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A B S T R A C T   

RUNX proteins have been shown to behave as “double-edge sword” in wide variety of cancers. Discovery of non- 
coding RNAs has played linchpin role in improving our understanding about the post-transcriptional regulation 
of different cell signaling pathways. Several new mechanistic insights and distinct modes of cross-regulation of 
RUNX proteins and non-coding RNAs have been highlighted by recent research. In this review we have attempted 
to provide an intricate interplay between non-coding RNAs and RUNX proteins in different cancers. Better 
conceptual and mechanistic understanding of layered regulation of RUNX proteins by non-coding RNAs will be 
helpful in effective translation of the laboratory findings to clinically effective therapeutics.   

1. Introduction 

We have witnessed milestone achievements ranging from single- 
gene to genome-wide scales and from basic cell biology to clinical ge-
netics. With the increasing arsenal of anticancer agents, improving 
preclinical models and the breakthroughs in high-throughput technol-
ogies, there have been groundbreaking discoveries in the field of cancer 
biology. In recent years, we have witnessed unprecedented progress in 
non-coding RNA research [1–10]. Structural, biochemical and molecu-
lar methodologies have contributed to piecing together the puzzle of 
how RUNX proteins work and how they contribute to carcinogenesis and 
metastasis. In this review, we will touch on the latest findings related to 
the push and pull between non-coding RNAs and RUNX proteins and 
how these interactions regulate carcinogenesis and metastasis [11–15]. 
Thus, lncRNAs and circRNAs may represent fast-evolving tools, which 
contextually add greater than ever complicated regulatory tiers to 
signaling cascades. LncRNAs and circRNAs play contributory role in 
shaping the signaling networks, both as backups of transcriptional 
control and as feedback or feed-forward devices that confer robustness 
to the output of cellular signaling. In this mini-review, we will attempt to 

provide an overview of the most recent developments in the regulation 
of RUNX proteins by lncRNAs and circRNAs in different cancers. We 
have divided this multi-component review into different sub-sections. 
We will first provide an overview of different RUNX proteins in 
various cancers. In the later sections, we will discuss how lncRNAs and 
circRNAs modulate RUNX proteins in wide variety of cancers. The main 
aim of this review is to mechanistically analyze how various lncRNAs 
and circRNAs control the expression of different RUNX proteins to 
inhibit or promote cancer. 

1.1. Overview of RUNX proteins 

RUNX1: Tartrate-resistant acid phosphatase (TRAP/ACP5) played 
central role in lung carcinogenesis (He 16). RUNX1 transcriptionally 
upregulated ACP5 (Fig. 1). ACP5 overexpression in 95C cells led to an 
increase in the phosphorylated levels of ERK/MAPK, whereas inhibition 
of ACP5 caused marked reduction in the phosphorylated levels of ERK/ 
MAPK. Tumors derived from ACP5- overexpressing-95C cells were 
larger in size in xenografted mice (He [16]). 

FUBP1 (Far upstream binding protein-1) worked synchronously with 
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RUNX1 and transcriptionally upregulated c-KIT (Fig. 1) (Debaize [17]). 
Upregulation of c-KIT made cancer cells more resistant to the c-KIT in-
hibitors (Debaize [17]). 

RUNX1 binding sites are present within promoter region of ZEB1 
(Hong [18]). RUNX1 transcriptionally repressed ZEB1 (Fig. 1). Invasive 
potential of RUNX1 overexpressing-MCF10AT1 and MCF10CA1a cells 
was noted to be significantly reduced. Tumors derived from 
RUNX1-overexpressing-MCF10CA1a were found to be smaller in size 
(Hong [18]). 

RUNX2: RUNX2 transcriptionally upregulated OPN/SPP1 (Osteo-
pontin) (Fig. 1) (Villanueva [19]). Enforced expression of RUNX2 
potently enhanced the secretion of osteopontin in conditioned media. 
Moreover, pre-incubation of G292 cells with conditioned media from 
RUNX2-overexpressing-G292 cells led to an increase in their ability to 
adhere to pulmonary endothelial cells. Lung colonization rates as well as 
number of pulmonary metastatic nodules were found to be reduced in 
mice transplanted with RUNX2-silenced-SaOS-2 cells (Villanueva [19]). 

RUNX2 transcriptionally upregulated ITGA5 (Integrin α5) in breast 
cancer cells (Fig. 1) (Li [20]). RUNX2-overexpressing-breast cancer cells 
are prone to metastasize to bone. RUNX2 knockdown caused marked 
reduction in the chemotactic movement of MDA-MB-231 cells towards 
MG63 osteoblast-like cells. Whereas, RUNX2 overexpression led to an 
increase in the chemotactic movement of MDA-MB-231 and T47D cells 
towards MG-63 cells. RUNX2 enhanced the adhesive ability of cancer 
cells with MG-63 but knockdown of ITGA5 severely reduced the adhe-
sive ability. RUNX2-overexpressing-MDA-MB-231 cancer cells invaded 
the bone marrow of tumor-bearing mice. Whereas, inhibition of Integ-
rin-α5 considerably reduced the accumulation of RUNX2-overexpressing 
cancer cells in the bone marrow (Li [20]). 

Levels of RUNX2 were found to be reduced in SET7/9-depleted MCF- 
7 cells and MDA-MB-231 cells (Si [21]). TRIM21 physically interacted 
with SET7/9 and marked it for degradation. Tumor growth was noted to 
be significantly reduced in the mice orthotopically implanted with 
SET7/9-silenced MDA-MB-231 cells. Collectively, these findings 

suggested that SET7/9 stimulated the expression of RUNX2. However, 
TRIM21 served as a tumor suppressor and interfered with 
SET7/9-mediated increase in the expression of RUNX2 (Si [21]). 

MPZL2 (Myelin protein Zero-like-2) and EPAS1 (Endothelial PAS 
domain protein-1) played central role in metastasis (Yi [22]). Binding of 
RUNX2 to the upstream distal region of MPZL2 and intronic regions of 
EPAS1 enhanced their expression. RUNX2 overexpression enhanced the 
metastasis of Wntlow cells but knockdown of RUNX2 considerably 
inhibited metastasizing ability of Wnthigh cells (Yi [22]). 

RUNX3: Two consensus binding sequences of RUNX3 are present 
within AKT1 promoter region (Fig. 1) (Lin [23]) RUNX3 transcription-
ally downregulated AKT1 in gastric cancer cells. RUNX3 caused marked 
reduction in the phosphorylation of AKT1 at Thr-308 and Ser-473. 
RUNX3 also reduced nuclear accumulation of β-catenin. Collectively, 
RUNX3 inhibited proliferation of gastric cancer cells through inactiva-
tion of AKT1 and β-catenin (Lin [23]). 

SMAD3 binding sites are present within promote region of miR-29 b. 
RUNX3 and SMAD3 worked synchronously and stimulated the expres-
sion of a tumor suppressor miR-29b (Fig. 1) (Kong 24). KDM2A (Lysine 
demethylase 2A) is directly targeted by miR-29 b. miR-29 b reduced the 
expression of KDM2A and repressed the proliferation potential of gastric 
cancer cells (Kong [24]). 

EZH2 is member of PRC2 (Polycomb repressive complex-2) (Sen-
gupta [25]). EZH2 is a lysine methyltransferase and catalyzes the 
addition of H3K27me2/me3 (repressive histone marks) to enhance 
chromatin compactness and consequent transcriptional repression. 
Elevated levels of H3K27me3 are associated with lower levels of 
E-cadherin and RUNX3 in aggressive melanoma WM115EZ and 
WM266-4 cells. Treatment of melanoma cells with GSK126 (EZH2 in-
hibitor) led to notably reduced levels of H3K27me3. GSK126-mediated 
EZH2 inhibition reduced H3K27me3 occupancy at the promoter re-
gion of RUNX3. Similarly, targeting of EZH2 also caused an increase in 
the expression of E-cadherin (Sengupta [25]). 

Fig. 1. Regulation of target genes by RUNX proteins. RUNX1 dualistically regulates the expression of target genes. RUNX1 stimulated the expression of TRAP/ACP5 
and c-KIT. RUNX1 inhibited the expression of ZEB1. RUNX2 also stimulates the expression of different oncogenes. RUNX3 is involved in transcriptional down-
regulation of oncogenes. Moreover, RUNX3 stimulated the expression of tumor suppressor miRNA. 
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2. Interplay between lncRNAs and RUNX1 

2.1. Oncogenic role of RUNX1-IT1 

RUNX1-IT1 is transcribed from the intron of RUNX1 (Liu [26]). 
RUNX1-IT1 stimulated the expression of RUNX1 by promoting the 
acetylation of H3K27 in the proximal promoter region of RUNX1. 
RUNX1-IT1 knockdown significantly reduced the levels of H3K27 
acetylation in the proximal promoter region of RUNX1. RUNX1-IT1 
potentiated the binding of RUNX1 to the promoter region of c-Fos. 
Relatively fewer cases of intrahepatic metastases were noticed in the 
mice inoculated with RUNX1-IT1 knockout PANC-1 cancer cells. 
Importantly, fewer micro-metastatic lesions were noticed on the liver 
surfaces of mice inoculated with RUNX1-IT1-knockout PANC-1 cancer 
cells (Liu [26]). 

2.2. Tumor suppressive role of RUNX1-IT1 

RUNX1-IT1 inactivated Wnt/β-catenin signaling by interfering with 
miR-632-mediated inhibition of GSK-3β (Sun [27]). Interestingly, 
cytoplasmic and nuclear levels of β-catenin were noted to be enhanced 
in RUNX1-IT1-silenced cancer cells. Hypoxia induced an increase in the 
levels of HDAC3. Hypoxia-driven HDAC3 caused transcriptional 
repression of RUNX1-IT1. Findings obtained from orthotopic liver tumor 
models were used to analyze the activity of RUNX1-IT1 on intrahepatic 
diffusion and pulmonary colonization of HCC. RUNX1-IT1 notably 
reduced the metastasizing ability of MHCC-97H cells in tumor-bearing 
mice. Relatively fewer and smaller metastatic nodules were noticed in 
mice transplanted with RUNX1-IT1 overexpressing cancer cells (Sun 
[27]). 

2.3. LncRNA-mediated activation of RUNX1 

RUNXOR is an intragenic lncRNA. It is transcribed from a promoter 
located upstream of the RUNX1 promoter (Nie [28]). Astonishingly, 
transcripts from the RUNX1 P1 promoter were found to be significantly 
increased by RUNXOR. RUNXOR induced an increase in the histone 
H3K4me3 epigenetic marks in promoter P1 of RUNX1. Collectively, 
these findings suggested that RUNXOR selectively activated oncogenic 
RUNX1 from the promoter P1 (Nie [28]). 

2.4. Tumor suppressive role of RUNX1 

LncRNA-NEF overexpression inhibited the proliferative ability of 
gastric cancer cells (Wang [29]). LncRNA-NEF knockdown significantly 
inhibited the expression of RUNX1. In contrast, overexpression of 
lncRNA-NEF significantly stimulated the expression of RUNX1 (Wang 
[29]). 

LncRNA-H19 RNA is the primary precursor of miR-675. However, 
miR-675 mediated H19-induced gastric cancer progression (Zhuang 
[30]). miR-675 directly targeted RUNX1 and promoted carcinogenesis. 
RUNX1 overexpression counteracted the proliferative potential of can-
cer cells caused by miR-675 (Zhuang [30]). 

Higher expression levels of RUNX1 and LINC00160 were associated 
with higher overall survival rates in ER + breast cancer patients (Zhang 
[31]). Higher levels of E2-responsive RUNX1 and LINC00160 in ER+

breast cancer patients enhance the rate of sensitivity to endocrine 
therapies and consequently improvement in the prognostic outcomes 
(Zhang [31]). 

CASC2 served as a tumor suppressive lncRNA and antagonized miR- 
18a-5p-mediated inhibitory effects on RUNX1. CASC2 and RUNX1 
reduced the proliferation potential of multiple myeloma cells (Zhang et 
[32]). 

FENDRR potentiated the expression of RUNX1 by sequestering away 
miR-18a-5p (Zhang [33]). FENDRR and RUNX1 reduced the prolifera-
tion ability of prostate cancer cells (Zhang [33]). 

2.5. Oncogenic role of RUNX1 

LincRNA-uc002yug.2 promoted the recruitment of splicing factors 
(MBNL1 and SFRS1) to promoter region of RUNX1 to increase its 
alternative splicing by the formation of regional RNA duplexes to 
enhance the generation of RUNX1a (Fig. 2) (Wu [34]). Tumor devel-
opment started 3 days earlier in mice transplanted with 
lincRNA-uc002yug.2-expressing Eca-109 cells. Tumors derived from 
uc002yug.2-silenced Eca-109 cancer cells were smaller in size (Wu 
[34]). 

TTN-AS1 blocked miR-27 b-3p-mediated inhibition of RUNX1 
(Chang [35]). Tumors derived from TTN-AS1-silenced U251 glioma cells 
were smaller in size (Chang [35]). 

RUNX1 transcriptionally upregulated an oncogenic lncRNA RNCR3 
(Fig. 2) (Xu [36]). RNCR3 abrogated miR-1301-3p mediated tumor 
suppressive effects by stimulating the expression of AKT1. There was a 
marked regression of the tumors in mice transplanted with RNCR3-si-
lenced-HCT116 cells (Xu [36]). 

There was a direct interaction of RUNXOR with the RUNX1 promoter 
and enhancer chromatin DNA sequences through its 3′-terminal segment 
(Wang [37]). 3′ lncRNA interacted inter-chromosomally with many 
RUNX1 translocation partner chromatin DNAs, thus unraveling the 
possibility of this lncRNA in chromosomal translocations in the he-
matopoietic malignancies. Overall, RUNXOR enhanced the recruitment 
of RUNX1 and EZH2 to the promoter region of RUNX1 (Wang [37]). 
However, we still have insufficient information about the exact role of 
this lncRNA-protein complex in the regulation of RUNX1. 

2.6. Oncogenic role of LncRNAs and RUNX2 

LINC00994 effectively blocked miR-765-3p-mediated inhibition of 
RUNX2 in pancreatic cancer PANC-1 and AsPC-1 cells. LINC00994 and 
RUNX2 played central role in carcinogenesis ([38]). 

Likewise, TUC338 also potentiated RUNX2 expression by blockade of 
miR-466 in prostate cancer cells (Li [39]). 

MANCR (Mitotically associated lncRNA) enhanced proliferation 
potential of mantle cell lymphoma cells. MANCR antagonized miR-218- 
mediated targeting of RUNX2 (Wen [40]). 

DLX6-AS1 inhibited tumor suppressor miR-505-3p and stimulated 
the expression of RUNX2. DLX6-AS1 and RUNX2 effectively increased 
proliferative and invasive capacities of breast cancer cells (Zhao, [41]). 

RUNX2 overexpression significantly upregulated PVT1 levels in 
colorectal cancer cells (Chai, [42]). miR-455 directly targeted RUNX2 in 
colorectal cancer cells. However, PVT1 prevented miR-455-mediated 
targeting of RUNX2 (Chai, [42]). 

Overexpression of lncRNA EPEL and RUNX2 promoted the migra-
tion, proliferation, and invasion of gastric cancers (Fu, [43]). 

CREB1 transcriptionally upregulated HAS2-AS1 (Tong, [44]). 
HAS2-AS1 caused upregulation of RUNX2 by blockade of miR-466. 
There was a marked reduction in the growth of the tumors in mice 
transplanted with HAS2-AS1-silenced SKOV3 cancer cells (Tong, [44]). 

N6-methyladenosine (m6A) is a frequent biochemical modification 
of lncRNAs. NEAT1-1 interacted with CYCLINL1 through m6A site 4 
(Wen, [45]). GxxGxG-domain has a functionally distinct role in CDK19. 
Deletion of GxxGxG domain caused considerable blockade of the inter-
action between NEAT1-1 and CDK19. CYCLINL1 associated with m6A 
region of NEAT1-1. NEAT1-1 acted as a bridge for the connection of 
CDK19 and CYCLINL1. NEAT1-1 WT overexpression increased the levels 
of RUNX2, but NEAT1-1 m6A site 4-mutation did not enhance the levels 
of RUNX2. Site 4 of m6A facilitated NEAT1-1-mediated recruitment of 
CDK9 and CYCLINL1 onto the promoter of RUNX2. NEAT1-1 over-
expression led to marked reduction in the survival rates of 
tumor-bearing mice and also enhanced the metastatic spread to pelvis 
bone and lung. Additionally, NEAT1-1 WT potently increased flank 
tumor growth of patient-derived xenografts, but not NEAT1-1site 4 
m6A-mutants (Wen, [45]). 
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WDR5 is a fundamental member of the histone H3K4 methyl-
transferase complexes (Rossi, [46]). WDR5 promoted H3K4 trimethy-
lation on active promoters and facilitated the recruitment of RNA-Pol-II 
for transcriptional activation of target genes. RAIN, a novel 
Enhancer-associated lncRNA not only enhanced the recruitment of 
RNA-Pol-II on the RUNX2 P2 promoter but also increased the levels of 
H3K27Ac. Furthermore, l-RAIN caused a significant increase in the 
levels of H3K4Me3. NELF (Negative elongation factor), a multiprotein 
complex interacted with the RNA-Pol-II along the gene body and 
restrained its progression. However, RAIN sequestered away the mem-
bers of the NELF complex and relieved their inhibitory effects on 
RNA-Pol–II–mediated elongation. RAIN interacted with NELFe in 
MDA-MB-231 and TPC1 cancer cells. RAIN silencing led to significant 
accumulation of NELFe on the transcriptional start site of RUNX2. RAIN 
restrained the NELFe-induced inhibitory effects on RUNX2 expression. 
There was a significant upregulation of RUNX2 in NELFe-silenced 
MDA-MB-231 and TPC1 cancer cells (Rossi, [46]). 

Collectively, substantial fraction of information has been added into 
the pool of knowledge related to lncRNA mediated upregulation of 
RUNX2 to fuel carcinogenesis in wide variety of cancers [47–53]. 

RUNX2 has also been shown to inhibit the expression of tumor 
suppressor lncRNAs. RUNX2 and YAP have been shown to bind to the 
region around the RUNX2 motif and transcriptionally downregulated 
MT1DP (Metallothionein 1D, Pseudogene) (Yu [54]). RUNX2 knock-
down caused marked reduction in the occupancy of YAP around the R2 
region of MT1DP. RUNX2 and YAP were noticed to be downregulated in 
FOXA1 knockdown cells. Eukaryotic initiation factor 4E (eIF4E) played 
an important role in translation of mRNAs. There was a marked increase 
in the recruitment of eIF4E to FOXA1 mRNA in MT1DP knockdown cells. 
Tumor growth rates were noted to be reduced in mice inoculated with 
MT1DP overexpressing Bel-7402 cancer cells. However, these effects 
could be rescued by simultaneous overexpression of either FOXA1, YAP 
or RUNX2. Moreover, interestingly, stronger synergistic effects were 
detected when all three proteins were simultaneously overexpressed in 
mice model (Yu [54]). 

2.7. Tumor suppressive role of RUNX3 

RUNX3 has been shown to inhibit/suppress carcinogenesis and 
metastasis. In this section, we will summarize how different lncRNAs 
inhibit and stimulate the expression of RUNX3 to regulate cancer 

progression. 
HOXD-AS1 worked synchronously with EZH2 and epigenetically 

inactivated RUNX3 (Fig. 3) (Zhang [55]). HOXD-AS1 knockdown not 
only reduced EZH2 binding but also suppressed H3K27me3 occupancy 
at promoter region of RUNX3 in A375 and A2058 cells. Tumor growth 
was drastically reduced in mice injected with HOXD-AS1-silenced A375 
cancer cells (Zhang [55]). 

miR-214-3p, an oncogenic miRNA has the ability to directly target 
RUNX3 to promote cancer (Xu [56]). However, MT1JP interfered with 
miR-214-3p-mediated targeting of RUNX3. MT1JP overexpression 
significantly inhibited tumor growth in tumor-bearing mice. MT1JP 
overexpression increased the expression of RUNX3, Bim and p21 in the 
tumor tissues of xenografted mice (Xu [56]). 

Similar findings have been reported in breast cancer cells (Ouyang 
[57]). Importantly, levels of RUNX3 and P21 were noticed to be 
significantly upregulated, whereas levels of MMP2 and MMP9 were 
found to be downregulated in MT1JP- overexpressing-Bel-7402 and 
Huh-7 cancer cells (Mo [58]). 

HOTAIR overexpression suppressed the levels of RUNX3 in gastric 

Fig. 2. (A) LincRNA-uc002yug.2 promoted the recruitment of splicing factors (MBNL1 and SFRS1) to promoter region of RUNX1. (B) RUNX1 stimulated the 
expression of an oncogenic lncRNA (RNCR3). RNCR3 blocked miR-1301-3p mediated targeting of AKT1. (C) EZH2, RUNX1 and RUNXOR bind to the promoter region 
of RUNX1. However, exact regulation of RUNX1 by this complex is still unknown. 

Fig. 3. (A) HOXD-AS1 worked synchronously with EZH2 and epigenetically 
inactivated RUNX3. (B) PIWI/piRNA complexes are reportedly involved in the 
degradation of RNAs. piR-DQ593109 binds in a sequence-dependent manner to 
the MEG3. MEG3 is a tumor suppressor lncRNA and inhibits miR-330-5p- 
induced targeting of RUNX3. RUNX3 transcriptionally downregulates Zona 
occludens-1, occludin and claudin-5. 
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cancer cells (Xue [59]). MG132, a ubiquitin–proteasome inhibitor 
recovered the levels of RUNX3 in HOTAIR-transfected cancer cells. 
Ubiquitinated levels of RUNX3 were noted to be reduced upon depletion 
of either Mex3b or HOTAIR in SGC7901 and BGC823 cells. Interaction 
between RUNX3 and Mex3b was found to be enhanced in 
HOTAIR-transfected BGC823 and SGC7901 cancer cells. HOTAIR 
knockdown severely impaired the migratory and invasive capacities of 
gastric cancer cells (Xue [59]). 

LINC00657 served as a tumor suppressive lncRNA and inhibited 
cervical cancer progression (Qin [60]). LINC00657 efficiently abrogated 
miR-20a-5p-mediated inhibition of RUNX3. RUNX3 transcriptionally 
upregulated DR5 and potentiated LINC00657-mediated tumor sup-
pressive effects (Qin [60]). 

Blood-tumor barrier (BTB) strictly reduces the transportation of 
chemotherapeutic drugs to the glioma microenvironment (Shen [61]). 
PIWI-interacting RNA (piRNA) is a class of small RNAs. Studies have 
shown that piRNAs bind to PIWI molecules for the regulation of cellular 
mechanisms. PIWIL1 knockdown led to reduction in the levels of Zona 
occludens-1, occludin and claudin-5. piR-DQ593109 downregulation 
caused an increase in the permeability of BTB and lowered the levels of 
occludin, claudin-5 and Zona occludens-1. PIWI/piRNA complexes are 
reportedly involved in the degradation of RNAs. piR-DQ593109 binds in 
a sequence-dependent manner to the MEG3. Degradation of MEG3 by 
the PIWIL1/piR-DQ593109-mediated silencing complexes enhance the 
carcinogenesis. MEG3 blocked miR-330-5p-mediated targeting of 
RUNX3 (Fig. 3). RUNX3-binding sites are present within promoter re-
gions of Zona occludens-1, occludin and claudin-5. Importantly, RUNX3 
transcriptionally downregulated Zona occludens-1, occludin and 
claudin-5. RUNX3 increased the permeability of BTB and inhibited Zona 
occludens-1, occludin and claudin-5 (Shen [61]). 

3. Interplay between CircRNAs and RUNX proteins 

3.1. Oncogenic role of RUNX1 and circular RNAs 

circ_0000512 antagonized miR-296-5p-mediated targeting of 
RUNX1 in colorectal cancer cells (Wang [62]). Downregulation of 
miR-296-5p or overexpression of RUNX1 caused reversal of the 
anti-proliferative and pro-apoptotic effects caused by knockdown of 
circ_0000512 in CRC cells. circ_0000512 knockdown enhanced 
miR-296-5p levels in excised tumor tissues of xenografted mice. 
circ_0000512 knockdown resulted in a decrease of RUNX1 levels in the 
tumor tissues (Wang [62]). 

CircMUC16 potentiated the expression of RUNX1 by sequestering 
away miR-199a-5p (Gan [63]). RUNX1 stimulated circMUC16 expres-
sion. CircMUC16 directly associated with ATG13 and stabilized its 
expression. circMUC16 inhibition caused a marked reduction in the 
levels of ATG13, whereas ectopic expression of circMUC16 promoted 
ATG13 levels. circMUC16 silencing resulted in the suppression of pelvic 
peritoneal invasion (Gan [63]). 

3.2. Tumor suppressive role of RUNX1 and circular RNAs 

circFAT1(e2) interfered with miR-548gmediated targeting of RUNX1 
(Fang [64]). Moreover, circFAT1(e2) interacted with YBX1 in the nu-
cleus and interfered with YBX1-mediated upregulation of EGFR, 
CDC25A and c-Met. There was a marked reduction in the growth of the 
tumors in mice transplanted with circFAT1(e2)-overexpressing 
MGC-803 cancer cells (Fang [64]). 

3.3. Oncogenic role of RUNX2 and circular RNAs 

CircRNAs and RUNX2 have been reported to fuel carcinogenesis. 
This section mainly deals with the positive relationship between circR-
NAs and RUNX2 to promote cancer progression. 

hsa_circ_0000144 interfered with miR-217-mediated inhibition of 

RUNX2 (Huang [65]). Knockdown of hsa_circ_0000144 significantly 
delayed the growth of tumors in xenografted mice (Huang [65]). 

circRNA_102272 served as a sponge for miR-326 and potentiated the 
expression of RUNX2 (Guan [66]). Importantly, tumor volume and 
weight in the circRNA_102272 knockdown groups were significantly 
suppressed. Moreover, intraperitoneally injected cisplatin caused inhi-
bition of the volume and weight of the tumors in mice inoculated with 
circRNA_102272 knockdown cancer cells (Guan [66]). 

3.4. Tumor suppressive role of RUNX3 and circular RNAs 

RUNX3 mediated tumor suppressive effects have also been investi-
gated in recent years. Certain circRNAs have been shown to stimulate 
the expression of RUNX3 to inhibit cancer progression and tumor 
development in preclinical models. 

hsa_circ_0000673 overexpression inhibited the proliferative and 
invasive capacity of gastric cancer cells (Chang [67]). hsa_circ_0000673 
downregulation promoted the proliferation and invasion of gastric 
cancer cells. hsa_circ_0000673 antagonized miR-532-5p-mediated tar-
geting of RUNX3. hsa_circ_0000673 increased the levels of RUNX3 and 
E-cadherin in BGC823 and AGS cancer cells. Tumors developed from 
has_circ-0000673-overexpressing AGS cancer cells were smaller in size 
in tumor-bearing mice (Chang [67]). 

circLARP4 effectively blocked miR-761-mediated targeting of 
RUNX3 (Chen [68]). Increased levels of p53 and p21 in circLARP4-o-
verexpressing MHCC97L cancer cells were abolished after knockdown of 
RUNX3. Tumors derived from circLARP4-overexpressing-MHCC97L 
cancer cells were smaller in size. Higher levels of RUNX3, p53 and p21 
were noticed in the tumors derived from circLARP4-over-
expressing-MHCC97L groups (Chen [68]). 

circREPS2 efficiently blocked miR-558-induced targeting of RUNX3 
(Guo [69]). RUNX3 exerted repressive effects on Wnt/β-catenin 
signaling in gastric cancer cells. Wnt/β-catenin pathway was signifi-
cantly inhibited in RUNX3-expressing-BGC-823 and SGC-7901 cells, 
resulting in a significant reduction in nuclear accumulation of β-catenin. 
RUNX3 significantly inhibited the transcriptional activity of Wnt/β-ca-
tenin signaling cascade (Guo [69]). 

4. Concluding remarks 

The regulation of the RUNX family by non-coding RNAs is a sur-
prisingly unexplored field and needs detailed research. Astonishingly, 
RUNX genes illuminate an exciting fact that disruption of cell-fate 
determination can have an etiological role in carcinogenesis and 
metastasis, but with a more intricate and multifaceted set of conse-
quences than previously surmised for the ‘simple’ tumor suppressors or 
oncogenes. These puzzling complexities highlight opportunities and 
threats for therapeutic targeting of RUNX, which might have unintended 
and unexpected consequences. It is safe to conclude that a fool-proof and 
comprehensive understanding of the intricate interplay between non- 
coding RNAs and RUNX factors will be essential if scientists aim to 
harness rapidly evolving knowledge of this gene family for further 
beneficial advancements in cancer therapeutics. 
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