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the control mechanisms of heart 
rate dynamics in a new heart rate 
nonlinear time series model
Zonglu He

the control mechanisms and implications of heart rate variability (HRV) under the sympathetic 
(SnS) and parasympathetic nervous system (pnS) modulation remain poorly understood. Here, we 
establish the HR model/HRV responder using a nonlinear process derived from newton’s second 
law in stochastic self-restoring systems through dynamic analysis of physiological properties. We 
conduct model validation by testing, predictions, simulations, and sensitivity and time-scale analysis. 
We confirm that the outputs of the HRV responder can be accepted as the real data-generating 
process. Empirical studies show that the dynamic control mechanism of heart rate is a stable fixed 
point, rather than a strange attractor or transitions between a fixed point and a limit cycle; HR slope 
(amplitude) may depend on the ratio of cardiac disturbance or metabolic demand mean (standard 
deviation) to myocardial electrical resistance (PNS-SNS activity). For example, when metabolic 
demands remain unchanged, HR amplitude depends on PNS to SNS activity; when autonomic activity 
remains unchanged, HR amplitude during resting reflects basal metabolism. HR parameter alterations 
suggest that age-related decreased HRV, ultrareduced HRV in heart failure, and ultraelevated HRV 
in St segment alterations refer to age-related decreased basal metabolism, impaired myocardial 
metabolism, and SnS hyperactivity triggered by myocardial ischemia, respectively.

The autonomic nervous system (ANS) is classically divided into the sympathetic nervous system (SNS) and the 
parasympathetic nervous system (PNS). The ANS cooperatively modulates heart rate through the two branches. 
There are ample evidences on how each branch of the ANS operates and modulates heart rate variability (HRV), 
and the main origins of the low and the high frequency bands under resting conditions1. While the unclear role 
of the ANS remains to be elucidate under other conditions, basically as exercise and/or other increased metabolic 
demands by the organism as a whole2. HRV analysis has become a popular noninvasive tool to assess SNS and 
PNS activities1,3 and is a reliable reflection of the many physiological factors modulating the normal rhythm of 
the heart3,4. However, practical clinical applications of cardiac autonomic tone and cardiovascular risk assessment 
face complex challenges. For example, HRV exhibits complex nonlinear interactions in healthy individuals, but 
declines in patients with cardiac diseases such as congestive heart failure5 and with age6,7. Depression HRV6,8 or 
ultralow and very-low-frequency power of HRV9 is strongly associated with a high risk of mortality and cardiac 
sudden death in individuals with congestive heart failure9–12 and diabetic neuropathy13. The relations of specific 
changes in HRV with specific pathologies and aging have not been clarified.

To do this, a large number of studies has been performed to reveal the associations of heart rate variability 
(HRV) with cardiovascular regulation and autonomic control. The study results include the assessments of the 
closed-loop interaction between heart period and arterial pressure variabilities and the influence of respiration14, 
the various functional components that comprise the cardiovascular control network by computing transfer 
functions between nerve stimulation rate and the resulting atrial rate with spectral estimation techniques15, and 
baroreflex gain from spontaneous variability using a causal parametric model16; the prediction of blood pressure 
rhythm based on a baroreflex model of first-order differential-delay equation17; the analysis of the influence of 
time delay in the baroreflex control of the heart activity by using a short-term pressure regulation model18; the 
description of a number of important features of the cardiovascular system including the spontaneous short-term 
variability in arterial blood pressure and HR data using a beat-to-beat model of the cardiovascular system based 
on difference equation19; an account for oscillations in the blood pressure control system using a nonlinear model 
that can be related directly to the physiology20; quantitative characterization of the physiological mechanisms of 

Faculty of Management and Economics, Kaetsu University, 2-8-4 Minami-cho, Hanakoganei, Kodaira-shi, Tokyo, 
187-8578, Japan. email: zongluhe@kaetsu.ac.jp

open

https://doi.org/10.1038/s41598-020-61562-6
mailto:zongluhe@kaetsu.ac.jp


2Scientific RepoRtS |         (2020) 10:4814  | https://doi.org/10.1038/s41598-020-61562-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

fluctuations in heart rate, arterial blood pressure, and instantaneous lung volume using system identification21; 
and an explication of the role of the autonomic regulatory mechanisms in HRV using a mathematical model of 
short-term cardiovascular regulation22.

Heart rate time series exhibit complex behaviors including unpredictability2, stochasticity23, nonstationar-
ity1,24, nonlinearity4,25, chaos25,26, bifurcation27, fractality6, and multifractality28. Quantifying complexity from 
heart rate dynamics has attracted a lot of research. For example, Renyi entropy measures of heart rate Gaussianity 
become a complementary measure of the physiological complexity of the underlying signal transduction pro-
cesses via robust algorithms29; accurate estimation entropy in very short time series is utilized to detect atrial 
fibrillation in implanted ventricular devices30. The use of a resampling procedure along with the size-related 
correlations of the nonlinear estimator area1 of approximate entropy provides an effective method to discern 
different generating processes underlying heart rate time series31. Another way of solving these challenges is to 
properly model the generative mechanism of the time series of heart rate (HR) (60/interbeat intervals). Random 
walk, the simplest case of a nonstationary unit root process that mimics stochastic chaos32, with two stochastic 
feedback controls has successfully modeled the heartbeat regulatory mechanisms and accounted for fractal and 
nonlinear dynamics of the heartbeat33. Nevertheless, the HR model explaining the physiological mechanisms 
underlying complex heartbeat behavior has not been established.

On the basis of knowledge accumulation in this field, we would like to further clarify the causal relation-
ships of heart rate dynamics with cardiovascular regulation and autonomic control. The aim of this study is 
twofold. Firstly, we aimed to understand the generative mechanism of the heartbeat time series and the con-
trol mechanisms of the stability, patterns, and fractals of heartbeat dynamics. Secondly, we aimed to extract 
useful information about physiological functions from heart rate data. The key point to achieving the aim is 
whether the HR model established can pass the validation, that is, whether the outputs of the HR model is 
acceptable with respect to the real heart rate data-generating process. This also includes considering whether 
the model has the capability to properly capture the main characteristics of heart rate dynamics. Heart rate is 
controlled by a stochastic self-restoring mechanism. In recent years, there has been a growing interest in the 
nonlinear autoregressive integrated (NLARI) process derived by applying Newton’s second law to stochastic 
self-restoring systems34–38. The NLARI process can exhibit the main HR features as mentioned above. For this 
reason, we adopted the NLARI process to establish the HR model. We validated the HR model by carrying out 
tests, predictions, simulations, as well as sensitivity and time-scale analysis. Further, this method was applied 
to detect valuable information from heart rate data and to interpret unsolved problems, which in turn would 
again validate the HR model.

Modeling
nLARi process and model conditions. A system is a stochastic self-restoring system if it sustains (i) a 
random force or an unpredictable disturbance that may cause a deviation from equilibrium, (ii) a restoring force 
that reduces the negative (positive) deviation from equilibrium via its upward (downward) component, and (iii) 
a resistance force that prevents rapid change in response to the perturbations (henceforth NLARI conditions)34,35. 
The self-restoring system can be described by the following NLARI process 
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2 , α is the resistance coefficient, β is the 
restoration coefficient, and κ1 and κ2 are time lags in resistance and restoration. The relative stable coefficient 
γ β α= −/(4 2 ) has been demonstrated to control the stability and bifurcation of the NLARI process35. Equation 
(1) is a nonstationary unit root process lacking the restoring force (β = 0). Equation (1) is the deterministic sys-
tem with a fixed point and a two-period cycle ( 1) lnt γ−  for nonnull initial values and time lags κ1 = κ2 = 1 
when there is no external disturbance (σ = 0). The fixed point is exponentially asymptotically stable if (0, 1)γ ∈ , 
while the two-periodic cycle is exponentially asymptotically stable for γ ∈ e(1, ) but unstable if γ ∈ + ∞e( , ).

Furthermore, the wave indicators η1 = ω∕α and η2 = σ∕β have been introduced. Due to =−E X X X( , )t 0 1
X t( / )0 ω α+  when εt is Gaussian noise, the ratio ω∕α represents the slope of the mean line. It has been demon-
strated that the ratio σ∕β is strongly positively correlated with the standard deviation of the data generated by the 
NLARI process, while the standard derivation of disturbances is a measure of how far the signal fluctuates from 
the mean. This implies that η2 = σ∕β measures the wave amplitude. More importantly, the two wave indicators are 
also the fractal indicators that determine whether fractal behavior occurs and control the fractal level36. Usually, 
a relatively large absolute slope indicator reflects the high level of dependence, while a relatively small amplitude 
indicator reflects the high level of self-similarity. The relatively large absolute indicator and the relatively small 
amplitude indicator can be reached simultaneously by sufficiently aggregating a time series in the stable 
fixed-point range. That is, typical fractals can be observed if observation scale is large enough (or the frequency of 
data is low enough) in a self-restoring system. Additionally, a time-delay of an even number in restoration 
response makes the dependence largely oscillate.

Next, we investigated whether the initiation and propagation of action potential (AP) sustained the three 
abovementioned forces.
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Cardiac disturbances and PNS-SNS restoring force. Heart rate is determined intrinsically by the rate of spontane-
ous depolarization at the sinoatrial node, but is also modulated by both sympathetic and parasympathetic efferent 
innervation in response to cardiac disturbances (physical demands, stress, or hormonal factors)39. A cardiac dis-
turbance can be driven by an excitatory event, an inhibitory event, or white noise. Excitatory events include acute 
stress such as low oxygen, high carbon dioxide, ischemia, or hypotension. Inhibitory events include acute stress 
such as hypertension or certain physiological states such as rest, sleep, comatose, or anesthetic state. Peripheral 
chemoreceptors located in the aorta, carotid arteries, and the brain are sensory extensions of the peripheral nerv-
ous system into blood vessels by which they detect changes in the concentrations of blood borne chemicals and 
afferent nerves carry them to the brainstem40. When baroreceptors located in the carotid sinus and in the aortic 
arch are excited by a stretch of the blood vessel, they sense the blood pressure changes and relay them to the lower 
brainstem. The SNS connected to the heart speeds up a slower-than-normal heartbeat by releasing neurohor-
mones known as catecholamines (epinephrine and norepinephrine). The PNS located in the brainstem and upper 
or sacral portion of the spinal cord slows down a faster-than-normal heartbeat by releasing the neurohormone 
acetylcholine. The SNS and PNS exerts excitatory and inhibitory effects on target tissue41 in regulating processes 
required for responding to acute stressors and maintaining physiological homeostasis42. Homeostasis typically 
involves negative feedback loops that counteract changes of various properties from their target values43. SNS and 
PNS activities dial heart rate up or down to reduce a negative or positive deviation from the equilibrium heart 
rate44, which provides a negative feedback loop to keep heartbeat homeostasis (Fig. 1A).

PNS and SNS modulation. The PNS and SNS work antagonistically, synergistically, or independently to balance 
the functions of autonomic effector organs42,45. Interestingly, the activities of the two branches are not opposites, 
their interactions are complex46, and have a combined effect on HRV and heart rate control in a delicately tuned 
(see a quite compelling paper: ref. 47). The complexity of PNS and SNS modulation is due to the two roles in 
responding to stimulus and maintaining heart rate in equilibrium. Markedly, there are multiple interactions48 
and mutual presynaptic inhibition between the SNS and PNS49,50. In addition, PNS activation (or deactivation) 
and SNS deactivation (or activation) have the same impact on heart rate modulation. These results suggest that 
an inhibitory event activates the PNS, which in turn inhibits the SNS; as a result, PNS activation and SNS deacti-
vation doubly decrease heart rate. Similarly, an excitatory event activates the SNS, which in tun inhibits the PNS; 
as a result, SNS activation and PNS deactivation doubly increase heart rate. Taken together, the two roles in heart 
rate regulation can be accomplished more efficiently and effectively by the relative strength of PNS against SNS 
activity (equivalent to PNS minus SNS activity).

Electrical resistance against AP propagation. Cardiac tissues have passive electrical properties such as electric 
conductivity and electric permittivity of ion channels. Passive electrical properties dominate the electrotonic 
spread of current through the myocardium and affect AP shape and conduction velocity51. The sinoatrial (SA) 
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Figure 1. Cardiac sympathetic/parasympathetic nervous system (SNS/PNS) and forces acting on heart rate 
(HR). (A) The relative strength of PNS against SNS activity (PNS-SNS activity or PNS-SNS) played two roles: 
a response to cardiac stress (noise or stimulus) and a restoring force to maintain HR around equilibrium. 
(B) There were three forces acting on heart rhythms: cardiac stress as a disturbance that may cause heart 
rate to deviate from the equilibrium heart rate, a restoring force to reduce the derivation via PNS-SNS, and a 
myocardial electrical resistive force against forward action potential propagation that hinders rapid changes in 
heart rate.
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node cyclically generates AP that passes through the heart via the electrical conduction system causing it to 
contract. The AP travels across the cell membrane by opening the voltage-gated Na+ channels and facilitating 
the exchange of ions with K+, while inhibition of the Na+/K+-ATPase causes depolarization. The excitation of 
AP passes through both atria. Then, the atrial depolarization spreads to the atrioventricular (AV) node where 
the AP slows down just a little due to a physiologically effective refractory period allowing the ventricles time to 
finish filling with blood. Later, the AP enters through the bundle of His to bundle branches and Purkinje fibers. 
And lastly, all ventricular muscle becomes activated. AP propagation through the electrical conduction system 
suffers electrical resistance. Electrical resistivity is the inverse of electric conductivity. A decrease in conductivity 
or an increase in resistivity can impair AP propagation across the conduction system52. Under normal conditions, 
electrical resistivity is unlikely too large to properly transmit AP, but this does not suggest that AP propagation 
does not suffer electrical resistance. When electrical resistance is enhanced or altered distinctly due to certain 
factors such as increased non-uniformity and altered anisotropy caused by structural changes in cardiac disease, 
normal AP propagation is disturbed, which is a substrate for arrhythmia53. Many cardiac arrhythmias are caused 
by slowed AP conduction, which in turn can be due to an abnormal increase of intracellular myocardial electrical 
resistance54.

HR models and parameters. The above analysis shows that AP initiation and propagation could meet the 
NLARI conditions: (i) a cardiac disturbance (noise or stress), to which modulation of PNS versus SNS activity 
occur in response, potentially causing the heartbeat to deviate from equilibrium; (ii) a restoring force that reduces 
the positive (negative) deviation from equilibrium by increasing (decreasing) the relative strength of PNS against 
SNS activity (PNS-SNS activity); and (iii) a myocardial electrical resistive force that hinders a fast change in heart 
rate (Fig. 1B). For these reasons, we introduced the NLARI process in Eq. (1) to understand the control mecha-
nisms of heart rate dynamics. Notice that X t( / )t 0μ ω α= +  if ~ N(0, )t

2σɛ . Let Y X X t( / )t t 0 ω α= − −  express 
the removed-mean/tended HR (henceforth HRV). Equation (1) can be rewritten as 
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 The stability involved in homeostasis has never been explicitly stated. Here we define that the NLARI process in 
the stable fixed-point range is stable homeostasis. The NLARI’s stable fixed point is exponentially asymptotically 
stable but not globally stable. Formally we introduce the HR models and parameters:

Definition 1.  Equation (1) is called the NLARI-HR model (or HR model). Equation (2) is called the NLARI-HRV 
responder (or HRV responder). The HRV responder in the stable fixed-point range is called the stable homeo-
static HRV responder and the noise- or stimulus-driven homeostatic HRV responder for noise or cardiac stress. 
The HR parameters are assumed to be the physiological indicators as follows:

(1-1)  The mean and standard deviation of disturbances ω and σ are used to measure the mean and standard 
deviation of myocardial stress, respectively, as the metabolism indicators;

(1-2)  The resistance coefficient α is used to measure the magnitude of a linear sum of the nonjunctional mem-
brane resistance, the perijunctional resistance, and the junctional resistance belonging to the cells, as the 
myocardial electrical resistance coefficient;

(1-3)  The restoration coefficient β is used to measure the relative strength of PNS against SNS activity as the 
PNS-SNS activity (or autonomic modulation) coefficient;

(1-4)  The stability coefficient γ β α= −/(4 2 ) is used to measure the stability and bifurcation of heart rate 
dynamics as the HR stability coefficient;

 (1-5)   The wave indicator η1 = ω ∕α (η2 = σ∕β) is used to measure HR slope (amplitude) reflecting the relative 
strength of cardiac stressful level (change) to myocardial electrical resistance (PNS-SNS activity) as the 
HR slope (amplitude) indicator. Additionally, the wave indicators η1 and the η2 are used to measure the 
HR fractal levels as the HR long-memory indicator and self-similarity indicator, respectively.

Remark for (1-1).  A cardiac disturbance can be driven by physiological or pathological stress. Cardiac stress 
is triggered by an excitatory event, an inhibitory event, or white noise, depending on whether myocardial met-
abolic demand exceeds, lowers, or equals delivery of oxygen and nutrients to the myocardium via the coronary 
circulation. Normal respiratory and metabolic demands cause physiological stress, but changes in respiratory 
frequency do not affect short-term HRV in healthy populations55,56. Thus, the mean and standard deviation of 
cardiac stress reflect the level and changes in myocardial metabolism if oxygen and nutrient supplies remain 
unchanged. The basal metabolic rate is controlled by thyroid hormones and also influenced by many factors 
such as exercise, pregnancy, lack of sleep, gender, age, genetics, body size, weight, and temperature. Instead, the 
mean and standard deviation of cardiac stress are due to oxygen and nutrient supplies to the myocardium, which 
may reflect the cardiovascular function, if myocardial metabolism remains unchanged. Pathological stress can 
be caused by infection, abnormal cardiorespiratory or cardiorespiratory changes, cardiogenic shock, or a chronic 
infarction scar that may induce monomorphic ventricular tachycardia. Hence, the disturbance mean and stand-
ard deviation ω and σ are expected to reflect myocardial metabolism and cardiorespiratory health.

Remark for (1-2). AP conduction velocity depends on ion channel and physical properties of cardiac myo-
cytes and their interconnections. Impaired conduction can be caused by ion channel defects that alter AP shape, 
defective coupling between cardiomyocytes, and inherited defects57. Hence, the electrical resistance coefficient 
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is expected to reflect the functions of ion channel and physical properties of cardiac myocytes and their inter-
connections. The resistivity of the gap junction membrane for the passage of ions and small molecules and for 
propagation is several orders of magnitude higher than the cytoplasmic intracellular resistivity58. Gap junction 
coupling provides a resistance pathway that is several orders of magnitude lower compared with uncoupled mem-
branes58, while poor coupling leads to an increase in the gap junction resistance increases during propagation59. 
The perijunctional resistance includes the resistance of the cytolasm within the juctional space, the membrane 
structure surrounding the junctional lumen, and the resistance of the extracellular fluid outside the junction60.

Remark for (1-3). The relative strength of PNS against SNS activity allows the coexistence of PNS activation 
and SNS deactivation (or SNS activation and PNS deactivation), which doubly decrease (or increase) HR (see 
Section 2.1.2).

Remark for (1-4). A large stability coefficient can result from a large resistance coefficient, a large restoration 
coefficient or both (see Section 2.1).

Remark for (1-5). Under the assumption of the HR wave indicators, the fluctuation pattern of heart rate 
depends on a combined effect of myocardial metabolism, myocardial electrical resistance, or autonomic nervous 
balance. The ratio of the average myocardial metabolism to myocardial electrical resistance determines the HR 
slope, while the ratio of myocardial metabolic changes to PNS-SNS activity determines the HR amplitude. When 
myocardial electrical resistance and autonomic nervous balance remain unchanged, the complexity of heart rate 
dynamics is due primarily to the sufficiency of myocardial metabolism demand relative to oxygen and nutrient 
supply. This can explain why physical training increases the complexity of HRV61 and why the resting energy 
expenditure displays significantly positive correlations with heart rate dynamics62.

Model validation
We conducted model validation confirming whether the outputs of the homeostatic HRV responder were accept-
able with respect to the real data-generating process by carrying out tests, predictions, and simulations under six 
conditions.

Sample description. The data used in this article contained recordings from 30 healthy subjects and 84 
patients in the online PhysioNet website which provides well characterized digital heartbeat recordings collected 
under a variety of conditions63. These recordings were divided into six groups: the YOUNG group (young healthy 
resting wakefulness, 15 subjects, mean age 27 ± 4 years), the ELDER group (elderly healthy resting wakefulness, 
15 subjects, mean age 75 ± 5 years), the CHF group (severe congestive heart failure, 15 patients, mean age 56 ± 12 
years), the ST group (ST segment alterations with ultrahigh HRV or persistent fluctuations far from equilibrium, 
15 patients, mean age 48 ± 16 years), the SCD group (sudden cardiac death, 2 patients, mean age 37 ± 9 years), 
and the VT/VF group (ventricular tachycardia / ventricular fibrillation, 52 patients, mean age 64 ± 10 years). Each 
group contained 90 time series. Each time series had 900 points. Each time series with 900 points was used to 
estimate the HR parameters. See Supplementary Information for more detailed information.

Statistical tests. We performed statistical tests to identify whether actual heart rate time series followed the 
homeostatic HRV responder, namely, the NLARI process in the stable fixed-point range. He (2014)64 shows the 
theoretical parameter intervals θ ∈ −( 1, 1)1 , (0, 4)2θ ∈ , and (0, 1)γ ∈  for the NLARI process within the stable 
fixed-point range. Moreover, the standard t and F statistics for testing the theoretical parameter intervals have 
standard normal limiting distributions when γ > 0. This implies that one can adopt the common standard statis-
tical technique to test the homeostatic HRV responder except for γ = 0. When the confidence interval does not 
contain the null hypothesis value, the homeostatic HRV responder is considered statistically significant. For this 
reason, we examined whether the 95% confidence intervals for θ1 and θ2 fell within −( 1, 1) and (0, 4). For testing 
γ = 1, we calculated the F-statistic given by 
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 If the F-statistic value in Eq. (3) is greater than the 5% (or 1%) critical value of an Fdistribution with 1 numerator 
degrees of freedom and n − 2 denominator degrees of freedom, then the null hypothesis γ = 1 should be rejected. 
For γ = 0, we performed the γn statistic test where the γn statistic is given by 



 γ π σ θ θ= −−n4 (32 ) 1 (4)n
6 1

1 2

 The statistic has a special limiting distribution W L(1)/ (1, 0)  under the given assumptions. Table 1 in ref. 64 
provides the critical values for the γn statistic.

Table 1 shows that all the parameter values fell within the theoretical parameter intervals of the homeostatic 
HRV responder ( 1, 1)1θ ∈ − , θ2 ∈ (0, 4), and γ ∈ (0, 1). All the minimums θi ,min of the lower boundaries and all 
the maximums i ,maxθ  (i = 1, 2) of the upper boundaries for the two-sided 95% confidence intervals were situated 
within (−1, 1) for θ1 and (0, 4) for θ2 (90% for 0159.vf1) where θ1 and 2θ  were the Ordinary Least Squares (OLS) 
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estimates of θ1 and θ2. Thus, the data support θ1 ∈ (−1, 1) and θ2 ∈ (0, 4). All the F-test for the hypothesis γ = 1 
were strongly rejected. Moreover, all the minimums n,minγ  of the statistic γ| |n  for testing γ = 0 were far above 11.9 
at the 99% significance level for sample sizes ranging from n = 900 to 10000 in the six groups. Thus, the hypoth-
esis γ = 0 was rejected at the 1% significance level. These two lines of evidence support the hypothesis γ ∈ (0, 1). 
Thus, the data support that the homeostatic HRV responder was the heartbeat data generative process. This 
implied that the dynamic control mechanism of heart rate was a stable fixed point rather than a fast transition 
between a fixed point and limit cycle or chaos. Furthermore, Fig. 2A shows that a larger η| |1  value corresponded to 
a steeper slope of the mean heartbeat line, while a larger η2 value corresponded to a higher HR amplitude. 
Figure 2B indicates that there was a significant positive correlation between the estimated η2 and the sample sd, 
which supported that η2 was the amplitude indicator. These results showed that the wave indicators η1 and η2 had 
good performances in measuring the HR slope and the HR amplitude.

predictions. A good out-of-sample forecast performance provides strong evidence for the data gener-
ative process. To determine whether the homeostatic HRV responder has a good out-of-sample forecasting 

Group γn,min
θ1,min



1,maxθ θ2,min
θ2,max

YOUNG 49.45 −0.5695 0.5924 0.0485 0.8759

ELDER 58.99 −0.4119 0.4110 0.0222 0.7557

CHF 139.11 −0.5870 0.2606 0.0075 1.1335

ST 31.37 −0.6229 0.4507 0.0028 0.4299

SCD 17.37 −0.6770 0.2255 0.0106 0.7230

VT/VF 34.76 −0.6614 0.7390 0.0011 2.3028

Table 1. Test results for the homeostatic HRV responder. γn,min is the minimum of ,n nγ γ| |  is the statistic to test 
for  γ θ θ= 0, ( )1,min 1,max  and  ( )2,min 2,maxθ θ  are the minimums (maximums) of low (upper) boundaries at 95% 
confidence intervals of θ1 and θ2.
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Figure 2. Heart rate (HR) slope and amplitude indicators η1 and η2. (A) HR for chf01, f1y02, and s20641. η1 = 0 
(chf01, f1y02) corresponded to a horizontal mean line, a slightly larger absolute slope indicator corresponded 
to a slightly larger slope of the mean heartbeat line (s20641) (an upward-trending mean line for η1 = 0.0013: 
131–300; a downward-trending mean line for η1 = −0.0005: 301–700; and an upward-trending mean line for 
η1 = 0.0012: 701–900). A slightly larger amplitude indicator corresponded to a larger amplitude (η2 = 0.0451 for 
chf01, η2 = 0.0630 for f1y02; η2 = 0.1722 for s20641:1–900 points). (B) Scatter plots showing a strong positive 
correlation between the sample standard deviation from the mean sd and estimated η2 for the YOUNG and 
ELDER groups (no cardiac diseases), CHF (congestive heart failure), ST (ST segment alteration), SCD (sudden 
cardiac death), and VT/VF (ventricular tachycardia/ventricular fibrillation) groups.
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performance, the HRV responder was used to predict HRV dynamics under six groups. We discovered for the first 
time that the noise-driven homeostatic HRV responder predicted most of the HRV time series in the YOUNG, 
ELDER, and CHF groups and some HRV time series in the VT/VF group. For example, the homeostatic HRV 
responder (Fig. 3B) based on in-sample data exhibited similar patterns as the original ones drawn by out-sample 
data (Fig. 3A) where a lower η2 value resulted in a lower HRV amplitude, which provides evidence that η2 is an 
amplitude indicator. However, the noise-driven homeostatic HRV responder could not predict HRV trajectories 
driven by unpredictable pathological stress.

Furthermore, Fig. 4 shows that the noise-driven homeostatic HRV responder successfully predicted not 
only HRV dynamics (Fig. 4A) but also a long memory for a restoration delay of 10 (Fig. 4B) (a process has 
long-range dependence if its autocorrelation function (ACF) decays more slowly than an exponential decay as 
the lag increases). This result confirmed the finding that a time delay of an even number in restoration could lead 
to long-term large fluctuations36.

Simulations. We examined the simulation performance of the homeostatic HRV responder under six condi-
tions (groups). We discovered that the noise-driven homeostatic HRV responder failed to simulate HRV situated 
at the edge of stability (a near zero stability coefficient) in a subset of ST, SCD, and CHF groups. Instead, the 
stimulus-driven homeostatic HRV responder could accurately simulate most of the HRV time series in the VT/
VF group as shown in Fig. 5.

As shown above, the homeostatic HRV responder could have a good predictive and simulation performance 
for many HRV time series. Notably, the estimated parameters may be inconsistent if the stability coefficient is 
close to 1. In this case, the parameter value can be approximated to achieve a good fit by carrying out simulation 
as shown in 0217.vf1 in Fig. 5 (see Supplementary Information).

Sensitivity analysis. The stability of the NLARI-HR model results from the impact of uncertainties on the 
performance of HR parameter estimates. Sources of uncertainty in HR parameter estimates are due primarily to 
the randomness of heartbeat samples and changes in their inputs. In Section 3.2, we demonstrate that almost all 
heartbeat time series data lie within the stable fixed-point range at a 95% confidence interval showing that the 
effect of uncertainty caused by randomness on HR parameters ( , , )α β γ  was small. Thus, we focus here on param-
eter sensitivity analysis to quantify uncertainty and the propagation of uncertainty caused by changes in the 
inputs when encountering unexpected relationships between inputs and outputs. Sensitivity is usually measured 
by the ratio of the percentage change in an output (or a dependent variable) to the percentage change in an input 
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Figure 3. Prediction performance of the noise-driven HRV responder. The HRV responder within the 
stable fixed-point range is called the homeostatic HRV responder. The predicted traces by the noise-driven 
homeostatic HRV responder (B) mimicked real HRV traces for 0209.vt1 (ventricular tachycardia), f1y07 and 
f1y06 (young healthy), and chf06 and chf01 (congestive heart failure). (A) Moreover, the amplitude of HRV 
decreased as the amplitude indicator η2 decreased.
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(or an independent variable). Here we consider the sensitivity of HR parameters in Eq. (1) to a sequence of unex-
pected small random perturbations it ′ with mean ωi and variance i

2σ , where ε ω′ = ′ −it it i is a white noise 
independent of the white noise εt for i = 1, ⋯ , n. The disturbed NLARI process is given by 

ɛ ɛX X
X
X

( ) (2 ) (1 )
( )

exp( )
( )

(5)
t i t t

t t

t t
t it1 2

2 2

2 2
2ω ω α α β

μ

μ
= + + − − − +

− −

−
+ + ′− −

− −

− −

 where μ ω ω α= + t[( )/ ]t i . The sensitivity of HR parameters to changes in the inputs can be calculated using the 
following formula:

Definition 2.   The sensitivity of HR parameter φ = α, β, γ, σ, η2 to changes in inputs Δϕi = Δωi or 
φ = ω, α, β, γ, η1 to changes in inputs Δϕi = Δσi is given by 

S( , ) lim /
/

/
/ (6)

i
i

i

i

i
0i

ϕ φ
φ φ
ϕ ϕ

φ φ
ϕ ϕ

=
Δ
Δ

≈
Δ
ΔϕΔ →

 for i = 1, ⋯ , n. We say that the HR parameter φ relative to the perturbations Δϕi is perfectly insensitive if 
ϕ φ =S( , ) 0i , insensitive if ϕ φ <S( , ) 1i , unit sensitive if S( , ) 1iϕ φ = , and sensitive if ϕ φ >S( , ) 1i .

Due to ɛ ɛVar( )t it i
2 2σ σ+ ′ = + , σ σ σ σΔ = + −i i

2 2 . Note that ( )i i iω ω ω ω ωΔ = + − = . Then, we 
have S( , ) ( ) /( )i i iω φ φ φ ω ω φ= | − | and σ φ φ φ σ σ σ σ φ= | − + − |S( , ) ( ) /[( ) ]i i i

2 2 . We conducted simulations 
to calculate the sensitivity ω φS( , )i  and σ φS( , )i  based on the HR parameter estimates of f1y02 from the YOUNG 
group and s20641 from the ST group, which represented a stationary (the stability coefficient γ = 0.1787 for 
f1y02, 900 samples) and a nonstationary (γ = 0.0171 for s20641, 900 samples) heart rate time series, respectively. 
The sensitivity of the average estimation of HR parameters over 3000 repeated simulations is presented in 
Fig. 6A,B for φ = α, β, γ, σ, η2 to changes in the perturbations Δωi and in Fig. 6C,D for φ = ω, α, β, γ, η1 to 
changes in the perturbations Δσi for f1y02 and s20641, where ωi = 0.00004i and σi = 0.007i for i = 1, ⋯ , 20. 
Therefore, the parameter sensitivity analysis indicates that the HR parameters were insensitive or perfectly insen-
sitive for the NLARI process within the stable fixed-point range, whereas the restoration coefficient and the sta-
bility coefficient relative to changes in the standard deviation of perturbations were sensitive for the NLARI 
process on the boundary of the stable fixed-point range.

time-scale analysis. The heartbeat time scales or observation scales in the literature range from a few sec-
onds (describing oscillations in the respiratory rate) to minutes (describing oscillations linked to vasomotion and 
modifications to peripheral resistances). Thus, it is necessary to perform time scale analysis to clarify the suitable 
time scale covered by the NLARI-HR model. That is, we need to assess the effects of different time scales on HR 
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Figure 4. Predictions of HR dynamics and long memory. (A) The out-of-sample predicted HRV trace exhibited 
similar trace to the actual HRV from an elderly subject (f1o04: 1801–3600 points). (B) The out-of-sample 
predicted ACF trace better mimicked the actual ACF trace based on the heartbeat data from the same subject 
(f1o04: 1801–3600 points) with a restoration delay of 10. The predicted ACF values were calculated using the 
data generated by the noise-driven homeostatic HRV responder as a realization of the random variable. The 
predicted and actual HRV responders in (A,B) had the same parameter values estimated using the heartbeat 
data from the same subject (f1o04: 1–1800 points). A process has long memory if its autocorrelation function 
(ACF) decays more slowly than an exponential decay (e.g., at a hyperbolic rate or an oscillation) as the lag 
increases. These results show the ability of the noise-driven homeostatic HRV responder to predict the HRV 
dynamics and oscillatory long memory for a long even restoration delay.
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parameter estimates. Enlarging the time scale of a time series can be realized by aggregating the time series using 
Y Yt

m
m i

m
t m i

( ) 1
1 ( 1)= ∑ = − +  for t T m1, , [ / ]=  ( T m[ / ] denotes the integer part of T∕m)36. Consider the observation 

scales ranging from 1 to 10 seconds and from 1 to 10 minutes and real f1y02, f1o04, chf01, s20641, and 0030.vf1 
(which were regarded as the representative heart rate time series of the YOUNG, ELDER, CHF, ST, and VT/VF 
groups, respectively) on the first scale m = 1. We conducted simulations to estimate the basic HR parameters 
( , , , )α β ω σ  and obtained the average HR parameter values over 3000 repeated simulations. From Fig. 7, we see 
that as the time scale increases, the myocardial electrical resistance coefficient (α) and PNS-SNS activity coeffi-
cient (β) converged to the same value of 1 on the minute scale, in which the larger the PNS-SNS activity coeffi-
cient was, the faster the velocity of convergence (e.g., s20641, with the smallest value β = 0.0171, had the slowest 
convergence speed, while 0030.vf1, with the largest value β = 0.9274, had the fastest convergence speed). The 
standard deviation of metabolic perturbations (σ) converged to a small value, whereas the mean of metabolic 
disturbances (ω), except for 0030.vf1, which had a small value, was continuously enlarged at the minute scale. 
These results indicate that HR parameters on the minute scale cannot exactly extract physiological information 
from heart rate data because of ultra-enlarged scales.

comparison with parametric power spectral analysis. It is important to compare the performance 
of the present method with the classical parametric power spectral analysis in assessing the function of the auto-
nomic nervous system. The power spectral density analysis of HR time series in the very low-frequency (VLF: 0 
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Figure 5. Fitting performance of the stimulus-driven homeostatic HRV responder. (A) The real HRV trace 
plots of 0213.vf1 (ventricular fibrillation), 0067.vt1 (ventricular tachycardia), 0261.vt1 (ventricular tachycardia), 
0209.vf1 (ventricular fibrillation), 0040.vt2 (ventricular tachycardia), and 0217.vf1 (ventricular fibrillation). (B) 
The fitted traces produced by the stimulus-driven homeostatic HRV responder. These fitted traces mimic real 
HRV, implying that the stimulus-driven homeostatic HRV responder can describe pathological arrhythmias 
when cardiovascular perturbations are unpredictably pathological stimuli or intense vibration. These 
arrhythmias reflect the pathological state of cardiovascular and autonomic nervous systems.
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to 0.05 Hz), low-frequency (LF: 0.05 to 0.15 Hz), and high-frequency (HF: 0.15 to 1.0 Hz) bands provides a quan-
titative noninvasive tool to assess the ANS modulation. It is widely accepted that a high LF means an increase in 
the activity of the SNS, while a high HF shows an increase in the activity of the PNS. Thus, the ratio of LF to HF 
power (LF/HF ratio) is applied to estimate the ratio between SNS and PNS activity3,65. The restoration coefficient 
was regarded as the PNS-SNS activity metric. Here we compared the restoration coefficient (β) with the paramet-
ric power spectral density (PSD) for different frequency bands, obtained by means of the autoregressive model 
of order p = 16. The restoration coefficient estimates and their PSDs were roughly consistent for some heart rate 
data (such as f1y02, chf01, and f1o04 in Fig. 8), but significantly inconsistent with its PSD for some heart rate data 
(such as 0030.vf1 in Fig. 8). For example, in the four heart rate time series, s20641 had the lowest LF/HF ratio, 
which implied that its PNS activity was far greater than its SNS activity; on the other hand, it exhibited large fluc-
tuations away from the average, with a very low-frequency showing that its PNS activity was far less than its SNS 
activity. This contrariety did not occur for the restoration coefficient to measure PNS-SNS activity. For example, 
s20641, which had a small restoration coefficient, was consistent with large fluctuations away from the average 
value showing a weak PNS to SNS activity.

To illustrate the phenomenon observed in Fig. 8, we performed simulation study to illustrate the phenomenon 
observed in Fig. 8 and found that PSD estimation was very nonstationary for a nonstationary, a nonlinear station-
ary, or a nonlinear nonstationary time series. The simulation result confirmed that the classical parametric power 
spectral analysis was not suitable for nonstationary and nonlinear stochastic processes. We note that an adaptive 
observation scale could reduce the nonstationarity. Then, simulations were carried out at the observation scale of 
m = 3 to estimate the PSD under different restoration coefficients. Figure 9 presents four realizations of the PSD 
for each case using the time series generated by the NLARI process in Eq. (2). It is seen that as the restoration 
coefficient increases, the LF/HF ratio tends to (i) decrease for 0 < β ≤ 0.1 (which was consistent with the obser-
vation that s20641 had a very low LF/HF ratio in β = 0.0171 in Fig. 8), (ii) decrease or increase for 0.2 ≤ β ≤ 0.4 
(which was consistent with the observation that the restoration coefficients of f1o04, chf01, and f1y02 roughly 
corresponded to their LF/HF ratios in Fig. 8), and (iii) increase for 0.5 ≤ β ≤ 1.6 (which was consistent with the 
fact that 0030.vf1 had a large LF/HF ratio for a large β = 0.9274 in Fig. 8). The PSD realizations show the possi-
bility that in a relatively stable fixed-point range, a low LF/HF ratio reflected a high PNS. However, contrary to 
previous expectations, a high LF/HF ratio might be due to overactive PNS rather than overactive SNS.

To explore whether there is the relation between the frequencies and the restoration coefficient, it is necessary 
to remove the impacts of randomness and nonstationarity of HR time series on PSD estimation. We performed 
simulations to estimate the average frequency over 3000 repeated times. The frequency of a time series that exhib-
its irregular variations changes for different time scales (Fig. 10A). For this reason, we examined whether there 
was a relationship between the frequencies and the restoration coefficient at observation scales ranging from 
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m = 1 to 50. Figure 10B shows a positive correlation between the frequency and the restoration coefficient, but the 
positive correlation did not exist in low-frequency bands, which was consistent with the observation that high LF/
HF ratio did not certainly represent a high SNS activity in Fig. 9. Additionally, we note that the frequency became 
insensitive to an increased restoration coefficient on an over high time scale.

Applications of HR parameters
We compared the HR parameter estimates in five groups with those in healthy young group. Figure 11 showed the 
HR parameter alterations in the five conditions on the group-average estimate. We explored the possible relations 
of HR parameter alterations to cardiac, metabolic, and autonomic nervous functions based on physiological 
knowledge.

Young versus elder subjects. Comparison between the HR parameter estimates in the YOUNG and 
ELDER groups showed that healthy older subjects at rest had increased myocardial electrical resistance coefficient 
(α↑), decreased PNS-SNS activity coefficient (β↓), a near zero average value of myocardial metabolism (− ω↓0) 
leading primarily to a near zero HR slope indicator (− η1↓0), and an ultradepressed standard deviation of myo-
cardial metabolism (σ ⇊ ) leading primarily to decreased HR amplitude indicator (η2↓). These results suggested 
that aging was related to increased myocardial electrical resistance, decreased PNS-SNS activity (decrease PNS, 
increased SNS, or both), and ultradepressed basal metabolism.

The ELDER parameter alterations suggested that ultradepressed basal metabolic rate related to decreased 
HRV with aging (σ ⇊ ), because decreased PNS-SNS activity (β↓) led to increased HRV, rather than decreased 
HRV (e.g., ref.  66), according to the HRV amplitude indicator (η2 = σ∕β).

The increased myocardial electrical resistance coefficient in elderly group during resting was consistent with 
the previous observations that (i) conductive disorders occurring at the heart conduction beam are usually part 
of the aging heart67; (ii) AP conduction time taken and conduction distance increased proportionally with age; 
conversely the conduction velocity decreased with age, contributed to loss of Cx43 protein68; and (iii) a num-
ber of changes with aging do occur in the cardiac conduction system that impact its electrical properties69. The 
decreased PNS-SNS activity could be caused by a decrease in sinoatrial node parasympathetic activity70,71 and an 
increase in sympathetic activity in the heart and vascular system70. The ultradecreased change in metabolic rate 
in elderly group during rest supported the decline in basal metabolic rate with age71.
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congestive heart failure. Comparison between the HR parameters in the YOUNG and CHF groups 
showed that CHF patients had ultra-elevated myocardial electrical resistance coefficient (α ⇈) and mildly 
increased PNS-SNS activity coefficient (β↑) compared to age, which led to elevated HRV stability coefficient (γ↑), 
and ultradepressed standard deviation of myocardial metabolism (σ ⇊) leading primarily to ultradepressed HR 
amplitude indicator (η2 ⇊).

The ultra-elevated myocardial electrical resistance coefficient supported that T-tubule conductivity is signif-
icantly decreased compared with healthy cardiac cells in heart failure52. The mildly increased PNS-SNS activity 
coefficient was consistent with upregulation of the sympathetic overdrive72 and abnormal responsiveness of the 
parasympathetic nervous system in heart failure73,74. The ultralow standard deviation of myocardial metabolism 
supported that myocardial metabolic abnormalities make an important contribution to CHF75 but also peripheral 
tissues and organs76.

St segment alterations. The ST group had ultralow PNS-SNS activity coefficient (β ⇊) resulting in both 
small HRV stability coefficient (γ↓0) and ultrahigh HR amplitude indicator (η2 ⇈).

The heart rate time series in the ST group had ultrahigh HRV or persistent fluctuation far from equilibrium 
(see Section 3.1). The ultraincreased HR amplitude indicator predicted ultrahigh HRV amplitude as showed in 
Figs. 2A and 3. A near-zero stability coefficient predicted persistent fluctuations of HRV far from equilibrium as 
a nonstationary unit root process. While the ultrahigh HRV or persistent fluctuations far from equilibrium are 
accompanied by ultralow and very-low-frequency bands of HRV. As shown in Fig. 2A, s20641 with 


γ = .0 0084 

exhibited not only ultrahigh HRV and persistent fluctuations far from equilibrium but also a very low-frequency 
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Figure 8. Comparison of the restoration coefficient with the PSD in actual data. (A) The power spectral density 
(PSD) of 0030.vf1, f1y02, chf01, f1o04, and s20641 from the VT/VF, YOUNG, CHF, ELDER, and ST groups. (B) 
HR trajectories and the restoration coefficient (β) for 0030.vf1, f1y02, chf01, f1o04, and s20641. The restoration 
coefficient estimates were roughly consistent with their PSDs for f1y02, chf01, and f1o04, but significantly 
inconsistent with the PSD for s20641. Heart rate time series s20641 exhibited very low-frequency fluctuations, 
which was inconsistent with its very low LF/HF ratio but consistent with its small restoration coefficient.
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band. Notably, the most important cause of ST segment elevation is myocardial ischemia so that ST segment 
elevation is used as a marker of acute myocardial ischemia77,78.

These results suggested that ultraelevated HRV in ST segment alterations was related to ultradecreased 
PNS-SNS activity. A hallmark of cardiovascular disease is thought as cardiac autonomic dysregulation79. The 
phenotype of impaired parasympathetic responsiveness and/or sympathetic hyperactivity due primarily to cardi-
ovascular diseases could result in ultra-decreased PNS-SNS activity. While SNS hyperactivity could be triggered 
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Figure 9. Comparison of the restoration coefficient with the PSD in simulation data. The realizations of the 
PSD were obtained by the autoregressive model of order p = 16 at the time scale of m = 3 for the restoration 
coefficient β from 0.005 to 1.6. The original time series (m = 1) were generated by the NLARI process in Eq. (2), 
where the time delay κ2 = 1, the resistance coefficient α = 0.7786, the standard deviation σ = 0.0275, and the 
sample size T = 1500. It is seen that a small restoration coefficient β ∈ . .[0 01, 0 1] could correspond to a very 
low LF/HF ratio (s20641 with β = 0.0171); a relatively large restoration coefficient β ∈ . .(0 1, 0 5) could have a 
low LF/HF ratio (f1o04 with β = 0.4365), a relatively low LF/HF ratio (f1o04 with β = 0.1097), a relatively high 
LF/HF ratio (chf01 with β = 0.1297); and a large restoration coefficient [0 6, 1 6]β ∈ . .  could trend to a high LF/
HF ratio (0030.vf1 with β = 0.9274).
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by myocardial ischemia. Myocardial ischemia relates to coronary artery disease (CAD)80. CAD-related endothe-
lial dysfunction81 may induce a vicious circle of increased SNS activity → vascular wall injury →  development 
of CAD → myocardial ischemia →  increased SNS activity. Additionally, the ultraderessed PNS-SNS activity 
coefficient in ST group supported that iatrogenic hyperthyroidism can induce transient ST segment elevation in 
a patient with normal coronary arteries82.

Ventricular tachycardia/ventricular fibrillation. In contrast with the YOUNG group, we discovered 
that VT/VF group had ultraelevated myocardial electrical resistance coefficient (α ⇈) and ultraelevated PNS-SNS 
activity coefficient (β ⇈) leading to ultraelevated HRV stability coefficient (γ ⇈), ultraelevated mean of myocar-
dial metabolism (ω ⇈) leading to ultraelevated HR slope indicator (η1 ⇈), and an ultraelevated standard deviation 
of myocardial metabolism (σ ⇈).

The heartbeat time series in the VT/VF group came from patients with myocardial infarction (63.5%), CAD 
with no myocardial infarction (28.4%), dilated cardiomyopathy (18.9%), and sustained monomorphic VT (75%) 
attributed primarily to a chronic infarction scar. A myocardial scar from prior infarct is the most common cause 

0.40.2 0.6 0.8 1.0

Fr
eq

ue
nc

y 
(H

z)

0

0.56

0.64

0.48

0.4

PNS-SNS activity coefficient β

m = 1
m = 2
m = 3
m = 4
m = 5

m = 7
m = 10
m = 17
m = 30
m = 50

m = 1

m = 5

m = 9

m = 12

A

B
t

Y
t

Y
t

Y
t

Y
t

0

0.2

-0.2

0

0.2

-0.2

0

0.2

-0.2

0

0.2

-0.2

120 240

120 240

200 400

1200 2400

Figure 10. Relationship between the frequencies and the restoration coefficient. (A) The trajectories of the 
time series generated by the NLARI process on different time scales ranging from m = 1 to 50. As the time scale 
increases, the trajectories of the time series became more smooth. (B) A plot of frequency of the time series 
against the restoration coefficient β. The time series were generated by the NLARI process in Eq. (2) using the 
resistance coefficient α = 0.9489, β = 0.02i for i = 1, ⋯ , 50, the standard deviation σ = 0.022, the sample size 
3000, and repeated times 3000. It is shown that the frequency of the time series was positively related to the 
restoration coefficient, but the frequency became insensitive to an increased restoration coefficient for an over 
enlarged time scale.
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of sustained monomorphic VT in patients with structural heart disease, whereas the most common cause of 
VF is acute coronary ischemia83. The stimulus-driven homeostatic HRV responder accurately resembled most 
of the HRV time series in the VT/VF group (Fig. 5), which supported the observation that the most common 
cause of sustained monomorphic VT is a myocardial scar from prior infarct. The VT/VF parameter alterations 
were consistent with the observation that acute coronary ischemia is the most common cause of VF. CAD is the 
most common cause of myocardial ischemia, while untreated myocardial ischemia can induce infarction. Acute 
myocardial ischemia could substantially elevate myocardial resistance84 (α ⇈) and trigger acute cardiovascular 
stresses (ω ⇈, σ ⇈), which in turn could provoke an overactive PNS or underactive SNS (β ⇈) condition via a 
positive correlation between changes in cardiovascular stress (σ) and PNS-SNS activity (β) (r = 0.43, P < 0.0005). 
The ultraelevated PNS-SNS activity coefficient supported that the finding that low-frequency power fell before the 
onset of VT85 and that a hallmark of cardiovascular disease was cardiac autonomic dysregulation86.
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Figure 11. HR parameter alterations. Myocardial electrical resistance indicator α had an increase in the ELDER 
group, the largest increase in the CHF group, an ultraincrease in the SCD and VT/VF groups. PNS-SNS activity 
indicator β had a decrease in the ELDER group, a mild decrease compared to age in the CHF group, the largest 
decrease in the ST group, and the largest increase in the VT/VF group. HRV stability indicator γ had a decrease 
due to decreased PNS-SNS activity in the ELDER group, an overt increase due to ultraincreased myocardial 
resistance in the CHF group, the largest decrease due to ultradecreased PNS-NS activity in the ST group, and 
the largest increase due to ultraincreased myocardial resistance/PNS-SNS activity in the VT/VF group. The 
mean in myocardial metabolic rate ω had the largest increase in the VT/VF group leading to the largest increase 
HR amplitude indicator η1. The sd in myocardial metabolic rate σ had an ultradecrease in the EDLER group, 
the largest decrease in the CHF group, and the largest increase in the VT/VF group. HR amplitude indicator 
η2 had a decrease due to ultradecreased changes in myocardial metabolic rate in the ELDER group, the largest 
decrease due to mildly increased PNS-SNS activity and ultradecreased changes in myocardial metabolic rate in 
the CHF group, the largest increase due to the lowest changes in myocardial metabolic rate in the ST group, and 
an ultraincrease in the SCD group. The risk predictor in the SCD group had the lowest values in the ELDER and 
CHF groups, the second high value in the ST and SCD groups, and 6-fold increase in the VT/VF group.
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Sudden cardiac death. The SCD group had an ultraelevated myocardial electrical resistance coefficient 
(α ⇈), an ultraelevated HR amplitude indicator (η2 ⇈), and an increased HRV stability coefficient (γ↑) due pri-
marily to the ultraelevated myocardial electrical resistance coefficient.

SCD likely occurs when underlying myocardial function cannot respond to elevated changes in the mean of 
myocardial metabolism under the regulation of PNS-SNS activity in order to keep heart rhythm in an approx-
imate stable range. Thus, the risk factors for SCD should comprise overtly elevated myocardial electrical resist-
ance, overtly elevated standard deviation of myocardial metabolism, and a substantial deviation below or above 
the approximate HRV stability. We considered the ratios of α∕αc, σ∕σc, and γc∕γ or γ∕γc the measures of these risk 
factors where the HR parameters αc, σc, and γc of the YOUNG group were control standards for SCD. The prob-
ability of multiple independent events happening at the same time equals the multiplication of their individual 
probabilities. For these reasons, the risk predictor for SCD was introduced by 

if

if
(7)

c c

c
c

c c c
c

ρ

α
α

σ
σ

γ
γ

γ γ

α
α

σ
σ

γ
γ

γ γ
=











× × ≤

× × >

 The risk predictor for SCD of the VT/VF group was far higher than that of other groups, which confirmed that 
VT/VF is the first leading cause of SCD. The ST and SCD groups had the second biggest risk predictor for SCD, 
which was consistent with the fact that ST segment alteration is a leading cause of SCD. The VT/VF and ST 
groups had the first and second risk predictors for SCD, although they had the biggest and littlest PNS-SNS activ-
ity leading to the biggest and littlest HRV stability, respectively. Moreover, our results suggested that SCD could 
occur in overactive PNS, underactive SNS or overactive SNS conditions87.

The risk predictor for SCD could explain why SCD is more likely to occur in the early hours of the morning 
after awakening than at other times88. First, the regulation of HRV stability became weaker (γ↓) due to increased 
SNS activity in the morning upon arising from bed. Second, changes in the myocardial metabolic rate were more 
likely to reach the highest value (σ↑) during the transition from sleep to waking, during which changes of funda-
mentally different behavioral states occur. According to the risk predictor for SCD, we could predict that SCD was 
more likely to occur in older men with VT during physical activity than in young healthy women at rest89 because 
of a larger myocardial electrical resistance (α↑), larger changes in myocardial metabolic rate (σ↑), and a larger 
deviation above the normal HRV stability (γ↑).

Discussion
In this study, we established the NLARI-HR model and HRV responder as the heartbeat data generative processes 
driven by myocardial noise or stimulus using the NLARI process based on dynamic analysis. The HRV responder 
was validated using heartbeat data from 30 healthy subjects and 84 patients. Statistical tests indicated that almost 
the heartbeat data supported the HRV responder with the stable fixed point (which was called the stable homeo-
static HRV responder or homeostatic HRV responder). The homeostatic HRV responder successfully predicted 
and simulated heartbeat dynamics including long memory for part of dataset, but failed heartbeat data from some 
ST segment alteration and severe CHF patients. We derived HR physiological parameters from the HR model: 
the myocardial electrical resistance coefficient, the PNS-SNS activity coefficient (the restoration coefficient), the 
mean and standard deviation of metabolic disturbances, and wave indicators. When comprising these HR param-
eters under five different conditions with those for healthy, resting, young subjects, we discovered useful informa-
tion about heart function, metabolic status, and cardiac autonomic nervous system activity.

The main findings are as follows. (i) The dynamic control mechanism of heart rate was a stable fixed point, 
rather than a strange attractor or transitions between a fixed point and a limit cycle. However, the stability could 
collapse into a unit root process as observed in some patients with ST segment alterations and severe CHF. 
Random walk and Brownian motion are the simple and continuous case of a unit root process. A unit root process 
is nonstationary and displays a seemingly chaotic behavior but not chaos. The two processes are due to a small 
and large HR stability coefficient respectively. (ii) HR fluctuation depended on two factors: cardiac disturbances 
and responses, but not a single factor such as cardiac autonomic modulation. It has been demonstrated that wave 
slope and amplitude depend on the relative strength of external disturbances to internal responses respectively36. 
Based on the wave indicators, HR slope indicator equaled the ratio of the mean of myocardial disturbances to the 
myocardial electrical resistance coefficient; HR amplitude indicator equaled the ratio of the standard deviation of 
myocardial disturbances to the relative strength of PNS against SNS activity (PNS-SNS activity). This implies that 
when myocardial disturbances remain basically unchanged, HR amplitude is negatively related to PNS-SNS activ-
ity. According to this result, PNS activation will decrease HRV amplitude if myocardial metabolic rate remains 
basically unchanged. However, PNS activation increases HRV amplitude in phenylephrine infusion90, suggesting 
that the infusion would provoke increased myocardial metabolic rate. Myocardial disturbances for a healthy sub-
ject usually reflect metabolic demands. When autonomic nervous system activity remains basically unchanged, 
HR amplitude during resting reflects basal metabolic rate for a healthy subject. Our result could explain why the 
role of the ANS under resting condition can be elucidated in the low and the high frequency bands (often corre-
sponding to the high and low amplitudes) (e.g., ref. 2), but remains unclear under exercise and/or other increased 
metabolic demands (e.g., ref. 3). (iii) Age-related decreases in HRV could be related to age-related decreases in 
basal metabolic rate; ultrareduced HRV in CHF patients could be related to ultradepressed myocardial metab-
olism; ultraelevated HRV in ST segment alterations could be related to ultradecreased PNS-SNS activity SNS 
hyperactivity due to myocardial ischemia; and ultraelevated HR slope in VT/VF patients could be related to acute 
cardiac stresses, which in turn provoked an overactive PNS or underactive SNS condition. (iv) Ultraderessed 
PNS-SNS activity could induce ST segment alterations in patients without cardiac artery diseases.
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In this study, we compared the restoration coefficient with the classical parametric power spectral analysis to 
assess the ANS modulation. We showed that the restoration coefficient was positively related to the frequency of 
a time series in high-frequency bands, whereas the relation did not exist in low-frequency bands. In other words, 
a low LF/HF ratio could represent high PNS activity, but a high LF/HF ratio did not certainly represent high SNS 
activity. We confirmed that the classical parametric power spectral analysis was not suitable for non-Gaussian 
white noise, nonlinear, and nonstationary stochastic processes because the performance of the LF/HF ratio was 
very nonstationary even in a stationary nonlinear time series (interestingly, an adaptive time scale could signifi-
cantly reduce the nonstationarity of the LF/HF ratio). In contrast, the parameter sensitivity analysis demonstrated 
that the performances of the NLARI-HR model with the stable fixed point were robustly stable, while the heart-
beat data almost fell in the stable fixed-point range according to our statistical tests.

In summary, the present method provided (i) a plausible explanation for why reduced HRV was associated 
with ageing and increased mortality risk in patients after myocardial infarction or with advanced heart failure3,91–93  
by HR wave indicators; (ii) a noninvasive tool for measuring cardiac metabolism and function by the mean and 
standard deviation of metabolic disturbances; (iii) a noninvasive tool to assess heart health by the myocardial 
electrical resistance coefficient; and (iv) a stable indicator to assess the ratio between PNS and SNS activity by the 
restoration coefficient.

The limitation of this method is invalid for the minute scale in describing such as heart rate oscillations linked to 
vasomotion and modifications of peripheral resistances. The time-scale analysis showed that an adaptive time scale 
covered by the NLARI-HR model was a few seconds, but a minute scale was never allowed because an over-enlarged 
time scale can reduce the capability of the HR parameters to extract physiological characteristics from heart rate 
data. Another limitation is that the NLARI-HR model is unlikely to clarify the intrinsic mechanism of heart rate 
asymmetry. Time reversibility is one of important properties of linear stationary processes, while time irreversibility 
is a common signature of nonlinear processes. Temporal asymmetry of short-term heart period variability is an 
accepted intrinsic property of HRV, which delivers the time irreversibility of HRV as an important nonlinear marker 
of HRV dynamics94. The deterministic system of the NLARI-HR model (in a block of random perturbations) is 
intrinsic symmetry. The NLARI process is a stochastic process derived by letting the antisymmetric function 
f x x( ) α= −  express the resistance force for =x X and the antisymmetric function g x x x( ) exp( )2β= − −  express 
the restoration force for x = X − μ where μ expresses the equilibrium or average. Thus, the NLARI-HR model has 
an intrinsic symmetric structure so that this model cannot capture heart rate asymmetry.

In additional, we developed the risk predictor for SCD based on the following assumption: SCD could likely 
occur in the coexistence of overt-elevated myocardial electrical resistance, overtly elevated myocardial metabolic 
changes, and a substantial deviation below or above the approximate HRV stability (overactive SNS or overactive 
PNS conditions). However, we did not offer direct evidence to support the risk predictor for SCD. Although the 
CHF parameter alterations suggested that CHF was related to subclinical hypothyroidism, empirical evidence is 
required for the hypothesis. These issues are left to future research.

Methods
Let ΔYt = Yt − Yt−1. Equation (1) can be rewritten as 

ɛθ θΔ = Δ +
−
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 The HR parameters of Eqs. (1) and (2) were estimated as follows. Because the stable fixed point of the NLARI 
process is not globally stable35, a great stressful perturbation may lead to an inconsistent parameter estimator. 
Fortunately, our simulation result indicated that decreasing the magnitude of the data could usually avoid the 
problem. Thus, we let =X logt (HR or 60/RR). The heart rate measures the number of times the heart beats per 
minute (bpm). RR (RR interval) is the beat-to-beat variation (second). Hence, HR is just 60/RR. Then, we esti-
mated the parameters of Eq. (8) by OLS using the data â = − −Y X btt t  where â and b were given by the OLS 
regression line Xt = a + bt + ut for ~ σu N(0, )t u

2 . We obtained the estimates 1θ , 2θ , σ, 



b(1 )1ω θ= − , 


1 1α θ= − , 
 β θ= 2, 



η = b1 , 
 2η σ= /θ2, and 



γ θ= 1
2 2/ (1 )1θ+  for the HRV responder.

The statistical tests, predictions, and simulations in this article were accomplished by the following five 
codeblocks.

estimation. Step 1: Estimate the regression line Xt = a + bt + ut by OLS with data X logt = (HR or 60/RR) 
to obtain â and b. Let = − −â Y X btt t .

Step 2: OLS-Estimate Eq. (8) to obtain  θ θ θ= =′ ′ − ′Y Y Y y( ) ( )1 2
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testing. Step 1: Perform ESTIMATION with sample data =X t n( , 1, , )t .
Step 2: Determine whether the 95% confidence intervals  z s1 0 05 1θ ± .  and θ ± .z s2 0 05 2 fall within ( 1, 1)−  and (0, 4) 
where z0.05 is a critical value at the 95% level with n − 2 degrees of freedom for two-tailed t-tests.
Step 3: Determine whether the F-statistic in Eq. ((3)) is greater than the 1% critical value of an F-distribution with 
1 numerator degrees of freedom and n − 2 denominator degrees of freedom.
Step 4: Determine if the γn-statistic in Eq. (4) is less than  − 3.50 or greater than 11.9 (the 1% critical values for the 
γn distribution in samples n = 900 ~ 10000).

If all the results in Steps 2 to 4 are positive, then the data support θ ∈ −( 1, 1)1 , (0, 4)2θ ∈ , (0, 1)γ ∈ , and 
γ > 0.

prediction. Step 1: Samples are divided into in-sample and out-sample: X X X{ } { } { }t t
n

t t
n

t t n
n

1 1
[ /2]

[ /2] 1∪== = = +  
leading to Y{ }t t n

n
[ /2] 1= +  ( x[ ] is the greatest ingeter of x).

Step 2: (In-sample fit): Calculate the 95% confidence intervals  z s1,2 0 05 1,2θ ± .  ( s s s: , ; : ,1,2 1 2 1,2 1 2
  θ θ θ ) and σ by 

performing ESTIMATION using =X{ }t t
n

1
[ /2].

Step 3: (Out-of-sample prediction): Get the output of the HRV responder as close as possible to actual HRV 
= +Y{ }t t n

n
[ /2] 1 by regulating the parameters θ θ∈ ± .z s1,2 1,2 0 05 1,2 (θ1,2: θ1, θ2) for ~ σN(0, )t

2ɛ


.

Simulation. Noise-driven HRV responder. Step 1: Calculate the confidence intervals θ ± .z s1,2 0 05 1,2 and σ by 
performing ESTIMATION using sample data X{ }t t

n
1= .

Step 2: Get the output of the HRV responder as close as possible to the actual HRV =Y{ }t t
n

1 by regulating 
θ θ∈ ± .z s1,2 1,2 0 05 1,2 for ɛ N(0, )t

2

σ~ .

Stimulus-driven HRV responder. Step 1: Perform steps 1 and 2 in ESTIMATION to obtain the parameters θ1 and 
θ2 using sample data X{ }t t

n
1= .

Step 2: Regulate the threshold c > 0 to get the output of the HRV responder where θ θ=1,2 1,2 and 
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Assessment. Step 1: Perform ESTIMATION to obtain the OLS estimate φij  of the parameter 
φ  =  α,  β,  ω,  σ,  γ,  η1,  η2 in the i-th sample period and the j-th subject/patient using sample data 

  X i p j q t n( , 1, , ; 1, , ; 1, , )ijt = = =  for n = 900.
Step 2: Calculate the following group-average estimates 
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Step 3: Detect the parameter alterations by comparing the HR parameters of the investigated group with the 
YOUNG group for the group-average estimates.

All the detailed programs used in this article are presented in Supplementary Information.
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