFR was significantly higher in individuals with higher
NEAP. Analysis using logistic regression revealed that low fruit (adjusted OR, 6.45; 95% CI,
2.19–19.00; p = 0.001) and vegetable (adjusted OR, 3.87; 95% CI, 1.29 – 11.6; p = 0.016) intake
was significantly associated with high NEAP, as opposed to high red meat intake, which
was associated with higher NEAP (adjusted OR = 2.64; 95% CI, 0.92–7.61; p = 0.071).

In 2019, Brown and colleagues [20] studied a subcohort of the CRIC study. To better
understand new paradigms that linked higher acid excretion with better CKD outcomes,
they explored possible predictors of NAE. The CRIC study was a prospective observa-
tional study of 3939 individuals with CKD, who were recruited between 2003 and 2008
at 13 centers across the USA. A subgroup of 978 American participants with a mean age
of 58 years and mean GFR of 44mL/min/1.73m2 was assessed while taking into account
some clinical, demographic, laboratory, and body-composition characteristics. Regarding
the intervention, dietary acid load was measured with NAE, calculated as the sum of urine
ammonium and titratable acidity. The authors chose demographic, comorbid conditions,
medications, laboratory value predictors (including GFR estimated with the CKD epidemi-
ology collaboration equation), and PRAL (calculated using a diet history questionnaire
and using the Remer and Manz equation), which were then evaluated for an association
with NAE in unadjusted, minimally adjusted, and fully adjusted models. In the unadjusted
associations between predictors and NAE, higher NAE was associated with greater GFR
(3.65; 95% CI: 2.58 to 4.71; p < 0.001), increasing insulin resistance (2.50; 95% CI: 1.39 to 3.61;
p < 0.001), and higher PRAL (3.22; 95% CI: 1.96 to 4.48; p < 0.001), among others. After
multivariable adjustment, insulin resistance (1.51; 95% CI: 0.43 to 2.58; p = 0.006), GFR (2.99;
95% CI: 1.95 to 4.02; p < 0.001), and PRAL (1.78; 95% CI: 0.62 to 2.94; p = 0.003), among
others, remained associated with higher NAE. Finally, in the fully adjusted model, higher
NAE remained directly associated with greater GFR (3.07; 95% CI: 1.87 to 4.27; p < 0.001),
higher insulin resistance (1.76; 95% CI: 0.55 to 2.98; p = 0.005), and higher PRAL (1.79; 95%
CI: 0.56 to 3.03; p = 0.004).

4. Discussion

This systematic review aimed to update the scientific literature described on the topic
of dietary acid load and renal function in nondialyzed individuals, from 2018 to date. The
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need for an update on this topic arose because in the meantime, articles that included a large
number of patients with a high methodological quality were published [23]. Furthermore,
this topic is of extreme importance, considering the relevance to clinical practice and
nutritional therapy interventions in CKD.

This new data confirmed and brought robustness to the previous associations found
between dietary acid load and renal function. A higher dietary acid load appears to be
associated with a decline in kidney function, and according to Toba and colleagues [16],
this association was attributed to a low intake of vegetables and fruits. In both studies by
Kabasawa and Banerjee [17,18], an association was found between dietary acid load and
albuminuria, a marker defined in this systematic review for decline in renal function. The
demonstrated association between elevated normoalbuminuria and dietary acid load was
of note, as the former can lead to adverse outcomes such as cardiovascular disease, end-
stage renal disease, and increased mortality. The study by Kabasawa and colleagues [18]
further showed that potassium is an important dietary component in the association
between dietary acid load and albuminuria. On the other hand, the study by Pike and
colleagues [19] could not show a statistically significant relationship between outcomes.
Acidosis was associated with CKD progression in the "raw" analysis, but not when adjusted
for confounders, as the data lacked statistical power to detect an effect of this magnitude.
The authors mentioned as a major limitation the lack of statistical power, since the study
lacked power to detect associations of a small magnitude. According to the authors, lower
acid excretion may be a reflection of impaired ability of the kidney to excrete ammonia
than of a decrease in acid load, a hypothesis that was in line with the results obtained by
Brown and colleagues. It should be noted, however, that Pike and colleagues reinforced
the idea that dietary acid load is a modifiable risk factor of importance in the therapy of
patients at risk for ESRD [19].

As pointed out above, Brown et al. suggested a novel hypothesis, that higher NAE
levels were associated with a lower risk for CKD progression in patients with diabetes.
Differences between predicted and measured acid load may be due to an incomplete
understanding of the determinants of acid excretion. In this study, the authors suggested
that differences in basal energy metabolism resulted in acid production independent from
diet, with greater impact than diet or kidney function. As pointed out by the authors, in
the study, urine specimens were tested after storage of up to 10 years, which may have
affected the accuracy of measurements. It is also important to mention that this study used
a different calculation methodology for NAE, compared to the other studies presented in
this review. Thus, comparison between studies was hampered. The authors stated that
more studies with metabolic assessment were necessary to test the new paradigm [20].

The importance of the topic of this systematic review and consequent update for the
clinical practice of healthcare professionals in the context of CKD has become increasingly
evident. Recent literature expresses the fact that despite multiple therapies, the reduction
in GFR remains progressive [13]. Thus, there is a need for further adjuvant interventions
to protect kidney functions. Due to these findings, the Kidney Disease Outcomes Quality
Initiative Guidelines suggest that increased fruit and vegetable intake may reduce body
weight, blood pressure, and endogenous acid production, based on a grade 2C recommen-
dation [13].

The main cause of CKD is diabetic nephropathy, accounting for 30–40% of cases.
On the other hand, glumerolonephritis accounts for approximately 15% of CKD cases,
and primarily affects younger people [24]. Hypertension is present in approximately
80–85% of individuals with CKD, and can be both a cause and a consequence of CKD [25].
Individuals with CKD, regardless of diagnosis, are at high risk of cardiovascular disease,
including coronary heart disease, cerebrovascular disease, peripheral vascular disease, and
heart failure. Most individuals with CKD die from complications related to cardiovascular
disease, rather than progressing to kidney failure [26]. The clinical characteristics of patients
included in the analyzed studies (shown in Table 1) were in line with the prevalence of CKD-
related diseases described in the literature. Patients included in the selected studies were
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representative of the general population. Thus, prevention and treatment of cardiovascular
risk factors through nutritional therapy is of utmost importance for CKD control.

Patients with diabetic nephropathy are clinically characterized by a more rapidly
decline in renal function over time. According to Sasso and colleagues [24], weight, al-
bumin excretion rate, and sodium excretion reduction are of great importance in blood
pressure control in diabetic patients with diabetic nephropathy. The study by Sasso et all
also emphasized that type 2 diabetic patients with diabetic nephropathy should receive
intensive multifactorial treatment on cardiovascular and renal factors. As pointed out
earlier, cardiovascular risk factors in patients with kidney disease led to late complications
and worse outcomes. These risk factors are modifiable, and can be prevented/treated with
dietary interventions. More recently, Sasso and colleagues [27] carried out a multicenter,
cluster-randomized, open-label clinical trial with diabetic kidney disease patients; they
concluded that implementing an intensive multifactorial treatment of cardiovascular risk
factors is an important approach to significantly reduce the risk of major fatal and nonfatal
cardiovascular events in type 2 diabetic kidney disease patients.

In the context of emerging evidence over recent years, healthy eating patterns that
include plant-based foods may not only be safely incorporated into the diet of individuals
with CKD, but may also favorably assist in disease management. Unlike drug therapy,
dietary-level changes have the potential to address the cause of lifestyle-related diseases
for many individuals, and may result in improvement of multiple disease processes simul-
taneously [28,29].

The calculation methodology based primarily on PRAL allows an appropriate estima-
tion of dietary effects on urine acidity. The NAE calculation has already been validated in
healthy adults, and shows that acid load and renal acid excretion can be reliably estimated
from diet composition [6,7]. As described by Remer and Manz, animal protein and cere-
als are considered acid-inducing foods, which are in turn metabolized into acidic waste
products. Animal protein has high levels of phosphorus, thus contributing to the acidity
of body fluids. We can therefore say, according to the equations of Remer and Manz, that
diets rich in protein present a greater acid load.

In addition to having potential implications for kidney function and structure, high-
protein diets can lead to other metabolic complications. A high-protein diet can lead to
elevated levels of urea and other nitrogenous waste products. As discussed earlier, a
high-protein diet can lead to metabolic acidosis in individuals with advanced CKD who
already have deficient acid excretion and bicarbonate generation on their own, especially
in the context of animal protein.

Our results were consistent with one literature review published in 2020 [30] that
found that food-borne acid may be a risk factor for CKD through intrarenal mechanisms
that promote kidney injury and progressive decline in GFR. In an animal model of CKD,
chronic metabolic acidosis could stimulate the production of angiotensin II, aldosterone,
and endothelin-1, as well as ammonia genesis, all of which have the potential to promote
inflammation and fibrosis [29].

As described earlier, the standard American diet, in which protein comprises about
15% of energy, produces a dietary acid load of approximately 1 mEq/kg/day [29]. In
contrast, by including a greater proportion of naturally alkaline foods such as fruit and
vegetables in the diet, the diet can become almost neutral. Plant-based foods can thus be
used to reduce both the acid load of the diet and the severity of metabolic acidosis [28,29].
In a randomized controlled trial with 108 individuals with stage III CKD, the administration
of 2 to 4 cups of fruit and vegetables per day was comparable with oral sodium bicarbonate
intake in increasing serum bicarbonate levels in the treatment of metabolic acidosis after a
3-year period [31]. These results were in line with our findings in this systematic review; for
example, the findings of Toba and colleagues regarding the influence of fruit and vegetables
on the association between acid load and renal function [16].

Our systematic review used articles based on data from large cohorts in the USA and
Japan. The methodology for intake assessment was solid, since the studies applied food
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frequency questionnaires validated for the populations in question, and thus correctly
assessed what was intended. Other strengths of the studies used in our review were the
inclusion of confounders in the analysis between renal outcomes. We followed the steps
and stages of the PRISMA checklist to reduce the risk of biases associated with the search
and analysis of articles.

The limitations of this study cannot be underestimated. The studies used for this
systematic review were all observational studies, which did not allow assessing a causal
relationship between dietary acid load and renal function. In addition, all the studies
used food frequency questionnaires that, although validated, were carried out by the
patient themselves, which could have led to errors in their completion: in addition to
relying on memory, it is difficult to estimate portion sizes, and recall of previous intake
may be influenced by current intake. However, any other method of intake assessment
also presents the possibility of bias. Thus, their complexity and length may influence
adherence [32]. In almost all studies, the exclusion of individuals during the process of
applying inclusion criteria may also have resulted in bias in the studies themselves. With
regard to the construction and development of the review itself, studies with languages
other than English were excluded, and only three databases were used to search for articles,
which may have led to the loss of articles that had the possibility of being included. On the
other hand, the databases considered to be more comprehensive were chosen.

Since a few years have passed since the latest review on the topic was carried out, and
bearing in mind that the latter included only observational studies, it would be important
to check for new studies that would further increase the current knowledge. With our
systematic review, we have already included two prospective studies that were better than
prospective studies, with patients desirably randomized to different acid load diets, which
will reinforce these findings.

5. Conclusions

Considering the current evidence, our systematic review gives strength to the previous
findings, supported by the analysis of a large number of patients. A high dietary acid load
was directly associated with an increased risk of CKD and a decline in kidney function.
However, further studies with greater statistical power, such as randomized controlled
trials, will establish the causal relationship between these variants. We also proposed further
investigation of some questions regarding the mechanisms through which this relationship
is mediated, such as the influence of angiotensin II, aldosterone, and endothelin-1, as well
as a more detailed study of the effects of different types of protein (vegetable versus animal)
on renal function.

In the light of the most recent findings, we can also state that for clinical applicability,
calculation of dietary acid load can be easily performed by means of records, data collection,
or food frequency questionnaires, and it should be incorporated into the nutritional therapy
of the disease. Dietetic intervention with reduced protein content, replaced by vegetable
protein and coupled with increased fruit and vegetable intake, can reduce the amount of
hydrogen ions in the body, thus improving metabolic parameters of acidosis and reducing
kidney damage and disease progression.

The inclusion of dietary acid load in nutritional therapy may be an important strategy
for future interventions in populations at risk for CKD, and may contribute to the control
of metabolic acidosis.
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