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Mesial temporal lobe epilepsy is themost common type of focal epilepsy and in its course often becomes refractory
to anticonvulsant pharmacotherapy. A resection of the mesial temporal lobe structures is a promising option in
these cases. However, approximately 30% of all patients remain with persistent seizures after surgery. In other
words, reliable criteria for patients' outcome prediction are absent. To address this limitation, we investigated
pre-surgical brain morphology of patients with unilateral left mesial temporal lobe epilepsy who underwent a se-
lective amygdalohippocampectomy. Using support vector classification, we aimed to predict the post-surgical sei-
zure outcome of each patient based on the pre-surgical T1-weighted structural brain images. Due tomorphological
gender differences and the evidence that men and women differ in onset, prevalence and symptomology inmost
neurological diseases,we investigatedmale and femalepatients separately. Thus,we benefitted from the capability
to validate the reliability of our method in two independent samples. Notably, we were able to accurately predict
the individual patients' outcome in themale (94% balanced accuracy) as well as in the female (96% balanced accu-
racy) group. In the male cohort relatively larger white matter volumes in the favorable as compared to the
non-favorable outcome group were identified bilaterally in the cingulum bundle, fronto-occipital fasciculus and
both caudate nuclei, whereas the left inferior longitudinal fasciculus showed relatively largerwhitematter volume
in the non-favorable group. While relatively larger white matter volumes in the female cohort in the left inferior
and rightmiddle longitudinal fasciculuswere associatedwith the favorableoutcome, relatively largerwhitematter
volumes in the non-favorable outcome groupwere identified bilaterally in the superior longitudinal fasciculi I and
II. Here,we observed a clear lateralization and distinction of structures involved in the classification inmen as com-
pared towomenwithmen exhibitingmore alterations in the hemisphere contralateral to the seizure focus. In con-
clusion, individual post-surgical outcome predictions based on a single T1-weighted magnetic resonance image
seem plausible and may thus support the routine pre-surgical workup of epilepsy patients.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Epilepsy is a brain disorder characterized by episodes of disturbed
brain activity (seizures) affecting the patient's attention and behavior
(Engel, 2011). Mesial temporal lobe epilepsy (mTLE) is the most com-
mon type of focal epilepsy and in its course often becomes refractory to
anticonvulsant pharmacotherapy (Engel, 1996, 2001; Faber et al., 2013;
Focke et al., 2008; Schoene-Bake et al., 2009). In these cases, epilepsy sur-
gery and resection of the mesial temporal lobe (mTL) structures after
erms of the Creative Commons
tribution, and reproduction in
re credited.
: +49 221 4726 298.
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comprehensive pre-surgical diagnostics is a promising option that ren-
ders approximately 70% of the patients seizure free (Bien et al., 2013;
Keller et al., 2007; Schulze-Bonhage, 2008;Wiebe et al., 2001). However,
approximately 30% of all patients remain with persistent seizures after
surgery. The cause of these persistent seizures often remains unclear, de-
spite comprehensive ongoing research in this field (Bonilha et al., 2012;
Thom et al., 2010). One possible reason might be the incomplete resec-
tion of the epileptogenic focus, however, numerous cases in which con-
ventional magnetic resonance (MR) images indicate complete removal
of the left mTL structures and no other possible epileptogenic lesion
still exhibit post-surgical seizures. A voxel-based morphometry (VBM)
study revealed that patientswith poor surgical outcomehad significantly
reduced volumes of the ipsilateral posterior and contralateral medial
temporal lobe compared to surgically remedied patients (Keller et al.,
2007). Further VBM studies comparing patients and controls have dem-
onstrated extrahippocampal changes of the ipsilateral temporal lobe and
served.
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widespread structural alterations in white matter regions not restricted
to the primarily affected temporal lobe (Bernasconi et al., 2005). New
MR imaging techniques, such as diffusionMRI, have provided further ev-
idence for extensive alterations of white matter fiber tracts (Faber et al.,
2013; Focke et al., 2008; Schoene-Bake et al., 2009; Yogarajah et al.,
2010). These extrahippocampal alterations in the cerebral white matter
may also play a pivotal role in those cases with persistent post-surgical
seizures. Thus, mTLE should rather be considered as a network disorder
affecting brain structures both proximal to and distant from the seizure
focus (McDonald et al., 2008).

Lately, an increasing number of studies have applied multivariate
analysis methods such as support vector machines (SVMs) to predict
the diagnostic status at a subject level of e.g. Alzheimer's disease
(Klöppel et al., 2008), schizophrenia (Koutsouleris et al., 2011), the
Turner syndrome (Marzelli et al., 2011), multiple sclerosis (Bendfeldt
et al., 2012) or major depressive disorder (Mwangi et al., 2012). For
more details the reader is referred to (Orrù et al., 2012). The SVM clas-
sification comprises of two stages. In the initial training phase, neuroim-
aging data from each subject and their corresponding diagnostic labels
(e.g. favorable versus non-favorable outcome) are presented to the clas-
sifier. Thus, the system learns to categorize based on the given sample
data. Neuroimaging data not previously used to train the classifier is
then utilized to determine its diagnostic value and estimate the classifi-
cation accuracy. A recent study proved the substantial contribution of
SVMs for automated MR classification of patients with hippocampal
sclerosis (Focke et al., 2012). Apart from the straightforward classifica-
tion of mTLE patients from controls, the unambiguous determination
of the lateralization is of great interest in pre-surgical evaluation. Perfect
classification accuracy between left- and right-sided mTLEwas demon-
strated in the same study (Focke et al., 2012). Since it has been shown
that left and right mTLE differ with respect to structural brain alter-
ations not restricted to the temporal lobes as well as clinical character-
istics, it seems useful to investigate these as distinct with respect to
structural brain classification (Bernhardt et al., 2010).

To date, highly reliable criteria for patients' outcome prediction are
still absent. Although hippocampal atrophy is recognized as a solid struc-
tural alteration predicting favorable post-surgical outcome (Bernhardt et
al., 2010), some patients with clear left hippocampal sclerosis remain
with residual seizures after surgery. Hence, the consideration of the hip-
pocampus in isolation seems insufficient (Bernasconi et al., 2005). These
patients motivated us to investigate additional morphometric markers
for reliable outcome prediction. Post-surgical outcome classification
based on a single T1-weighted MR image is of particular clinical interest,
as these structural images are routineMRscans in pre-surgical evaluation.
We hypothesized that we can distinguish between those patients with
good and poor surgical outcomes using pre-surgical high-resolution MR
images.

Considering the aspects of (i) the evidence of a considerable reorga-
nization of white matter (WM) connectivity in the speech dominant
(usually left) hemisphere (Powell et al., 2007), (ii) a more widespread
Table 1
Summary of sociodemographic and clinical details of all patients. No significant difference
interquartile range; Non-FO = non-favorable outcome; FU = follow-up; m = male cohort
U test; b = four group test of male FO versus male Non-FO versus female FO versus female

Male cohort

FO median
(IQR)

Non-FO median
(IQR)

n 11 8
Age at onset [in years] 18 (28) 13 (25)
n had febrile seizures 4 4
Pre-surgical seizure frequency
[per month]

5 (6) 5 (3)

Age at MRI [in years] 41 (21) 48 (6)
Age at surgery [in years] 42 (21) 49 (6)
FU [in months] 19 (8) 23 (17)
atrophic distribution (Bernhardt et al., 2010) and (iii) more extensive
alterations in left mTLE (Focke et al., 2008), we decided to focus on
the white matter of mTLE patients with unilateral left-sided mTLE.
Given morphological sex differences in the human brain (Feis et al.,
2013) and the fact that most neurological illnesses differ in onset, prev-
alence and symptomatology between females and males (Giedd et al.,
2012), we decided to split the group into a male and a female cohort.
Thus, we additionally benefit from the advantage to investigate the ca-
pability of the SVM for post-surgical outcome prediction in two inde-
pendent samples. We were able to precisely distinguish between
those patients with good versus poor surgical outcome using their
pre-surgical high-resolution MR images. Our method further identified
the spatial organization of neuroanatomical structures associated with
the specific outcome group.

2. Materials and methods

2.1. Subjects

Inclusion criteria for this retrospective analysis were: (i) unilateral
left mesial temporal lobe epilepsy according to pre-surgical workup
and unilateral selective amygdalohippocampectomy, (ii) no lesion
other than left sided hippocampal sclerosis on the pre-surgical MRI
(iii) no peri- or post-surgical complications, and (iv) post-surgical out-
come rating at least one year after surgery. The ILAE outcome classifica-
tion was used as post-surgical outcome rating (Wieser et al., 2001).
Here, ILAE classes 1 and 2 were considered a favorable outcome (FO)
and the remaining classes (3–6) as a non-favorable outcome (Non-FO).

According to these criteria, 49 patients (19males, mean age ± SD:
41 ± 13 years) who were operated at our hospital between 2007
and 2011 were included in the study. All patients underwent
high-resolution structural 3 Tesla-MRI as part of our regular
pre-surgical workup that in all cases included neuropsychological
tests, interictal and ictal video electroencephalography (EEG) moni-
toring. Forty-four patients showed a unilateral left-sided hippocam-
pal sclerosis on their pre-surgical MRI (16 males, 28 females) which
was histologically confirmed in all cases after surgery. The remaining
five non-lesional patients underwent invasive pre-surgical diagnostic
where bilateral intrahippocampal depth electrodes were implanted. A
left-sided mesial temporal seizure focus was diagnosed in all of these
five patients. An overview of demographic characteristics and clinical
information for the two patient groups is provided in Table 1. Seven-
teen of the patients had a history of childhood febrile seizures. Inline
Supplementary Tables S1 and S2 provide further detailed information
of the male and female cohorts, respectively. Because of previously
described differences between males and females detected by SVM
analysis, separate analyses were performed for males and females.
Since we consequently use two independent samples, we were able
to compare the capability of the SVM for post-surgical outcome pre-
diction. Both cohorts revealed no significant difference between the
in any clinical variable was observed. Abbreviations: FO = favorable outcome; IQR =
test FO versus Non-FO; f = female cohort test FO versus Non-FO; a = Mann–Whitney
Non-FO; c = Kruskal–Wallis rank sum test; d = Fisher's exact test.

Female cohort Significance

FO median
(IQR)

Non-FO median
(IQR)

p-value

18 12
14 (12) 12 (21) 0.89m,a; 0.8f,a; 0.97b,c

5 4 0.66m,d; 0.71f,d; 0.75b,d

4 (5) 4 (5) 0.96m,a; 0.38f,a; 0.69b,c

39 (15) 37 (28) 0.67m,a; 0.98f,a; 0.47b,c

40 (15) 37 (28) 0.56m,a; 1f,a; 0.47b,c

21 (17) 23 (22) 0.76m,a; 0.76f,a; 0.99b,c
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FO and Non-FO groups with respect to age at MRI (p = 0.67 for males
and p = 0.98 for females; Mann–Whitney U test). All subjects gave
written informed consent, and the ethics committee of the University
of Bonn approved the study.

Inline Supplementary Tables S1 and S2 can be found online at
http://dx.doi.org/10.1016/j.nicl.2013.06.010.

2.2. MRI data acquisition

High-resolution T1-weighted images were acquired using a
3 Tesla Siemens Magnetom Trio scanner (8-channel array head coil)
with a whole-brain field of view (T1-weighted: MPRAGE; TR =
1300 ms, TI = 650 ms, TE = 3.97 ms, resolution = 1 × 1 × 1 mm3,
flip angle = 10°, 160 sagittal slices).

2.3. Image preprocessing

The VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/) was used
to preprocess the acquired T1-weighted images (Feis et al., 2013). Ini-
tially, these images were corrected for bias-field inhomogeneities and
registered nonlinearly to a template derived from 550 healthy vol-
unteers of the IXI database (http://www.brain-development.org/).
Anatomical segmentation into gray matter (GM) and white matter
(WM) was attained using a maximum a posteriori (MAP) technique
(Rajapakse et al., 1997), accounting for partial volume effects (Tohka
et al., 2004) and applying denoising methods such as a hidden Markov
random field model (Cuadra et al., 2005). Finally, the WM segments
were smoothed using an isotropic Gaussian kernel of 3 mm
full-width-half-maximum (Jones and Cercignani, 2010).

2.4. Classification

In order to discriminate between FO and Non-FO brains on the basis
of WM segments, we used a supervised, multivariate classification
method called support vector machine (SVM, as implemented by
(Chang and Lin, 2011)). In a binary classification, an SVM learns to sep-
arate two groups given labeled example training data. Here, the training
set {Xi,yi}i = 1

N for N subjects is represented by a training sample Xi and
its diagnostic label yi (favorable versus non-favorable outcome). In
this context, eachWM segment of the T1-weightedMR image is treated
as a single point in a high dimensional space. The number of voxels in
each WM segment (n) indicates the number of dimensions, thus, coor-
dinates in this space are determined by the intensity values at each
Fig. 1. Flow diagram illustrating our method. After image processing (step 1), the feature s
leave-one-patient-out manner until all patients have been left out once. An overall balanced
the spatial deployment of weights in the original anatomical space (step 4).
voxel. The objective was to train a model that accurately predicts y of
previously unseen imaging data X (testing stage). For this purpose, dur-
ing training stage X is not provided. This training concept is called
‘leave-one-subject-out’ cross-validation (Lemm et al., 2011) as all but
one patient are used to create the SVM model. In the training step of
the SVM a decision function or hyperplane f : Rn→ −1;1f g was identi-
fied that assigns the brain imaging data to either the negative or positive
class. In our study, the surgically remedied patients form the positive
class; the patients rendered with persistent post-surgical seizures
form the negative class.

SVM is based on the principle of ‘structural riskminimization’ (Vapnik,
1998), which aims to find an optimal hyperplane that maximizes the dis-
tance between the two classes (favorable versus non-favorable outcome),
simultaneouslyminimizing datamisclassification. The individual subjects
closest to the optimal hyperplane constitute it and are termed ‘support
vectors’. Thus, the closer an individual is to the identified hyperplane,
the more ambiguous it is. Conversely, rather distant individuals are
more distinct.

An SVM model requires two parameters: a ‘kernel’ and a ‘regular-
ization’ parameter. In our study, we use a linear kernel and the regu-
larization parameter was identified using a ‘grid search’ method
within a leave-one-subject-out cross-validation procedure during
training phase. Hence, we form three groups of patients to validate
our method: (i) one patient is ‘left out’ as test subject, (ii) another pa-
tient is omitted as validation subject, and (iii) the remaining patients
(N − 2) are used as training set to create the SVM model (Feis et al.,
2013). This procedure is called ‘nested-leave-one-subject-out’
cross-validation (Lemm et al., 2011). The regularization parameter
(chosen within the inner cross-validation) allows defining a maximal
margin between the two classes and at the same time minimizing
misclassification. While the inner cross-validation is used for model
selection, the outer cross-validation ensures an unbiased model eval-
uation. Hence, the leave-one-subject-out cross-validation scheme en-
sures generalization of the SVM model. In other words, the model is
able to correctly assign previously unseen data X to the appropriate
class y (Fig. 1). Due to the use of a linear kernel, we are able to extract
a weight vector reflecting the importance of each voxel for classifica-
tion. This makes it possible to assess the spatial deployment of
weights in the original anatomical space. The resulting maps are
called ‘discrimination maps’. Further technical details can be found
in Vapnik (1998).

The prediction performance of the SVM was evaluated using a
2 × 2 ‘confusion matrix’, obtained from the classifier testing step,
election (step 2) as well as the support vector classification (step 3) are repeated in a
accuracy can be computed from each repetition (step 3). In conclusion, we can interpret

http://dx.doi.org/10.1016/j.nicl.2013.06.010
http://dbm.neuro.uni-jena.de/vbm/
http://www.brain-development.org/


Fig. 2. Classification results. (A) Receiver operating characteristic curves of the male and female cohorts. The balanced classification accuracies with 95% credible intervals are in-
cluded. (B) Precision recall curves of the male and female cohorts. (C) Best male classification accuracy (94%) provided utilizing T1-weighted white matter segments. (D) Best fe-
male separation (96%) achieved by the classifier utilizing T1-weighted white matter segments.

Table 2
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and used to calculate sensitivity, specificity, positive predictive value,
false and true positive rate as well as balanced posterior accuracy
(Brodersen et al., 2010) with their 95% credible interval. Additionally,
a receiver operating characteristic (ROC) curve and its area under
ROC curve were generated.

Typically, a WM segment of a T1-weighted image contains more
voxels than numbers of subjects in our study and it includes ‘noise’.
Thus, we decided to preselect the most important brain regions using
feature selection to ensure accurate predictions. Notably, the feature se-
lection is only performed on the training set to ensure amodel selection
independent of the omitted test subject. Once determined, the same
subset of important brain regions in unseen data X is used to predict a
label y. Here, we used a ranker method called Fisher's criterion (Furey
et al., 2000). This score reflects the squared distance between the class
means μ̂ ⋅ð Þ in relation to the intra-class standard deviations
σ̂ ⋅ð Þ : f v Xð Þ ¼ μ̂ Xþ� �

−μ̂ X−ð Þ� �2
=σ̂ Xþ� �þ σ̂ X−ð Þ, whereby X+ de-

notes the FO patients or positively labeled class; consequently, X− de-
picts the Non-FO patients or negatively labeled class. Subsequently,
we ranked the scores according to how informative each one is with
respect to discriminating the two groups (Müller et al., 2001). Thus,
during the inner cross-validation only the highest ranked scores were
automatically selected via grid search to enter the analysis (Furey et
al., 2000). The most discriminative features are not restricted to one
specific brain region, but as can be seen in the discrimination maps
are rather spatially distributed.
Summary statistics of the male and female classifiers evaluated in this study.

Statistics Male cohort Female cohort

Sensitivity 100% 100%
Specificity 88% 92%
Positive predictive value 92% 95%
Positive likelihood ratio 8 12
Area under the ROC curve 0.93 0.95
F-measure 0.96 0.97
3. Results

Table 1 summarizes sociodemographic and clinical details of the pa-
tients. The patients were separated into gender-specific groups. We
found no significant differences with respect to any clinical characteris-
tic in the male or female cohort. The two groups (favorable versus
non-favorable outcome) were compared using a Mann–Whitney U
test in the male and female cohorts. Additionally, the number of pa-
tients who had febrile seizures during their childhood did not differ in
the male (p = 0.66; Fisher's exact test) or female cohort (p = 0.71;
Fisher's exact test) between the two groups (FO versus Non-FO). In
order to further validate the difference between both cohorts, we used
a four group Kruskal–Wallis rank sum test for most clinical characteris-
tics and the Fisher's exact test for the history of febrile seizures. No dif-
ferences between the cohorts were observed. We examined the male
cohort first and then subsequently used the female sample to replicate
our findings.
3.1. Patients' individual outcome predictions indicate excellent performance

We found the best classification performance of male FO versus
Non-FO brains using 310 voxels of the T1-weighted WM segments.
Totally, a balanced accuracy of 94% (with a 95% credible interval of
70% to 97%, Fig. 2B) with a sensitivity of 100% and a specificity of
88% was achieved. To visualize the separability of the male patients,
we projected the data features onto the weight vector of the SVM
(Fig. 2C). In other words, all but one male patient were correctly

image of Fig.�2


Fig. 3. Discrimination maps derived from the classification of white matter segments of T1-weighted images in the (A) male and (B) female cohorts. Results are superimposed onto a
T1-weighted image of an individual study brain. The resulting regions comprise spatially contiguous patterns of relatively larger WM volume (positive weight vector; red color
scale) or relatively smaller WM volume (negative weight vector; blue color scale) in the favorable as compared to the non-favorable group, respectively. Labels: (i) cingulum bun-
dle, (ii) fronto-occipital fasciculus, (iii) superior longitudinal fasciculus I, (iv) internal capsule, (v) caudate nucleus, (vi) inferior longitudinal fasciculus, (vii) superior longitudinal
fasciculus III, (viii) extreme capsule, (ix) middle longitudinal fasciculus, and (x) superior longitudinal fasciculus II. L and R indicate the left and right hemispheres, respectively.
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predicted using our framework. Patient specific decision values of the
classifier are provided in Inline Supplementary Table S3. The ROC
curve yields an area under curve (AUC) totaling 0.93 with an
F-measure of 0.96 (Fig. 2A). Overall, these statistical results indicate
excellent performance across three performance metrics: balanced
posterior accuracy, area under curve and F-measure.

Inline Supplementary Table S3 can be found online at http://dx.
doi.org/10.1016/j.nicl.2013.06.010.

In the female cohort the best classification was reached using 360
voxels of the T1-weightedWM segments. Here, a balanced classification
accuracy of 96% (with a 95% credible interval of 78% to 98%, Fig. 2B)with
a sensitivity of 100% and a specificity of 92% was attained. We also
projected the data features of the female classification onto its weight
vector to highlight the considerable separability (Fig. 2D). Numerically
speaking, only one female patient was misclassified. Patient specific
decision values of the female classifier are provided in Inline Supple-
mentary Table S4. The ROC curve is totaling an AUC of 0.95 with an
F-measure of 0.97 (Fig. 2A). This demonstrates once more an excellent
and significantly above chance classification performance to distinguish
between female patients with a good versus poor surgical outcome. For
a numerical summary of these results, see Table 2.

Inline Supplementary Table S4 can be found online at http://dx.
doi.org/10.1016/j.nicl.2013.06.010.
Fig. 4.Weighting distribution found in T1-weightedwhitematter segments in themale and fem
is split into its positive and negative proportions, respectively. In the male and female cohorts
p b 0.001; Chi-square test).
3.2. Neuroanatomical regions outside the margins of resection identified

In order to identify the spatial organization of neuroanatomical struc-
tures associatedwith the specific outcome group, we considered the dis-
criminationmaps that are based on the weights attributed to each voxel
by the SVM (Fig. 3). Regions showing disparities between the favorable
and non-favorable surgery outcomes were found in the male (Fig. 3A)
as well as in the female cohort (Fig. 3B). Interestingly, while the
weighting distribution is significantly lateralized towards the right
hemisphere in men (p b 0.001; Chi-square test), the women show a
significant lateralization towards the left hemisphere (p b 0.001;
Chi-square test; Fig. 4). The positive and negative weightings were sub-
sequently analyzed in relation to their total weighting amount. Both co-
horts show a significant difference between their positive and negative
weightings, though they reveal a converse behavior. While the men pri-
marily exhibit positive features that contribute to a favorable surgery
outcome (p b 0.001; Chi-square test), the women possess significantly
more negative weights contributing to a non-favorable surgery outcome
(p b 0.001; Chi-square test; Figs. 3, 4). Similarly to their totalweight pro-
portions, the male patients indicate a strong and statistically significant
lateralization towards the right hemisphere (which is contralateral to
their seizure focus) in the positive as well as in the negative weights
(p b 0.001; Chi-square test). However, the female patients only show a
ale cohorts. Besides the distinction of left (LH) and right (RH)hemispheres, totalweighting
the lateralization of the total weighting is statistically significant (*** = highly significant,

http://dx.doi.org/10.1016/j.nicl.2013.06.010
http://dx.doi.org/10.1016/j.nicl.2013.06.010
http://dx.doi.org/10.1016/j.nicl.2013.06.010
http://dx.doi.org/10.1016/j.nicl.2013.06.010
image of Fig.�4
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difference in hemisphere lateralization in negative weights (p b 0.001;
Chi-square test). The positive weights are uniformly distributed along
both hemispheres (Fig. 4).

In the male cohort relatively larger WM volumes in favorable as
comparedwith the non-favorable outcome group (positive weight vec-
tor; red color scale) were found bilaterally in the cingulum bundle (CB),
the fronto-occipital fasciculus (FOF), the superior longitudinal fascicu-
lus (SLF) I, the caudate nuclei and in the inferior longitudinal fasciculus
(ILF). Here, the disparity found in the left ILF reveals a relatively larger
WM volume in the non-favorable as compared with the favorable out-
come group (negative weight vector; blue color scale). Relatively larger
WM volume in the favorable as compared to the non-favorable out-
come group is further indicated by the disparity found in the right SLF
III. In addition, differences in the internal capsule (ICA) occurred only
in the right hemisphere.

Conversely to the weighting distribution in themale cohort, women
tended to show overall more regions with relatively larger WM vol-
umes in the non-favorable as compared with the favorable outcome
(negativeweight vector; blue color scale). Bilateral differences between
the two categories were found in the SLF I as well as in the SLF II. The
only disparities indicating relatively larger WM volumes in the favor-
able as compared with the non-favorable outcome group (positive
weight vector; red color scale) were found in the right extreme capsule,
the right middle longitudinal fasciculus (MdLF) and the left ILF. Briefly,
both cohorts exhibit neuroanatomical regions outside the margins of
resection as well as in the contralateral hemisphere attributed to both
outcome types.

3.3. No correlations between support vector weighting and clinical
characteristics found

We analyzed correlations between the resulting support vector
weighting and four clinical characteristics, namely (i) the age at onset
given in years, (ii) the duration of follow-up given in months, (iii) the
history of febrile seizures during childhood and (iv) their seizure fre-
quency per month. As was expected, no correlations for the male as
well as the female cohorts were found (see Inline Supplementary
Fig. S1).

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2013.06.010.

3.4. No differences found in clinical characteristics of support vector
machine support and non-support categorized patients

After classification we were able to identify the patients of both
groups (FO vs Non-FO) who provided relevant imaging data for the
classifier. Thus, we evaluated the hypothesis of no difference between
the patients contributing ‘support vector’ (SV) data and Non-SV
patients of the FO and Non-FO groups (see Inline Supplementary
Fig. S2). We found no significant differences in the male as well as
the female cohorts.

Inline Supplementary Fig. S2 can be found online at http://dx.doi.
org/10.1016/j.nicl.2013.06.010.

4. Discussion

To date, although the presence of an atrophic hippocampus is
often recognized as an important diagnostic factor for a good surgical
outcome (Focke et al., 2012), 30% of all patients remain with persis-
tent seizures after surgery (Keller et al., 2007). Patients with a
non-lesional mTLE have a chance of surgical success below 50%
(Bien et al., 2009; Téllez-Zenteno et al., 2010). Thus, the clinical diag-
nostic of mTLE patients is so far lacking robust criteria for solid sur-
gery outcome prediction. Our results clearly indicate the feasibility
to precisely predict the outcome after an amygdalohippocampectomy
for left mTLE patients using pre-surgical T1-weighted MR scans and
support vector classification. Due to morphological sex differences
in the human brain (Feis et al., 2013) and the distinctions in onset,
prevalence and symptomatology of most neurological illnesses be-
tween men and women (Giedd et al., 2012), we analyzed the male
and female patients in separate cohorts. Strikingly distinct pattern
of brain structures contributing to the individual outcome were ob-
served in men as compared to women. Hence, pointing to the impor-
tance of a separate investigation when predicting the patients'
surgical outcome. Our data further extend the literature by providing
evidence indicating that both surgery outcome types are associated
with different structural WM alterations outside the margins of resec-
tion as well as in the contralateral hemisphere.

4.1. Patients' individual outcome predictions revealed high sensitivity
and specificity

The approach described here was initially used for the prediction of
a favorable versus non-favorable surgery outcome in a small group of
male patients. We further analyzed the capability of our framework
using a slightly larger set of female patients. The multivariate pattern
analyses revealed convincing prediction accuracies in the two indepen-
dent cohorts (Fig. 2). Themale and female patients achieved a balanced
classification accuracy of 94% and 96%with an area under the ROC curve
of 0.93 and 0.95, respectively (Table 2). These results indicate an excel-
lent performance across both performancemetrics: balanced prediction
accuracy and area under the ROC curve. Considering these robust re-
sults, a future replication across scanners would be a preferable
advance.

The individual scan prediction of favorable versus non-favorable
surgery outcome in male patients yielded a sensitivity of 100% with a
specificity of 88% (Table 2). In terms of absolute numbers, our predic-
tion correctly classified all but one male patient. This patient (M19 see
Inline Supplementary Table S3) had post-surgical seizures up to two
months after surgery and was thus determined to be ILAE class 3 at
the time of the data analysis. However, we meanwhile contacted the
physician in charge and noted that this patient has remained seizure
free for more than the last two years. From the present point of view,
this patient should now be assigned to the ILAE class 1. Hence, this pa-
tient is in amanner of speaking a ‘truemisclassification’. In other words,
the classifier actually chose the right category for this male patient.
Finally, the man is remedied from his seizures by surgery.

The slightly larger female cohort totals 30 patients. The individual
scan prediction of favorable and non-favorable surgery outcome in
this cohort achieved a sensitivity of 100% with a specificity of 92%.
That is, one woman in the Non-FO group was predicted incorrectly.
Although this female patient (F22, see Inline Supplementary Table
S4) has persistent post-surgical seizures, she is classified with a favor-
able surgery outcome. We reviewed all pre-surgical data of this
patient and found conclusive interictal and ictal EEG findings. Fur-
thermore, the post-surgical MRI demonstrated a complete resection
of the left mTL structures with no visible complications. In summary,
the reason for the post-surgical seizure persistence remains unclear.
Nevertheless, she experienced a seizure reduction of more than 50%
after surgery.

4.2. No correlations of clinical characteristics and support vector
weighting found

We analyzed the correlation of clinical characteristics such as the
age at onset, the duration of the follow-up, the history of febrile seizures
and seizure frequency with the support vector weighting given by the
classifier. We found no correlations with any of these clinical character-
istics (see Inline Supplementary Fig. S1). Furthermore, we found no dif-
ferences in clinical characteristics of support vector machine support
and non-support categorized patients (see Inline Supplementary
Fig. S2). Here, the patient groups were closely matched and showed
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no significant difference in any clinical characteristic prior to classifica-
tion (Table 1). Thus, they only differed in their surgery outcome, there-
with proving once more the necessity of this method.

4.3. Neuroanatomical regions outside the margins of resection identified

As expected, pooling the male and female patients yielded no signif-
icant classification (balanced accuracy: 58%, p b 0.12). Moreover, the di-
versity of weighting distribution (Fig. 4) once more proves the necessity
of separating the patients into a male and a female cohort. Overall, we
found many extrahippocampal changes within the WM prior to surgery
tending to be indicative of WM reorganization due to the seizures. Thus,
considering the hippocampus in isolation as an evidence of a favorable
surgery outcome seems to be insufficient. Notably, we found significant-
ly more regions in the male patients associated with a favorable surgery
outcome (p b 0.001; Chi-square test). Here, the men particularly exhibit
disparities in brain regions contralateral to the seizure focus (p b 0.001;
Chi-square test). Conversely, the female patients displayed a significant
lateralization ipsilateral to their seizure focus (p b 0.001; Chi-square
test) and possessed overall more areas associated with a non-favorable
surgery outcome (p b 0.001; Chi-square test). Briefly, the structures in-
volved in the patients' surgery outcome clearly differ between men and
women. Thus, gender should be considered separately when predicting
the individual surgery outcome of a patient.

Although a complete discussion of a possible pathology-specific
reorganization within the WM in mTLE patients is far beyond the
scope of this article, several key findings deserve to be mentioned.
As obviously this was a highly selected population of left mTLE pa-
tients, these findings cannot be extrapolated to all mTLE patients.
However, both cohorts yielded disparities in the SLF I. While the
WM changes in male patients were associated with the FO group,
the changes in women were predominantly involved with the
Non-FO group. Differences in all aspects of the CB were found in
both hemispheres for the male cohort. The contralateral capsule sys-
tem was involved into prediction in both cohorts. The men appeared
to have disparities in the ICA. However, the female patients showed
differences in the extreme capsule. While we found disparities in
the right posterior aspect of the ILF in male patients, the female pa-
tients showed differences in the posterior aspect of the ILF ipsilateral
to their seizure focus. Brain regions apparently only different in the
male patients were the FOF bilaterally, both caudate nuclei and the
SLF III contralateral to the seizure focus. By contrast, the female pa-
tients showedWM changes of the SLF II in both hemispheres. The dif-
ferences found in the contralateral temporal lobe in the female cohort
comprised aspects of the MdLF. This abnormality was solely associat-
ed with the non-favorable surgery outcome (Focke et al., 2008). Re-
garding the lack of a robust structural basis given by the existing
literature for the comparison of FO and Non-FO patients, we cannot
refer to the consistency with our identified brain regions.

5. Conclusion

At present, the clinical diagnostic of mTLE patients is lacking a solid
and reliable criterion for outcome prediction after selective
amygdalohippocampectomy. We demonstrate the possibility to pre-
cisely predict this surgery outcome for left mTLE patients using their
pre-surgical T1-weighted MR scans and support vector classification.
Additionally, the identified gender-specific neuroanatomical findings
of this work gave an insight into the reorganization of the WM prior
to surgery. To this end, it merits further studies. Besides the straight for-
ward investigation of right-sided mTLE patients, this method should be
further extended to predict post-surgical outcome of specific mTLE
subtypes such as MR-negative mTLE patients. In summary, a single
T1-weighted MR scan in combination with our framework yields a
strikingly robust and patient-specific pre-surgical prediction of a favor-
able or non-favorable surgery outcome. Since these MR scans are
routinely acquired in clinical practice, the application of our method
for amore reliable post-surgical outcome prediction can easily be incor-
porated into the pre-surgical workup. Hence, the pre-surgical workup
of mTLE patients can be supported. It especially benefits from improved
and above all individual patient information.
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