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Abstract

Motivation: Detecting novel functional modules in molecular networks is an important step in bio-

logical research. In the absence of gold standard functional modules, functional annotations are

often used to verify whether detected modules/communities have biological meaning. However, as

we show, the uneven distribution of functional annotations means that such evaluation methods

favor communities of well-studied proteins.

Results: We propose a novel framework for the evaluation of communities as functional modules.

Our proposed framework, CommWalker, takes communities as inputs and evaluates them in their

local network environment by performing short random walks. We test CommWalker’s ability to

overcome annotation bias using input communities from four community detection methods on

two protein interaction networks. We find that modules accepted by CommWalker are similarly

co-expressed as those accepted by current methods. Crucially, CommWalker performs well not

only in well-annotated regions, but also in regions otherwise obscured by poor annotation.

CommWalker community prioritization both faithfully captures well-validated communities and

identifies functional modules that may correspond to more novel biology.

Availability and implementation: The CommWalker algorithm is freely available at opig.stats.ox.a-

c.uk/resources or as a docker image on the Docker Hub at hub.docker.com/r/lueckenmd/comm-

walker/.

Contact: deane@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A functional module is defined as a group of interacting proteins

that together perform one or more functions. They are thought to

represent an important level of organization in biology (Hartwell

et al., 1999). The broad definition of a module has led to a variety

of approaches for module detection. Generally, modules are found

by performing community detection on protein interaction networks

(PINs) (Lewis et al., 2010; Luo et al., 2007; Mete et al., 2008;

Pereira-Leal et al., 2004; Spirin and Mirny, 2003), or other net-

works of integrated biological data (Cantini et al., 2015; Chen and

Yuan, 2006; Ji et al., 2014; Mitra et al., 2013). Due to high error

rates in molecular networks (Hart et al., 2006), inconsistencies be-

tween the many available community detection methods (Hric et al.,

2014; Tripathi et al., 2016), and noise in orthogonal datasets such

as gene expression (Bammler et al., 2005; Irizarry et al., 2005) an

evaluation step is often added to the pipeline to determine which of

the communities should be accepted as modules. It is this evaluation

step that we address in this paper.

Detecting substructures in networks is an idea that predates

functional modules, and thus a large collection of methods exist for
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detecting modules (Fortunato, 2010; Porter et al., 2009). Most

of these can be classified as community detection methods.

Community detection methods aim to find groups of nodes that

interact more with each other than with the rest of the network.

Here, we use four different community detection approaches: two

methods that detect overlapping communities [Link Clustering (Ahn

et al., 2010) and BigCLAM (Yang and Leskovec, 2013)], and two

methods that detect exact partitions [configuration model and con-

stant potts model Modularity Maximization (Blondel et al., 2008;

Reichardt and Bornholdt, 2006; Traag et al., 2011)]. The first three

of these methods have been previously applied to PINs (Ahn et al.,

2010; Lewis et al., 2010; Yang and Leskovec, 2013).

To evolve the concept of a community into a biologically mean-

ingful functional module, module evaluation methods can be used.

These methods use functional annotations, such as those sourced

from the Gene Ontology (GO) (Ashburner et al., 2000), to compute

the functional homogeneity of proteins grouped into communities.

The two main approaches to calculate functional homogeneity are

functional enrichment and semantic similarity. Functional enrich-

ment calculates the significance of an annotation in a community

based on its prevalence compared to a random community of the

same size (Ahn et al., 2010; Huang et al., 2009; Mete et al., 2008).

In contrast, semantic similarity measures use the relationships be-

tween annotations associated with proteins provided by the GO to

compute a similarity score (Guzzi et al., 2012; Pesquita et al., 2009).

While these methods are widely used, it is often overlooked that

the distribution of functional annotations across networks is hetero-

geneous. In the same way that research focus affects the topological

structure of PINs (von Mering et al., 2002; Rual et al., 2005;

Schaefer et al., 2015), it also affects which proteins amass functional

annotations (Pesquita et al., 2008). This phenomenon and its effects

are well-described in the field of gene function prediction (Greene

and Troyanskaya, 2012; Myers et al., 2006; Pavlidis and Gillis,

2012; Schnoes et al., 2013). Yet, how annotation bias manifests it-

self in module detection remains to be investigated. Previous studies

have shown that the number of functional annotations affect seman-

tic similarity measures (Pesquita et al., 2008; Wang et al., 2010).

Following on from these results, we demonstrate the consequences

for module evaluation. Based on an analysis of PINs, we show that

annotation heterogeneity leads to a preference of module evaluation

for communities of well-studied proteins using both semantic simi-

larity and functional enrichment. We propose the CommWalker

module evaluation framework to counteract this bias.

CommWalker uses short random walks to sample the local net-

work environment of a community and adjusts the stringency of the

evaluation accordingly. In this way, CommWalker achieves a

greater sensitivity in poorly studied network regions, while main-

taining stringent module evaluation for well-studied communities.

While random walks have been frequently used in community detec-

tion (Fortunato, 2010; Jeub et al., 2015) and network analysis

(Boccaletti et al., 2006), their use in module evaluation is to our

knowledge novel. To demonstrate CommWalker’s efficacy, we

compare its perfomance with the semantic similarity measures

simUI (Gentleman, 2005), simGIC (Pesquita et al., 2008), and the

Pandey method (Pandey et al., 2008), all of which have previously

been used for PIN analysis (Pesquita et al., 2008; Lewis et al., 2010).

2 Materials and methods

2.1 Protein interaction networks
In order to assess the performance of CommWalker on different

types of protein interaction datasets, we downloaded two charac-

teristically different human networks: HINT-P and BioGrid-AP

(cf. Table 1).

Human protein interaction data were downloaded from the

HINT (Das and Yu, 2012) (retrieved Aug. 2015) and BioGrid (Stark

et al., 2006) (retrieved Aug. 2015) databases. The data were divided

into two categories: association data (A), and physical association

data (P), which are broadly defined by PSI-MI classifiers MI: 0914

for A-type data, and MI: 0407 and MI: 0915 for P-type data (Côté

et al., 2010). While the HINT database assigns co-complex (A-type)

or binary (P-type) labels to interactions, the BioGrid dataset was

split into A-type and P-type interactions by experimental evidence

codes after (Lewis et al., 2010). Further filters were applied to the

datasets to include only interactions between human proteins, ex-

clude self-interactions and exclude any nodes not connected to the

largest connected component of the PINs. Network statistics of the

two datasets are shown in Table 1.

HINT-P uses only P-type interactions that have been reported by

at least two independent sources (Das and Yu, 2012) and is a com-

paratively small but high confidence dataset. BioGrid-AP uses A-

type and P-type interaction data and is thus more comprehensive,

but likely to have a high false positive rate.

2.2 Community detection
The communities evaluated by CommWalker were generated by

four different community detection methods: two non-overlapping

methods [configuration model Modularity Maximization (Blondel

et al., 2008; Reichardt and Bornholdt, 2006) and Constant Potts

model Modularity Maximization (Traag et al., 2011; Blondel et al.,

2008)] and two overlapping community detection methods [Link

clustering (Ahn et al., 2010) and BigCLAM (Yang and Leskovec,

2013)]. These methods represent different approaches to the com-

munity detection problem (Fortunato, 2010) and are elaborated on

in Appendix A in the Supplementary Material.

As functional modules can be found at different scales of organ-

ization (Lewis et al., 2010), we intentionally avoid partitioning our

networks in only a single way. Instead, we selected community de-

tection methods that either have an inbuilt resolution parameter or a

parameter which can be used as a proxy for the resolution of a net-

work partition. Using multi-resolution community detection we gen-

erated a multitude of network partitions according to each method,

thus covering a wide spectrum of possible communities from the

PINs used. The inbuilt resolution parameter, S, was used for Link

clustering (Ahn et al., 2010) (https://github.com/bagrow/linkcomm,

retrieved June 2014) at 121 values evenly spanning the interval

S 2 ½0;0:6�. For Modularity Maximization community detection, we

used the adaptation of Modularity from (Reichardt and Bornholdt,

2006) as implemented in the Louvain algorithm (Blondel et al.,

2008) (https://launchpad.net/louvain, retrieved April 2014) which

includes the resolution parameter, c. Network partitions were gener-

ated at 51 resolutions spanning the interval c 2 ½10�1; 103� for the

configuration model and c 2 ½10�4;100� for the Constant Potts

Table 1. Network statistics for HINT-P and BioGrid-AP

Network Nodes Edges Density Avg. Degree

HINT-P 10 927 49 301 0.00083 9.02

BioGrid-AP 15 405 165 343 0.00139 21.47

Note: BioGrid-AP is the larger network with a higher density. The

PINs overlap in 10 617/10 927 possible nodes and 40 853/49 301 possible

edges.
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model, with resolutions evenly spaced on a logarithmic scale. As

BigCLAM (Yang and Leskovec, 2013) (http://snap.stanford.edu,

retrieved June 2014) does not have an inbuilt resolution parameter,

we used the number of communities to be fitted, K, as a proxy for

the resolution. Network partitions were generated at 101 K values

evenly spanning the interval K 2 ½1; 5001�. Using this proxy, net-

work partitions at neighbouring resolutions only differ in the added

50 communities that are fitted at the higher resolution. Thus the

number of proteins in functionally significant communities increases

with the parameter K, so that a maximum of the number of proteins

in functionally significant communities is trivially found at the

highest K. The non-backtracking line search was parametrized at

a ¼ b ¼ 0:9 for the BigCLAM algorithm to optimize for partition

quality over speed.

For practical purposes, we limit the size range of communities of

interest to 6–35. Using this limitation, the communities proposed as

modules are viable to be experimentally tested, and are unlikely to

be trivial associations.

2.3 Semantic similarity
To quantify the similarity between proteins three semantic similarity

measures based on Gene Ontology (GO) Biological Process (BP) an-

notations [human assocation data from http://www.geneontology.

org (Ashburner et al., 2000), retrieved July 2015; GO ontology

retrieved August 2015] were used. All GO term associations with

evidence codes ‘IPI’ and ‘RCA’ were filtered out, as these associ-

ations are inferred based on protein interactions or omics data that

may include protein interaction networks themselves. This filtering

ensures that there is no data circularity. Further filtering was applied

to ‘ND’ evidence codes, denoting no evidence for specific BP associ-

ation, and ‘NOT’-qualifiers, which denote negative associations.

Following reviews of semantic similarity measures in protein

interaction networks and other biological applications (Guzzi et al.,

2012; Mazandu and Mulder, 2014; Pesquita et al., 2009), we chose

a semantic similarity measure developed by Pandey et al. (Pandey

et al., 2008), and two popular and well-reviewed measures: simUI

(Gentleman, 2005) and simGIC (Pesquita et al., 2008). These three

similarity measures all compute the functional similarity of proteins,

q, based on the intersection of GO term sets each protein is associ-

ated with (cf. details in Appendix A in the Supplementary Material).

For consistency, the figures presented in the main paper use the

Pandey method, while results for simUI and simGIC can be found in

the Supplementary Material.

Using these semantic similarity measures, the biological rele-

vance of a community can be quantified via its functional homogen-

eity. The functional homogeneity is calculated by taking the average

of the q scores of all protein pairs in a community. Proteins without

functional annotations are ignored in this calculation.

The functional homogeneity of a community can be used to as-

sess its significance by comparing it to a background semantic simi-

larity value. Commonly used background values are related to the

mean or median of the functional similarities of interacting proteins

in a PIN (Lewis et al., 2010).

2.4 Gene co-expression analysis
Gene co-expression analysis was performed using Genotype Tissue

Expression (GTEx) project data (Version 6, RPKM format, from

www.gtexportal.org/home/datasets, retrieved November 2015)

(Lonsdale et al., 2013). These data comprise of over 8500 tissue-

specific, whole genome RNA-Seq samples which were extracted

postmortem from human donors and prepared according to the

same protocol. The data were retrieved in a processed format, in

which expression values are reported per kilobase of transcript per

million reads. Transcript IDs (Ensembl Gene IDs) were mapped to

the PIN gene IDs (Entrez IDs) using the Ensembl release 82 Biomart

tool (Cunningham et al., 2015) and the expression profiles that were

mapped to the same gene ID were averaged.

The level of co-expression of two genes was evaluated by taking

the absolute value of the Pearson correlation coefficient of the genes’

expression profiles following (Langfelder and Horvath, 2008). The

co-expression scores were then combined into a community co-

expression score by taking the average of all pairwise co-expression

scores in the community after (Jansen et al., 2002). The distribution

of these co-expression scores was used to compare communities

evaluated as functionally significant by different methods.

To quantify how easily we can differentiate between community

and random background co-expression, we computed the overlap be-

tween the co-expression score distribution of communities and a ran-

dom background co-expression score distribution. Random

background co-expression was generated by performing 1000 short

random walks of length six from each node in HINT-P and BioGrid-

AP and computing their co-expression scores. The overlap score be-

tween the two distributions was quantified by setting a threshold

based on the community score distribution and calculating the propor-

tion of random walks whose co-expression score exceeds this thresh-

old. This threshold was set to the 25% quantile of the community

co-expression score distribution (cf. Appendix E in the Supplementary

Material, where we also discuss alternative thresholding).

3 Results

3.1 Inspection bias
PINs are noisy and incomplete, and the extent to which a given pro-

tein has been studied affects its representation in the network. For

example, we know that well-studied proteins tend to have a higher

degree in PINs (Rual et al., 2005; Schaefer et al., 2015; von Mering

et al., 2002). Similarly, better studied proteins tend to have more

functional annotations. Previous work has shown that the number

of functional annotations affects quantifications of functional simi-

larity based on semantic similarity (Wang et al., 2010). Here, we

show how this effect also impacts functional module evaluation.

The impact of this heterogeneity of annotation on module evalu-

ation can be analysed by testing for correlation between the func-

tional homogeneity of ‘modules’ and how well-studied their

components are. To perform this investigation independently of

module detection methods, we used short random walks from each

protein (node) in a PIN to represent random proxy modules. We

quantified the research focus by using as a score the fraction of

nodes that are functionally annotated (beyond the root biological

process annotation) in a proxy module, and the functional homo-

geneity of this proxy module via four common module evalution

methods: three semantic similarity measures (simUI, simGIC, and

the Pandey method), and functional enrichment (Huang et al., 2009)

(cf. Methods). To obtain scores for each protein, these module-

based measurements were mapped back to individual nodes by aver-

aging the research focus scores as well as the functional homogeneity

scores which are calculated on random walks started at the same

node.

Performing 10 000 random walks from each node, we found

that research focus and functional homogeneity is correlated across

the two PINs and four functional similarity measures investigated

(cf. Appendix B in the Supplementary Material for further details).
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An example of this correlation for a subnetwork of HINT-P using

the Pandey method (cf. Methods) is shown in Figure 1. This figure

also shows that research focus appears to create regions of high and

low functional homogeneity in PINs.

Our analysis shows that nodes may be evaluated as functionally

similar to random nodes in their neighbourhood in regions of high func-

tional homogeneity. Thus, communities in these regions will be more

likely to be evaluated as highly functionally homogeneous, and vice

versa in poorly studied regions, which biases module evaluation results.

To counteract this bias, it is necessary to take the network region into

account when evaluating modules. For this purpose, we have developed

CommWalker, which uses short random walks to sample a commu-

nity’s local network environment to put its functional homogeneity

into the correct context. CommWalker is designed to counteract the

overestimation of the functional homogeneity of communities in

well-studied environments, while allowing for positive evaluation of

modules in poorly studied network regions.

3.2 CommWalker
CommWalker is a method framework and can be used with any se-

mantic similarity measure defined between nodes. CommWalker

uses these measures to calculate a community significance score,

which is obtained by relating the functional homogeneity of the

community to the functional homogeneity distribution of the com-

munity’s local network background.

Figure 2 is a schematic diagram of the CommWalker evaluation

methodology. CommWalker performs short random walks from

each node in a community. A random walk is terminated when it

has visited NC distinct nodes, where NC is the number of nodes in

the community. Each random walk can therefore be interpreted as

an alternative choice of community in this local network environ-

ment. Using the functional homogeneity values of the random

walks, the tail-value, or T-value, is computed to represent the sig-

nificance of the community in its environment. The T-value is calcu-

lated by T ¼ mþ1
Mþ1, where m denotes the number of random walks

with a functional homogeneity higher than that of the initial com-

munity, and M is the total number of random walks from this com-

munity. The T-value is thus the fraction of the background

distribution in the upper tail as defined by the community functional

homogeneity value (cf. Appendix C in the Supplementary Material).

In the CommWalker algorithm the number of random walks

started per node is calculated based on the size of the community to

ensure each community is sampled to a similar extent. We investi-

gated how many random walks were needed to generate a stable

background distribution, and thus a stable T-value, for a commu-

nity. The best trade-off between algorithm run-time and T-value sta-

bility was found at a T-value standard error of�0.005. Further

details on this analysis and the CommWalker implementation can

be found in Appendix C in the Supplementary Material.

3.3 CommWalker module analysis
CommWalker is designed as a module evaluation framework which

counteracts annotation bias to allow for fair module evaluation even

in poorly-studied network regions. As such, the efficacy of this

framework can be investigated via the communities CommWalker

accepts as modules, specifically via their distribution in PINs. In

order to compare module evaluation using CommWalker to module

evaluation without it, we chose qualitatively similar module accept-

ance thresholds for T-value and functional homogeneity scores. At a

T-value of 0.5 approximately half of the random walks have a func-

tional homogeneity at least as high as that of the community.

Similarly, the median of the semantic similarities of interacting pro-

teins is the smallest value where half of the interacting proteins in

the network have a semantic similarity at least this high. These

thresholds were chosen to ensure the best comparison between

evaluation approaches rather than for the purpose of rigorous biolo-

gical validation.

We performed module evaluation on communities from four

multi-resolution community detection algorithms and two PINs

using the three aforementioned semantic similarity measures for

functional homogeneity evaluation (cf. Methods). Community

T-values and functional homogeneities were computed using each of

the semantic similarity measures. Communities whose functional

homogeneity exceeded our threshold were regarded as accepted by

functional homogeneity evaluation without CommWalker, and like-

wise those communities with a T-value below our threshold were

labeled CommWalker accepted. In this way, communities were div-

ided into four sets: accepted by both methods, accepted only by

CommWalker, accepted only by functional homogeneity, and re-

jected by both methods. Communities in these sets were analysed

for their size, their level of annotation, and the level of annotation of

Fig. 1. Semantic similarity and research focus correlation. The correlation be-

tween semantic similarity and research focus is shown on a subgraph of

HINT-P, generated by taking all nodes connected to the gene FAT1 through at

most two intermediary genes. (a) is coloured by the average Pandey method

functional homogeneity in size 3 proxy modules around the proteins, and (b)

is coloured by the research focus score. Regions of high functional similarity

with the environment (‘Func Sim’) correlate with regions with strong research

focus

Fig. 2. Schematic diagram of the methodology behind CommWalker. The

local network area is sampled by random walks from the community nodes

(dark blue nodes). Random walks are terminated when they have visited NC

nodes, where NC is the community size (here NC¼ 3). The terminated random

walks represent proxy communities (orange, magenta, and green) whose

functional homogeneity values give the local background distribution in

which to interpret the community functional homogeneity. At a functional

homogeneity score of 3, the T-value of the blue community is 1þ1
3þ1 ¼ 0:5, as

one proxy community has a higher functional homogeneity. While functional

homogeneity is generally calculated by averaging GO annotation based func-

tional similarity scores between all protein pairs in a community (see

Methods), the values shown here are chosen for illustration only
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their local environment. Across networks, community detection

methods, and semantic similarity measures, we found that modules

accepted only by functional homogeneity without CommWalker

tend to be small, well-studied, and in well-studied environments in

contrast to those modules accepted only by CommWalker which in-

stead are more broadly distributed in these statistics (cf. Appendix D

in the Supplementary Material).

Figure 3 shows CommWalker’s higher sensitivity in low func-

tional homogeneity regions, which correspond to less well-studied re-

gions of the network. For ease of visualization, non-overlapping

community data were used from configuration model Modularity

Maximization on HINT-P data, in conjunction with Pandey semantic

similarity. In Figure 3, the proteins are ordered by their semantic simi-

larity with their local environment, measured as described in the

Inspection bias Section. Proteins towards the left have higher similar-

ity with their environment and will thus tend to be better studied. On

this layout, we show the distribution of proteins in communities that

were accepted as modules by both methods (Fig. 3b), only

by CommWalker (Fig. 3c), and only by functional homogeneity (Fig.

3d). Proteins in modules accepted by the standard functional homo-

geneity approach (Fig. 3b, d) tend to be distributed towards the well-

studied left side of the figure. In contrast, modules accepted only by

CommWalker (Fig. 3c) have a broader distribution, reaching into the

poorly studied protein regions. In the data presented in Figure 3,

CommWalker accepted modules contain 30.2% of the proteins in the

PIN, and modules accepted by functional homogeneity contain

24.6% of the proteins. However, among proteins with functional

similarity scores in the bottom quartile (right hand quarter of the pan-

els in Fig. 3) functional homogeneity accepted modules include 3.6%

of the proteins, while CommWalker accepted modules include 8.6%.

All of the poorly studied functional homogeneity accepted modules

are also accepted by CommWalker. This behaviour is also observed

for poorly-studied proteins defined by research focus scores in the

bottom quartile (functional homogeneity 10.6% and CommWalker

17.2% proteins in accepted modules, overlap of 10.2% of proteins).

Using non-overlapping community detection methods (configur-

ation model and Constant Potts model Modularity Maximization) for

both PINs and all three semantic similarity measures produced similar

results (cf. Appendix D in the Supplementary Material). We further

observed that the increased sensitivity in poorly-studied network re-

gions evident from this analysis allows CommWalker to accept a

greater number of communities as modules across most datasets inves-

tigated. We also verified that CommWalker prioritizes different com-

munities to functional homogeneity irrespective of the threshold used

(cf. Appendix D in the Supplementary Material). These results suggest

that CommWalker allows for positive module evaluation even in net-

work regions that were previously obscured by lack of annotation.

3.4 Computational module validation
CommWalker’s greater sensitivity in poorly-studied network regions

results from an increased leniency in module evaluation in these re-

gions. Under the assumption that functional module detection

should span PINs as every protein performs a function, this leniency

is theoretically warranted. Practically, it may however be the case

that community detection fails in poorly-studied network regions,

due to greater error rates in local network topology compared to

well-studied regions. We thus performed systematic validation by

comparing module co-expression between CommWalker and

functional homogeneity accepted modules. Module co-expression

measures how similar the expression profiles of genes in the same

module are across human tissue samples (cf. Methods).

As the relationship between gene co-expression and functional re-

latedness is not straightforward (Lee et al., 2004; Li and Biggin, 2015;

van Noort et al., 2003; Zhou et al., 2002), we do not expect that the

four community detection methods necessarily capture gene co-

expression. In order to perform the validation on a dataset that best

captures co-expressed genes, we evaluated how much the community

sets in each dataset differ from random walk co-expression. This evalu-

ation is performed by computing the overlap between the co-expression

score distributions of communities and random walks (cf. Methods).

Overlap scores range from 0% indicating a strong co-expression signal

in communities, to 100% indicating random co-expression. Link clus-

tering on BioGrid-AP was found to best capture co-expression (cf.

Appendix E in the Supplementary Material), with the only overlap

score below 15% obtained for those communities accepted by both

methods using the Pandey semantic similarity measure (Fig. 4).

Figure 4 shows that modules accepted by only CommWalker ex-

hibit a distinctly higher level of co-expression than those accepted

only by functional homogeneity. Indeed, modules only accepted by

functional homogeneity have a similar median co-expression level

than those rejected by both methods on this dataset. While Figure 4

does not provide conclusive evidence that all modules accepted by

CommWalker are correct, it does suggest that CommWalker ac-

cepted modules are at least of a similar quality to modules accepted

by commonly used functional homogeneity approaches.

We further performed a more detailed investigation of the largest

module (in the Link clustering, BioGrid-AP, Pandey method dataset)

only accepted by CommWalker at a stricter T-value threshold of

0.25, and a stronger functional homogeneity rejection threshold

(FH<5, instead of median semantic similarity of interacting pro-

teins at 6.10552) in the above dataset. This module contains the

TRAPP proteins TRAPPC2, TRAPPC3L, TRAPPC4, TRAPPC6B,

TRAPPC8, TRAPPC10, and TRAPPC12, which are implicated in

vesicle transport (Scrivens et al., 2011). Despite its coherent

functional description, it is only relatively poorly annotated at an

average of 43.71 functional annotations per protein, compared to a

mean of 89.85 functional annotions for proteins in BioGrid-AP

with a standard deviation of 33.91. A similar investigation was

Fig. 3. Comparison of the environments of proteins in communities identified

as biologically relevant by CommWalker and functional homogeneity. Nodes

in HINT-P were ordered by their Pandey semantic similarity with nodes in

their vicinity as shown in (a). Communities were generated by configuration

model Modularity Maximization at the resolution where the maximum num-

ber of proteins are found in functionally significant communities by a T-value

threshold of 0.5 (log resolution¼1.80, cf. Appendix D in the Supplementary

Material). On this network layout the proteins in communities identified as

functionally significant by both CommWalker and functional homogeneity

are shown in red (b), by only CommWalker and not functional homogeneity

in blue (c), and by only functional homogeneity and not CommWalker in black

(d). The further left the coloured nodes are, the higher the semantic similarity

of their environment
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performed for a module only accepted by functional homogeneity,

whose proteins showed a more tenuous relationship (cf. Appendix E in

the Supplementary Material). The prioritization of the TRAPP module

despite its poor functional annotation exemplifies CommWalker’s abil-

ity to overcome poor functional annotation in module evaluation.

4 Discussion

Currently, a complete picture of protein function with correspond-

ing functional annotation is not available. Thus, it is important to

consider the effect of the distribution of annotations on the network

in module evaluation. We have developed CommWalker, a module

evaluation framework that takes this heterogeneity of annotation

into account. CommWalker allows for an increased sensitivity in

poorly-studied network regions, without sacrificing its ability to

faithfully evaluate well-studied communities. Through this increased

sensitivity CommWalker accepted modules have the potential to un-

cover functional structure in network regions where such advances

are most needed. It is indeed in the network regions we know least

about, that computational approaches have the greatest potential.

The most common method of evaluating communities or validat-

ing modules is functional enrichment (Ahn et al., 2010; Huang

et al., 2009; Mete et al., 2008). Functional enrichment evaluates

functional significance based on how unlikely it is to obtain

observed frequencies of GO terms given a random GO-term distri-

bution over the network. However, we have shown that GO terms

are not randomly distributed across the network. It is possible to use

the CommWalker framework to overcome this limitation. Similar to

the semantic similarity approach, the frequency of a GO-term can

be related to the frequencies of this GO-term in random walks from

the community to evaluate its significance.

In the same way that annotation bias affects module evaluation,

biases in functional annotations also affect gene function prediction

(Greene and Troyanskaya, 2012; Lee and Marcotte, 2009; Pavlidis

and Gillis, 2012; Schnoes et al., 2013). While the annotation bias that

poses a problem for module evaluation is a skewed and clustered dis-

tribution of annotation specificity across PINs, the bias effect on gene

function prediction most commonly described in the literature arises

from a large coverage of unspecific annotations which are propagated

through the network (functional bias, e.g. Schnoes et al., 2013; Lee

and Marcotte, 2009). Both biases arise from a heterogeneous distribu-

tion of annotation, yet their emphasis differs. One reason for this dif-

ferent focus is that gene function prediction is a local network process

[e.g. guilt-by-association (Pavlidis and Gillis, 2012)] which is better

equipped to deal with local differences in annotation across PINs,

than module evaluation which compares modules to a global refer-

ence. Given that effects of highly annotated genes on function predic-

tion have been reported (Pavlidis and Gillis, 2012), it is likely that the

clustering of functional annotations into regions as described in this

paper will also affect gene function prediction. Further work is neces-

sary to understand the extent of this effect.

Here, we have demonstrated CommWalker’s performance using

three popular semantic similarity measures on a variety of biological

datasets. The CommWalker framework can however be used to im-

prove module evalaution in conjuction with any semantic similarity

measure, and is thus applicable to a wide range of node evaluation

problems. While we have demonstrated its use in biological applica-

tions, CommWalker may likewise be applicable to social networks

that exihibit a skewed distribution of annotations used for evalu-

ation. For example, friendship groups in a network may be validated

based on the results of a questionnaire. If the questionnaires were

taken seriously to different degrees in each friendship group,

CommWalker may be able to validate friendship groups even among

individuals who only half-heartedly responded to questions.

As social network communities can be much larger than those in

biological networks, it may be beneficial to rein in the random walks

for these applications. The larger the community, the further into

the network the random walks may sample – past what could be

considered the local environment. Random walk methods such as

‘random walk with restart’ (Tong et al., 2006) can be implemented

to ensure local sampling.

Whether in social network applications using questionnaires, or in

biological applications using functional annotations, it is always im-

portant that some annotation exists. While CommWalker can over-

come lack of annotation to a certain extent, it is only capable of

amplifying an existing signal. Thus, overall CommWalker is expected

to accept more well-studied than poorly studied modules. The contri-

bution of the CommWalker framework is that we can shift the bal-

ance further into poorly-studied regions of PINs. Continuous

improvement of the coverage of functional annotations will introduce

more functional signal into the data and thus further increase the

benefits of CommWalker module evaluation. Nonetheless, already

now CommWalker has the potential to uncover novel biology.
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