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Hypergraph learning is a new research hotspot in the machine learning field. 'e performance of the hypergraph learning model
depends on the quality of the hypergraph structure built by different feature extraction methods as well as its incidence matrix.
However, the existing models are all hypergraph structures built based on one feature extraction method, with limited feature
extraction and abstract expression ability. 'is paper proposed a multimodal feature fusion method, which firstly built a single
modal hypergraph structure based on different feature extraction methods, and then extended the hypergraph incidence matrix
and weight matrix of different modals. 'e extended matrices fuse the multimodal abstract feature and an expanded Markov
random walk range during model learning, with stronger feature expression ability. However, the extended multimodal incidence
matrix has a high scale and high computational cost. 'erefore, the Laplacian matrix fusion method was proposed, which
performed Laplacian matrix transformation on the incidence matrix and weight matrix of every model, respectively, and then
conducted a weighted superposition on these Laplacianmatrices for subsequent model training.'e tests on four different types of
datasets indicate that the hypergraph learning model obtained after multimodal feature fusion has a better classification per-
formance than the single modal model. After Laplace matrix fusion, the average time can be reduced by about 40% compared with
the extended incidence matrix, the classification performance can be further improved, and the index F1 can be improved by 8.4%.

1. Introduction

In the machine learning field, the graph is an important data
model. If the research objects have a one-to-one relationship
between each other, then they can be solved by an ordinary
graph such as social networks, gene data, and web page
ranking problems [1]. However, in reality, the objects always
have a complicated one-to-many or many-to-many rela-
tionship between each other [2]. Taking a reference citation,
for example, a thesis can cite multiple papers and can be
cited by multiple papers. When solving with ordinary
graphs, the multivariate relationship will be forcibly shifted
into a binary relationship, simply causing information loss.
'us, a hypergraph–a variant of ordinary graph–emerges
[3]. Since hypergraphs can better describe the multivariate
information between objects, in recent years, hypergraph-
basedmachine learning has become a research hotspot of the
machine learning field and has obtained good effect in object

segmentation [4], disease diagnosis [5], image classification
[6], recommendation system [2, 7], etc.

'ere are two main methods of using the hypergraph
learning model to solve the multivariate relation problem.
One method is to extend the hypergraph into an ordinary
graph and then use the ordinary graph to solve the hyper-
graph problems. 'e representative methods include clique
extension, star extension, and line extension [8]. However, in
the process of extending a hypergraph to an ordinary graph,
the multivariate relation between vertices is changed into a
binary relation, which may cause information loss. 'e other
method is to directly aim at the hypergraph structure and its
incidence matrix, and solve the optimal hypergraph cut after
Laplacian matrix transformation, that is to say, obtain several
tangent vectors of the hypergraph Laplacian matrix, and
divide the hypergraph into different subsets for classification
and clustering. In essence, this is a combinational optimi-
zation problem, and the representative methods include the
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Zhou’s normalized Laplacian [3], hypergraph learning reg-
ularity optimization [6, 9, 10], hypergraph multimodal
structure [11], and hypergraph deep learning [12]. Such
methods directly carry out Laplacian transformation and
solving on the hypergraph incidence matrix, preventing in-
formation loss due to structural transformation. However, all
of them are based on one feature extraction method to build a
single modal hypergraph structure. If the feature extraction
method is not capable enough to fully reflect the relation
between objects, it will lead to low-quality hypergraph
building and its incidence matrix, finally affecting the per-
formance of the hypergraph learning model.

'erefore, this paper proposed a multimodal feature fu-
sion method, using incidence matrix extension and Laplacian
matrix fusion to improve the model performance.'e specific
work and innovations include the following conditions.

(1) When building a hypergraph, first, a single modal
hypergraph structure is built based on different
feature extraction methods, then different models of
hypergraph Laplacian matrices and their weight
matrices are extended, and the extended multimodal
Laplacian matrices receive model training. 'e test
results show that the extended multimodal incidence
matrix could effectively improve the classification
performance of the hypergraph learning model.

(2) If the dimension of the multimodal incidence matrix
obtained by matrix extension is high, it will lead to
high computational cost. 'erefore, the Laplacian
matrix fusion method is put forward, which firstly
performs Laplacian matrix transformation on the
hypergraph incidence matrix and weight matrix of
every model, respectively, and then, these Laplacian
matrices are weighted accumulated for furthermodel
training. 'e test results indicate that the Laplacian
matrix fusion method can not only reduce the
computational cost of the multimodal incidence
matrix but also improve the model performance.

2. Related Work

Since Zhou et al. firstly proposed the hypergraph learning
model [3] and used the “Markov random walk” idea to explain
the model, in recent years, there are mainly two approaches to
solving multivariate relation problems with the hypergraph
learning model: extension method and segmentation method.

'e extension method is to expand the hypergraph into an
ordinary graph and then use the ordinary graphmethod to solve
the hypergraph problem. Zien firstly raised the star extension
approach [13], introducing a new node to every hyperedge of
hypergraphs, in which the new node is connected to every
vertex of hyperedge by an edge. 'is approach does not take
into account the connection relationship between vertexes
within the same hyperedge. Afterwards, Agarwal puts forward a
clique extension approach [14], considering every hyperedge as
a fully connected subgraph. Although the relationship between
vertexes within the same hyperedge is built, it still cannot
comprehensively express the connection information of ver-
texes between hyperedges [12, 15]. To further reduce the

information loss during extension, Yang et al. proposed a line
extension approach [8] in 2020, considering hyperedges and the
nodes within every hyperedge as a new vertex. 'is approach
maximally retains the connection information of vertexes and
hyperedges, but it may still bring information loss when dealing
with some problems, such as the Fano plane problem [16]. To
avoid the information loss problem led by structural trans-
formation, Gao introduced the multimodal concept [11],
making different modals correspond to one subhypergraph
with weights and training parameters for all subhypergraphs.
However, this approach has too many parameters to be opti-
mized, resulting in a high time cost for training. In 2019, Feng
proposed the hypergraph Laplacian extension method, which
optimized the hypergraph structure while reducing the time
cost of machine learning [17]. However, this extension method
merely extends the incidence matrix without considering the
impact of the weight matrix on the model.

'e segmentation method is mainly based on the hyper-
graph Laplacian matrix to solve the optimal hypergraph cut.
Chen et al. applied L2 regularization to optimize the weight
parameters of the hypergraph learning model [6, 9]. Chen and
Luo used the alternating least square (ALS) method [9] and the
coordinate descentmethod [10] to optimize weight parameters,
respectively. Guo utilized the random matrix diffusion idea to
optimize the hypergraph Laplacian optimal cut, but this was
limited by a single hypergraph structure, needed to optimize
the additional target function, and had too high time cost [18].
After that, Zhang et al. raised a hypergraph inductive learning
model using the category projection matrix to obtain the
category label of the sample [19]. Although the time complexity
was brought down to a certain extent, not all dataset infor-
mation was used in model training, so the classification per-
formance was lowered slightly.

Hence, all existing hypergraph model’s solving methods
have certain restrictions. 'e extension approach breaks the
multivariate relation between objects. 'e segmentation
approach does not break the limitation of a single hyper-
graph structure but only optimizes the model solving pro-
cess, easy to bring high time cost. 'e multimodal feature
fusion method proposed in this paper fuses the abstract
features of multiple modals by matrix extension and breaks
the limitation of a single hypergraph structure. And inmodel
solving, the Laplacian matrix fusion method helps to reduce
the time cost and further enhance the model performance.

3. Multimodal Feature Fusion Based
Hypergraph Model

3.1. General Hypergraph Model. Let G � (V, E, W) denote a
hypergraph, where V � v1, v2, . . . vn,􏼈 􏼉 is the vertex set, and
E � e1, e2, . . . em,􏼈 􏼉 is the hyperedge set. 'e hypergraph’s
every hyperedge ej(1≤ j≤m) contains multiple vertexes
vi(1≤ i≤ n), so the hypergraph G can be expressed by in-
cidence matrix H ∈ Rn×m, as shown in Figure 1. In H, every
element h(vi, ej) is defined as

h vi, ej􏼐 􏼑 �
1, if vi ∈ ej,

0, if vi ∉ ej.

⎧⎨

⎩ (1)
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Every hyperedge ej is given a positive weight w(ej), and
w(ej) is calculated by the Gaussian kernel method [20].
Where di s(vi, vk)(1≤ i, k≤ n) represents the Euclidean
distance between vertex vi and vk, and σ represents the
average of the distances between all vertexes.

w ej􏼐 􏼑 � 􏽘
vi,vk∈ej

exp −
dis vi, vk( 􏼁

2

σ2
􏼠 􏼡. (2)

'e diagonal matrix W ∈ Rm×m is defined, and the el-
ements in diagonal are the weight of every hyperedge
w(ej)(1≤ j≤m), as shown in the following equation:

W �

w e1( 􏼁 0 · · · 0

0 w e2( 􏼁 . . . 0

⋮ ⋮ ⋱ ⋮

0 0 0 w em( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

In the hypergraph, the degree d(vi) of every vertex vi is
defined as shown in the following equation:

d vi( 􏼁 � 􏽘
m

j�1
w ej􏼐 􏼑h vi, ej􏼐 􏼑. (4)

'e degree δ(ej) of hyperedge ej is defined as the
number of vertexes included in this hyperedge, as shown in
the following equation:

δ ej􏼐 􏼑 � 􏽘
n

i�1
h vi, ej􏼐 􏼑. (5)

Two diagonal matrix Dv ∈ Rn×n and De ∈ Rm×m is de-
fined. Similar to equation (3), their diagonal elements are the
degree of every vertex d(vi) and the degree of every
hyperedge δ(ej) in the hypergraph.

'e regularity optimization target function of the hyper-
graph learning model is shown in the following equation [6, 9]:

arg​ min
F
Φ(F) ≔ Ω(F) + λθ(F) + μ‖W‖

2
, (6)

where λ and μ are regularization parameters, to balance each
item of equation (6). For a c classification problem, F ∈ Rn×c

is the eventually solved tangent vector matrix, including the
predicted sample category information. Y ∈ Rn×c is the
vector containing real sample labels. In case the vertex vi falls
into the k(0≤ k≤ c) category, then Y(vi)[k] � 1,
Y(vi)[p] � 0(0≤p≤ c p≠ k). θ(F) is the experience loss
function, and Ω(F) is the standard loss function, see defi-
nitions in the following equations:

θ(F) � ‖Y − F‖
2
2, (7)

Ω(F),

�
1
2

􏽘

m

j�1
vi,vk ∈ ej

w ej􏼐 􏼑h vi, ej􏼐 􏼑h vk, ej􏼐 􏼑

δ ej􏼐 􏼑

F vi( 􏼁
�����
d vi( 􏼁

􏽱 −
F vk( 􏼁
�����
d vk( 􏼁

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

2

,

� 􏽘
m

j�1
vi,vk ∈ ej

w ej􏼐 􏼑h vi, ej􏼐 􏼑h vk, ej􏼐 􏼑

δ ej􏼐 􏼑

F
2

vi( 􏼁

d vi( 􏼁
−

F vi( 􏼁F vk( 􏼁
���������
d vi( 􏼁d vk( 􏼁

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

� 􏽘
n

k�1
F
2

vk( 􏼁 􏽘

m

j�1

w ej􏼐 􏼑h vi, ej􏼐 􏼑

d vi( 􏼁
􏽘

n

i�1

h vk, ej􏼐 􏼑

δ ej􏼐 􏼑
− 􏽘

m

j�1
vi,vk ∈ ej

􏽘
F vi( 􏼁h vi, ej􏼐 􏼑w ej􏼐 􏼑h vk, ej􏼐 􏼑F vk( 􏼁

���������
d vi( 􏼁d vk( 􏼁

􏽱
δ ej􏼐 􏼑

,

� F
T

I − D
−1/2
v HWD−1

e H
T
D

−1/2
v􏼐 􏼑F,

� F
T
LF.

(8)
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Figure 1: Hypergraph and incidence matrix. (a) Hypergraph. (b) Incidence matrix.
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In equation (8), L is the hypergraph standardization
Laplacian matrix.

L � I − D
−1/2
v HWD−1

e H
T
D

−1/2
v . (9)

In equation (8), only if two vertexes vi and vk(k≠ i) are at
the same hyperedge, it is required to make their standardized
labels F(vi)/d(vi) and F(vk)/d(vk) to be similar as possible,
so that the vertex label can be predictedmore accurately. If the
hypergraph has degenerated to ordinary graph, then De is
degenerated to 2I, and it is obtained from equation (10) that
the relationship between hypergraph’s Laplacianmatrix L and
ordinary graph’s Laplacian matrix LA is 1/2 coefficient, in
which A represents the adjacent matrix of an ordinary graph.

L � I − D
−1/2
v HWD−1

e H
T
D

−1/2
v ,

� I −
1
2
D

−1/2
v HWHT

D
−1/2
v ,

� I −
1
2
D

−1/2
v Dv + A( 􏼁D

−1/2
v ,

�
1
2

I − D
−1/2
v AD

−1/2
v􏼐 􏼑,

�
1
2
LA.

(10)

In equation (6), the variables in the optimization target
function to be determined are W and F. Because the target
function (6) alone is a convex function relative to W and F,
so it is feasible to use the ALS method [9] and coordinate
descend method [10] to optimize W and F.

In the case of using ALS, it is first to fix W, let
δΦ(F)/δF � 0, then F is optimized.

F � I +
1
λ

L􏼒 􏼓
− 1

Y. (11)

Second, fix F and optimize W. By letting
δΦ(W)/δW � 0, W can be updated as

W � max
F

T
D

−1/2
v HIθD

−1
e H

T
D

−1/2
v F

2μ
, 0􏼠 􏼡. (12)

'ird, repeat the above two steps until W and F tend to
be stable.

In the case of using the coordinate descending method,
in each iteration process, two values Wj and Wk should be
selected from W for updating, and such updating shall be
conducted under the constraint conditions of (13), while
limiting 􏽐

n
i�0 Wi � 1. W∗j and W∗k are the values of updated

Wj and Wk, see updating process in (14). When W becomes
stable, we finally obtain an F, that is, the ultimate label
vector, and the category of a vertex vi corresponds to
index(max(F(vi))), that is, the subscript of F(vi) maximum.

r1, r2, . . . rn􏼂 􏼃 � F
T
D

−1/2
v H,

gi � −r
2
i D

−1
e (i, i),

⎧⎪⎨

⎪⎩
(13)

W
∗
j � 0

W
∗
k � Wj + Wk

, if 2μ Wj + Wk􏼐 􏼑 + gk − gj􏼐 􏼑≤ 0,

W
∗
j � Wj + Wk

W
∗
k � 0

, if 2μ Wj + Wk􏼐 􏼑 + gj − gk􏼐 􏼑≤ 0,

W
∗
j �

2μ Wj + Wk􏼐 􏼑 + gk − gj􏼐 􏼑

4μ

W
∗
k � Wj + Wk − W

∗
j .

, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

3.2. Hypergraph Laplacian Matrix. 'e N classification
problem solved by the hypergraph model is an N-path
hypergraph cut problem in essence while the solution to N-
path hypergraph cut is actually the N feature vectors [3] of
hypergraph Laplacian matrix. 'erefore, if Laplacian matrix
can describe more globally and in-depth hypergraph
structural information, the accuracy of the hypergraph cut
will be increased, and the corresponding classifying per-
formance will also be improved. Zhou et al. firstly proposed
the hypergraph learning model [1], adoptedMarkov random
walk idea, and analyzed the hypergraph Laplacian matrix
from a probability perspective. 'e results indicate that the
target function (6) of the hypergraph learning model is
derived through Markov random walk process. 'e Markov
random walk probability of every vertex in the hypergraph
shall follow the following rule: given the current position as
vi ∈ V, first, choose a hyperedge ej from all hyperedges
relevant to the vertex vi at a certain probability and then
uniformly randomly choose a vertex vk ∈ ej(k≠ i). Equation
(15) provides the probability of a hypergraph vertex’s
Markov random walk, and equation (16) is a matrix ex-
pression of the calculation process of equation (15).

p vi, vk( 􏼁 � 􏽘
m

j�1
w ej􏼐 􏼑

h vi, ej􏼐 􏼑

δ ej􏼐 􏼑

h vk, ej􏼐 􏼑

d vi( 􏼁
, (15)

P � D
−1/2
v HWD−1

e H
T
D

−1/2
v . (16)

Let S denotes a subset of hypergraph vertex set V, Sc is
the complementary set of S, and a cut of a hypergraph G is
dividing a hypergraph into two parts S and Sc. VolS rep-
resents the volume of the set S, and zS is the set of cut
hyperedge, zS � ej ∈ E|ejIS≠ ϕ, ej ∩ Sc ≠ϕ􏽮 􏽯. Equations (17)
and (18) define the calculation method of VolS and VolzS.

VolS � 􏽘
vk∈S

d vk( 􏼁,
(17)

VolS zS � 􏽘
ej∈zS

w(e)
ej ∩ S

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ej ∩ zS
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

δ ej􏼐 􏼑
. (18)
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Equations (19)–(20) prove the stationary distribution of
Markov random walk as π(vk) [1].

π vk( 􏼁 �
d vk( 􏼁

VolV
, (19)

􏽘

n

i�1
π vi( 􏼁p vi, vk( 􏼁,

� 􏽘
n

i�1

d vi( 􏼁

VolV
􏽘

m

j�1
w ej􏼐 􏼑

h vi, ej􏼐 􏼑

d vi( 􏼁
,

�
1

VolV
􏽘

n,m

i�1,j�1

w ej􏼐 􏼑h vi, ej􏼐 􏼑h vk, ej􏼐 􏼑

δ ej􏼐 􏼑
,

�
1

VolV
􏽘

m

j�1
w ej􏼐 􏼑 􏽘

n

i�1
h vi, ej􏼐 􏼑

h vk, ej􏼐 􏼑

δ ej􏼐 􏼑
,

�
1

VolV
􏽘

m

j�1
w ej􏼐 􏼑h vk, ej􏼐 􏼑,

�
d vk( 􏼁

VolV
.

(20)

It can be seen from equations (15)–(16) that the
process of Markov random walk conforms to the
hypergraph’s standard Laplacian operator L in equation
(9). If V is the feature vector of P, then V is also the feature
vector of L. 'e Laplacian matrix can be deemed as the
expression of the hypergraph structure after a random
walk.'e target function of the hypergraph cut is (21), and
equations (19)–(23) prove the minimal cut of Markov
random walk, that is to say, making the similarity of the
edge connecting different clusters to be minimal (the
vertex transition probability is the minimum), while the
vertex transition probability within the same cluster is
maximal and gradually tends to a stably distributed
partition. On account of the difficulty in directly solving
(21), it is converted to the basic loss function (8) corre-
sponding to (6), that is, argminΩ(F). 'e solution to
argminΩ(F) is the feature vector corresponding to N
minimal nonzero eigenvalues of hypergraph Laplacian
matrix. 'us, the Laplacian matrix is very critical to the
solving of the hypergraph problem.

minNCut S, S
c

( 􏼁,

� min
VolzS

VolV
1

VolS/VolV
+

1
VolSc/VolV

􏼒 􏼓,

� minVolzS
1

VolS
+

1
VolSc􏼒 􏼓.

(21)

VolS
VolV

� 􏽘
vk∈zS

d vk( 􏼁

VolV
� 􏽘

vk∈V
π vk( 􏼁, (22)

VolzS

VolV
,

� 􏽘
ej∈zS

w ej􏼐 􏼑

VolV
ej ∩ S

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ej ∩ S
c

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

δ ej􏼐 􏼑
,

� 􏽘
ej∈zS

􏽘
vi∈ej ∩ S

􏽘
vk∈ej ∩ Sc

w ej􏼐 􏼑

VolV
h vi, ej􏼐 􏼑h vk, ej􏼐 􏼑

δ ej􏼐 􏼑
,

� 􏽘
ej∈zS

􏽘
vi∈ej ∩ S

􏽘
vk∈ej ∩ Sc

w ej􏼐 􏼑
d vi( 􏼁

VolV
h vi, ej􏼐 􏼑

d vi( 􏼁

h vk, ej􏼐 􏼑

δ ej􏼐 􏼑
,

� 􏽘
vi∈S

􏽘
vi∈Sc

d vi( 􏼁

VolV
􏽘
ej∈S

w(e)
h vi, ej􏼐 􏼑

d vi( 􏼁

h vk, ej􏼐 􏼑

δ ej􏼐 􏼑
,

� 􏽘
vi∈S

􏽘
vi∈Sc

π vi( 􏼁P vi, vk( 􏼁.

(23)

3.3. Incidence Matrix Extension. According to equation (9),
the hypergraph Laplacian matrix is relevant to the hyper-
graph incidence matrix H and weight matrix W. Generally,
in the construction of hypergraph structure, it is first to
extract the vectorization feature of objects, then similar
vertexes are connected in the same one hyperedge based on
vertex similarity, and finally, the point-edge incidence
matrix H and weight matrix W are used to represent the
basic structure of the hypergraph model. 'e reason that
hypergraphs can depict more information than ordinary
graphs is the Laplacian matrices H and I express more re-
lationships between vertices and vertices and between ver-
tices and hyperedges.

According to equation (15), the probability of every
vertex’s random walk in the hypergraph is calculated based
on the hypergraph incidence matrix. In this process, the
hypergraph vertexes can fuse more neighborhood infor-
mation to improve the vertex classification accuracy. Mar-
kov random walk is a conductive, reasonable incidence
matrix extension that not only makes Markov random walk
to contain vertexes’ neighborhood information in the pro-
cess but also has the opportunity to contact farther vertexes
for exploring global information, finally obtain a hypergraph
Laplacian matrix fusing more global information. After
blending different Laplacian matrices H together, the
originally nonconnected two vertexes are connected again
by different short-path combinations, which can achieve the
effect of random matrix P “diffusion mapping” [19].
Meanwhile, it is possible to discover the geometry with
different scales in heterogeneous hypergraph space, and
compared to the original space, it can also keep the globality
of hypergraph geometry.

Because different feature extraction methods obtain
different feature spaces with different corresponding
hypergraph structures, so the incidence matrix extension
can be considered as the fusion of multimodal feature space.
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As shown in Figure 2, a single modal hypergraph incidence
matrix Hi ∈ Rn×m is built based on the different feature
extraction methods, and then, Hi is further blended to
obtain the multimodal incidence matrix H′ �
[H1‖H2 · · · ‖Hn] ∈ Rk×(n×m). Hence, the hypergraph vertex
probability transition formula can be rewritten as (24), with
its matrix expression means as shown in the following
equation:

p vi, vk( 􏼁 � 􏽘
n

t�1
􏽘

m

j�1
w ej􏼐 􏼑

ht vi, ej􏼐 􏼑

δ ej􏼐 􏼑

ht vk, ej􏼐 􏼑

d vi( 􏼁
,

P′ � D′−1/2v H′W′D′−1e H′TD′−1/2v .

(24)

It can be seen from equation (2) that the calculation of
hypergraph weight is mainly affected by intervertex distance,
and the sample feature extraction method or intersample
similarity calculation method is different, and then, the
intervertex distance obtained will be different, so the weight
matrix Wi ∈ Rm×m obtained from different modals of inci-
dence matrix Hi will be different. To fuse the hyperedge
weight information, the different models of weight matrix
Wi are also blended to obtain the multimodal weight matrix
W′ � [W1‖W2 · · · |‖Wn] ∈ Rk×(m×m). As shown in Figure 2,
substitute H′ and W′ into (9) to obtain L′ � I−

D−1/2
v H′W′D−1

e H′TD−1/2
v . L′ is substituted into target

function (6), and the gradient descend method is used to

solve. From the test data in Table 3, the matrix extension
method can improve the model classification performance
to a certain extent. 'is indicates that the extended multi-
modal incidence matrix and weight matrix fuse more ab-
stract features, and the corresponding Laplacian matrix L′
contains richer information, so the hypergraph cut obtained
is more accurate with a better classification effect. However,
as matrix extension results in the rapid growth of matrix
dimension, W′ and H′ are expanded k times than original
matrices W and H, bringing greater time cost. In the next
section, a Laplacian matrix fusion method will be proposed
to solve this problem.

3.4. Laplacian Matrix Fusion. Figure 3 describes the main
process of Laplacian matrix fusion. Different modals of
hypergraph structures correspond to different Laplacian
matrices. On the basis of building every modal hypergraph
incidence matrix Hi and weight matrix Wi, we firstly figure
out the corresponding Laplacian matrix Li under each
modal and later perform a weighted sum denoted as L″;
that is,

L″ � 􏽘
K

i�1
Li · r, s.t.r �

1
K

, (25)

K represents the number of fusion Laplacian matrices, and
then, the standardized loss function Ω(F) is rewritten as

Ω(F),
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(26)

In Figure 3, the matrix Li obtained based on each modal
hypergraph contains the information of a single modal
incidence matrix Hi and weight matrix Wi while the matrix

L″ fuses the matrix Li under all modals, containing more
comprehensive and higher quality information. Same as
Section 3.3, the fused matrix L″ uses the gradient descent
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method to solve the target function (6) and trains the ul-
timate model.

4. Experiment and Analysis

4.1. Experimental Environment. Aiming at the classification
problem, the experiment in this paper compared the
hypergraph learning model obtained by training with the
proposed method with a typical classification model, ordi-
nary graph, and other hypergraph models. 'e experimental
environment is as follows.

4.1.1. Hardware. 'e experiment was carried out on GPU
colony, available resources as CPU 96 Core, GPU 2 Core
GeForce_RTX_2080_Ti/2 Core Tesla_v100_ sxM2_32GB,
memory 512GB, memory space 500GB. 'e programming
language is Python 3.7.

4.1.2. Parameters. 'e KNN method was used to build a
hyperedge [21], and that is to say, the vertexes included in
the hyperedge are the central vertex and K vertexes nearest
to it. To ensure variable consistency, the regularization
parameters λ and μ are set as 2; according to the best result of
the experiment, the number of vertices contained in the
hyperedge is set to 25.

4.1.3. Datasets. To better verify the performance of the
proposed model, four different fields of datasets were se-
lected for the experiment, as shown in Table 1.

Cat & Dog. Image datasets, sourced from the official website
of Kaggle [22], containing images of cats and dogs, are often
used for classification tasks.

Cifar 10. Image dataset, a typical computer vision dataset
for object identification and classification [23], included a
total of 10 categories.

Ctrip. Text datasets used the hotel comment data of CTRIP
in 2018 [24], in which every comment has been labeled with
an emotional direction, such as positive comments or
negative comments.

Spambase. Numerical value data, the spam datasets provided
by the official website of UCI [25], is mainly used to identify
and classify spam.

4.1.4. Evaluation Metrics. In this paper, the evaluation in-
dexes used are accuracy, precision, recall, and F1, see the
calculation formula in (28)–(30). TP represents the number
of samples that are actually positive and predicted as pos-
itive, FP represents the number of samples that are actually
negative but predicted as positive, FN represents the number
of samples that are actually positive but predicted as neg-
ative, TN represents the number of samples that are actually
negative and predicted as negative.

Accuracy refers to the ratio of the prediction samples
correctly classified in total samples.

Accuracy �
TP + TN

TP + TN + FP + FN
. (27)

Precision refers to the ratio of the actually positive
samples to the samples predicted as positive.

Precision �
TP

TP + FP
. (28)

Recall refers to the ratio of the samples predicted as
positive to actually positive samples.

Recall �
TP

TP + FN
. (29)

F1 refers to the harmonic mean of precision and recall,
which measures the robustness of the classification model.

F1 �
2 × Precision × Recall
Precision + Recall

. (30)

4.2. Single Modal Hypergraph Model Performance. 'is
section investigates the performance of a single modal
hypergraph models built based on different feature extrac-
tion methods and provides references for the experiment in
Sections 4.3 and 4.4 about which modals should be selected
for feature fusion. Table 2 compares the classification per-
formance of a single modal hypergraph model built based on
different feature extraction methods on image dataset Cat &
Dog and text dataset Ctrip.

On Cat & Dog datasets, PHA, VGG, and ResNet rep-
resent extracted image features by perceptual harsh [26],
VGG [27], and ResNet [28] methods. HSIFT and HVGG
represent extracting image features by SIFT [29] and VGG
methods after the images are preprocessed with a color
difference histogram. RVGG represents extracting image
features by the VGG method after the images are Soble
sharpened to enhance edge information [30]. After using the
above-mentioned methods to extract features, the Euclidean
distance is applied to calculate the sample similarity. SIFT
represents using the key point matching number to denote
the similarity between samples, after extracting the features
of images’ key points with SIFT.

On Ctrip datasets, TF-IDF, LSI, Word2Vec [31], and
Doc2vec [32] represent using these methods to extract data
features and using Euclidean distance to calculate sample
similarity. Jaccard represents using the Jaccard computing
method to measure the similarity between text samples.
After obtaining the sample similarity, the hyperedge and
hypergraph structures are built according to the KNN
method.

It is known from Table 2 that, on Cat & Dog image
dataset, the classification performance of the hypergraph
model built based on the RVGG method is the best, and the
model built based on the PHA method has the poorest
quality. On the Ctrip text dataset, the model built based on
the Doc2vecmethod is the best, and themodel built based on
the Jaccard method has the poorest quality. 'us, the single
modal hypergraph models built with different feature ex-
traction methods are different in classification ability.
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'erefore, it is necessary to find a suitable modal combi-
nation to perform incidence matrix extension and Laplacian
matrix fusion on multimodal feature fusion hypergraphs.

4.3. Model Performance under Modal Combination. 'is
section analyzes the impact of different model combinations,
incidence matrix extension, and Laplacian matrix fusion on
the hypergraph model’s classification performance on text
and image datasets, as shown in Table 3. In the table,
“Poor + Poor/PHA+ SIFT” indicates a new model obtained
by combining PHA and SIFT modals. According to the
results of the table, the single modal hypergraph model built
by PHA and SIFT methods has the poorest quality, be-
longing to a “poor + poor” combination approach. For each
dataset, the second combination approach is a modal
combination fusing the best quality and the poorest quality,
and the third combination approach is a modal combination
fusing the two best qualities.

Comprehensively analyzing Tables 2 and 3, when the
hypergraph model quality of two models is equivalent, the
incidence matrix extension and Laplacian matrix fusion
method are beneficial to improve the classification perfor-
mance of the new model. On Cat & Dog dataset, Table 2
shows that the quality of the PHA or SIFT-based single
modal model is the poorest, and Table 3 shows that the
performance of the PHA+ SIFT combination is better than
PHA and SIFTseparately. Likewise, the quality of RVGG and
HVGG based single modal models is the best in Table 2, and
the performance of the RVGG+HVGG combination in
Table 3 is higher than RVGG and HVGG separately.
However, when two models’ model qualities are varied too
much, the incidence matrix extension and Laplacian matrix
fusion go on improving model performance. As shown in
Table 3, the performance of the RVGG+PHA combination

model is lower than RVGG, because the PHA-based single
modal model quality is the poorest, which will hinder the
performance of the fused new model. On Ctrip datasets, the
same conclusion is made as well.

According to the data in Table 3, it is also discovered that
after combining different models, the performance of
models receiving double fusion of incidence matrix exten-
sion and Laplacian matrix is better than that obtained by
only incidence matrix extension. 'ereby, when choosing
modal combinations, it is essential to choose single modal
hypergraphs with higher and equivalent quality for the
combination and then perform incidence matrix extension
and Laplacianmatrix fusion, to train and obtain high-quality
models.

4.4. Influence of Modal Quantity. 'is section investigates
the influence of fused modal quantity on hypergraph model
performance, as shown in Figure 4. In the figure, the abscissa
axis indicates the fused modal quantity, the data at the
bottom of the table reflects the model’s classification indexes
obtained after fusing multiple modals, and the four curves
reflect the tendency that the classification indexes increase
with modal quantity. Based on the conclusion of Table 3, the
single modal combination with higher and equivalent
quality can obtain a higher classification performance, so
1–4 modals are selected for fusion, respectively, following a
descending order of quality. 'erein, on Cat & Dog datasets,
the 1–4 of abscissa axes correspond to such four modal
combinations as RVGG, RVGG+HVGG, RVGG+
HVGG+VGG, and RVGG+HVGG+VGG+Resnet, re-
spectively. On Ctrip datasets, the 1–4 of abscissa axes cor-
respond to such four modal combinations as Doc2vec,
Doc2vec +Word2vec, Doc2vec +Word2vec + LSI, and
Doc2vec +Word2vec + LSI +TF-IDF. In Figure 4, the

Table 1: Test datasets.

Datasets Datasets type Total samples Numbers of samples in training set Categories
Cat & Dog Image 2000 200 2
Cifar 10 Image 40000 6000 10
Ctrip Text 7766 700 2
Spambase Numerical value 4601 400 2

Table 2: Classification performance of single modal hypergraph model.

Datasets Feature extraction method Accuracy Precision Recall F1

Cat & Dog

PHA 0.552 0.554 0.574 0.563
SIFT 0.658 0.660 0.663 0.661
HSIFT 0.669 0.674 0.678 0.675
VGG 0.958 0.960 0.957 0.958
ResNet 0.960 0.961 0.958 0.959
HVGG 0.963 0.962 0.963 0.962
RVGG 0.965 0.965 0.965 0.965

Ctrip

Jaccard 0.508 0.505 0.513 0.508
TF-IDF 0.603 0.609 0.613 0.610
LSI 0.608 0.612 0.620 0.615

Word2vec 0.639 0.748 0.651 0.696
Doc2vec 0.651 0.870 0.657 0.748
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growth trend of the four curves shows that after the fused
modal number is larger than 2, the model performance
basically tends to be stable. 'erefore, in the test of Table 4,
all models only fuse two optimal modal combinations.

4.5. Time Cost. Table 4 compares the classification perfor-
mance and time cost of the proposed model with the four
single modal models with the best quality on four datasets.
Considering Spambase datasets are numeric data and do not
involve feature extraction operation, the Euclidean distance
and cosine distance are used to figure out the intersample
similarity, respectively, and obtain two different single modal
hypergraph models, and then, the incidence matrix extension
and Laplacian matrix fusion are used, respectively, to compare
with the classification performance of single modal models.
'e experimental results in Table 4 indicate that the proposed
multimodal feature fusion method can effectively promote the
performance of the hypergraph learning model. Although
solely using the incidence matrix extension methodmay result
in larger cost time due to the matrix dimension problem,

applying the Laplacian matrix fusion method can effectively
reduce the model’s time cost only slightly higher than the
single modal model with the best quality. On the four datasets,
the Laplacian matrix fusion can reduce the time cost by 44.2%,
44.6%, 30.3%, and 40.7% than the incidence matrix extension
method, with an average reduction of 40% around.

4.6. Comparison with Other Models. 'is section compares
the classification performance of the proposed model with
other typical machine learning models, such as KNN, SVM,
SVM evolutionary model, ordinary graph model [34],
hypergraph model CD, hypergraph model Gd, and hyper-
graph model Feng. SVM evolutionary model uses the
evolutionary algorithm to search the SVM variable value,
while the variables of the SVM model are the default initial
values of the software package. 'e hypergraph model CD
refers to the hypergraph model obtained by solving the
target function with the coordinate descending method,
corresponding to equations (13)–(14). 'e hypergraph
model Gd refers to the hypergraph model obtained by

Table 3: Classification performance of modal combinations.

Datasets Modal combinations
Incidence matrix extension Incidence matrix extension & Laplacian

matrix fusion
Accuracy Precision Recall F1 Accuracy Precision Recall F1

Cat & Dog

Poor + Poor 0.687 0.662 0.674 0.667 0.722 0.718 0.720 0.718PHA+ SIFT
Poor +Good 0.919 0.920 0.919 0.919 0.928 0.926 0.930 0.928PHA+RVGG
Good+Good 0.975 0.975 0.977 0.976 0.986 0.986 0.986 0.986RVGG+HVGG

Ctrip

Poor + Poor 0.619 0.620 0.619 0.619 0.623 0.621 0.623 0.621Jaccard +TF-IDF
Good+Poor 0.646 0.821 0.613 0.701 0.648 0.837 0.624 0.711TF-IDF+Doc2vec
Good+Good 0.659 0.878 0.709 0.785 0.722 0.718 0.720 0.718Doc2vec +word2vec

1 2 3 4
Accuracy 0.965 0.986 0.988 0.988
Precision 0.965 0.986 0.985 0.986
Recall 0.965 0.986 0.987 0.988
F1 0.965 0.986 0.985 0.986
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0.965
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0.975

0.98

0.985

0.99
Cat&Dog

(a)

1 2 3 4
Accuracy 0.651 0.663 0.671 0.67
Precision 0.87 0.894 0.892 0.893
Recall 0.657 0.721 0.719 0.72
F1 0.748 0.798 0.796 0.797
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0.75
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Figure 4: Influence of modal quantity on model performance. (a) Cat & Dog dataset. (b) Ctrip dataset.
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Table 4: Time cost comparison.

Datasets Model Accuracy Precision Recall F1 Time (s)

Cat & Dog

RVGG 0.965 0.965 0.965 0.965 20.26
RVGG+HVGG 0.975 0.975 0.977 0.976 49.04Incidence matrix extension
RVGG+HVGG 0.986 0.986 0.986 0.986 27.35Incidence matrix extension + Laplacian matrix fusion

Cifar 10

RVGG 0.561 0.570 0.564 0.567 11236
RVGG+HVGG 0.564 0.573 0.573 0.573 23793Incidence matrix extension
RVGG+HVGG 0.594 0.613 0.583 0.598 13158Incidence matrix extension + Laplacian matrix fusion

Ctrip

Doc2vec 0.651 0.870 0.657 0.748 59.7
Doc2vec +word2vec 0.659 0.878 0.709 0.785 106.86Incidence matrix extension
Doc2vec +word2vec 0.663 0.884 0.721 0.851 74.2Incidence matrix extension + Laplacian matrix fusion

Spambase
Euclidean 0.646 0.701 0.646 0.672 8.17

Cosin + Euclidean incidence matrix extension 0.654 0.729 0.654 0.689 17.3
Cosin + Euclidean incidence matrix extension + Laplacian matrix fusion 0.712 0.734 0.696 0.714 10.25
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Ordinary
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Hypergraph
-CD

Hypergraph
-GD

Hypergraph
-Feng

Hypergraph
-ours

Accuracy 0.632 0.732 0.902 0.912 0.964 0.965 0.962 0.986
Precision 0.645 0.755 0.908 0.915 0.966 0.965 0.964 0.986
Recall 0.655 0.756 0.913 0.917 0.962 0.965 0.958 0.986
F1 0.649 0.755 0.91 0.915 0.963 0.965 0.96 0.986
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-Feng
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Accuracy 0.313 0.323 0.647 0.648 0.652 0.651 0.650 0.663
Precision 0.414 0.423 0.761 0.801 0.868 0.87 0.862 0.884
Recall 0.313 0.319 0.647 0.65 0.655 0.657 0.66 0.721
F1 0.356 0.363 0.699 0.717 0.745 0.748 0.747 0.851
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Figure 5: Comparison of model performance. (a) Cat & Dog dataset. (b) Ctrip dataset.
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solving the target function with the gradient descending
method, corresponding to equations (11)–(12). Hypergraph
learning Feng refers to the model optimized by the incidence
matrix proposed by Feng et al. [16]. For the Ctrip text dataset
and Cat & Dog image dataset, it is first to extract features by
Word2vec and RVGG approaches and then classify these
comparison models compared with the proposed model
(refer to Table 1 for the data set division of semisupervised
model). 70% of the data set division of the classical classi-
fication model is a training set.

It can be seen from Figure 5 that the proposed multi-
modal fused hypergraph learning model has a better clas-
sification performance than typical models such as KNN,
SVM, and ordinary graph. Both hypergraph model CD and
hypergraph model GDmodels are single modal models built
based on a single feature extraction method, with inferior
performance than the proposed model. Although the
hypergraph model Feng optimizes the incidence matrix, it
ignores the information of hyperedge weight, so its effect is
poorer than the proposed model. From the comparison in
Figure 5, the proposed multimodal feature fusion method,
by virtue of matrix extension and Laplacian matrix fusion,
breaks the limits of the single hypergraph structure, fuses
multimodal abstract features, and promotes the perfor-
mance of the hypergraph model.

5. Conclusion

Existing hypergraph learning models are all single modal
models built based on one feature extraction method, with
limited feature extraction and abstract expression ability.
'is paper proposed a multimodal feature fusion method,
making the single modal hypergraph structures built based
on different feature extraction methods to fuse multimodal
abstract features through extending the incidence matrix
and its weight matrix. 'en, by using the Laplacian matrix
fusion method, every modal’s incidence matrix and weight
matrix receive Laplacian matrix transformation, respec-
tively, and then undertake weighted accumulation for fur-
ther model training. In this way, not only the model’s time
cost is reduced but also the model performance is further
improved. As the hypergraph neural model is put forward,
hypergraph shows its efficient learning ability in the deep
learning field. 'erefore, the future study will focus on the
hypergraph neural network model and its optimization.
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