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Abstract

The temporal lobe is implicated in higher cognitive processes and is one of the regions that underwent substantial
reorganization during primate evolution. Its functions are instantiated, in part, by the complex layout of its structural
connections. Here, we identified low-dimensional representations of structural connectivity variations in human temporal
cortex and explored their microstructural underpinnings and associations to macroscale function. We identified three
eigenmodes which described gradients in structural connectivity. These gradients reflected inter-regional variations in
cortical microstructure derived from quantitative magnetic resonance imaging and postmortem histology.
Gradient-informed models accurately predicted macroscale measures of temporal lobe function. Furthermore, the identified
gradients aligned closely with established measures of functional reconfiguration and areal expansion between macaques
and humans, highlighting their potential role in shaping temporal lobe function throughout primate evolution. Findings
were replicated in several datasets. Our results provide robust evidence for three axes of structural connectivity in human
temporal cortex with consistent microstructural underpinnings and contributions to large-scale brain network function.
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Introduction
The human temporal lobe is involved in multiple cognitive,
affective, and sensory processes, including memory (Vaz et al.
2019), emotional reactivity (Phelps 2004), semantic cognition
(Ralph et al. 2017), as well as auditory processing (Bonilha et al.
2017). Notably, temporal lobe subregions have been suggested
to serve as origins of major organizational and evolutionary
axes of the human brain (Sanides 1969; Goulas et al. 2019), and

host structures, such as the middle and superior temporal gyri,
that have undergone accelerated functional reconfigurations
and areal expansion in primate evolution (Mars, Sotiropoulos,
et al. 2018; Eichert et al. 2020; Xu et al. 2020). Collectively, these
different aspects suggest that the temporal lobe is a hub impli-
cated in important features of human cognition, and that its
study may provide key insights into cortical organization and
its phylogenetic basis.
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In an attempt to understand the role of the temporal lobe in
whole-brain networks, prior studies in nonhuman animals as
well as humans have started to delineate the complex connec-
tivity profiles of the temporal lobe. Tract tracing studies in non-
human primates have charted short range connections as well
as long-range tracts of the temporal lobe (Webster et al. 1991),
showing distributed connectivity patterns to a diverse territory
of cytoarchitectural areas (Morán et al. 1987; Mohedano-Moriano
et al. 2015; Beul et al. 2017; Sakata et al. 2019). These findings
were complemented by diffusion magnetic resonance imaging
(MRI) tractography studies in both nonhuman primates (Bryant
et al. 2020) and humans (Saur et al. 2008), where this noninvasive
technique can approximate the course of white matter fiber
tracts both in vivo and ex vivo. Diffusion MRI studies have been
performed for all major long range fiber bundles (Smiley and
Falchier 2009; Howells et al. 2018; Roumazeilles et al. 2020),
for short-range fiber systems (Attar et al. 2020) as well as the
superficial white matter (Oishi et al. 2008; Liu et al. 2016; Hong,
Hyung, et al. 2019; Bodin et al. 2020). Using resting-state func-
tional MRI, regions of the temporal lobe have been implicated
in several major networks, particularly the default mode, limbic,
and visual networks (Yeo et al. 2011). Cross-species studies have
found phylogenetic divergences of connectivity and cortical area
between humans and macaques. Specifically, the lateral tempo-
ral cortex is among the areas that have the most diverging con-
nectivity profile and have undergone the most marked cortical
expansion in humans relative to macaques, conversely the area
of the medial temporal cortex and its functional connectivity
are relatively preserved across species (Xu et al. 2020). Despite
parallel advances in our understanding of the temporal lobe
across these modalities, there is a lack of integration of these
findings into a cohesive model of temporal lobe organization.

Beyond the mapping of specific connectivity changes, recent
years have seen a shift towards the application of unsupervised
approaches that identify and visualize low-dimensional eigen-
modes in connectivity changes across the cortical mantle—
also referred to as connectivity gradients (Margulies et al. 2016;
Huntenburg et al. 2018). A gradient perspective describes tran-
sitions of brain connectivity in a continuous reference frame,
which has been proposed to capture subregional heterogeneity
as well as functional multiplicity better than techniques that
parcellate cortex into discrete subregions and average poten-
tially variable properties within parcels (Mars, Sotiropoulos, et al.
2018; Bijsterbosch et al. 2020; Haak and Beckmann 2020). Cap-
italizing on resting-state functional MRI acquisitions, gradient
mapping techniques have previously identified principal axes
of neural organization in healthy adults and in nonhuman pri-
mates (Margulies et al. 2016; Guell et al. 2018; Haak et al. 2018; Vos
de Wael et al. 2018; Buckner and Margulies 2019; Xu et al. 2020),
and these techniques are increasingly used to study lifespan
processes related to aging (Lowe et al. 2019; Bethlehem et al.
2020) and typical as well as atypical childhood development
(Hong, Vos de Wael, et al. 2019; Larivière et al. 2019; Ball, Seidlitz,
Beare, et al. 2020; Ball, Seidlitz, O’Muircheartaigh, et al. 2020;
Park, Hong, et al. 2020). By reducing high-dimensional connec-
tivity data to a few eigenvectors that describe spatial axes of
connectivity variations, these techniques allow for a contextu-
alization with typical spatial features of neural organization,
including cortical thickness measures (Larivière et al. 2019),
intracortical myelin estimates (Huntenburg et al. 2017), and task-
derived functional activation patterns (Murphy et al. 2019). In the
temporal lobe, these techniques have previously been applied to
structural connectivity information, with the goal of subsequent
parcellation (Bajada et al. 2017), to describe the ventral and

anterior temporal lobe as a structural connectivity convergence
zone (Bajada et al. 2019), and to relate structural connectivity
gradients to meta-analytic task activations (Yarkoni et al. 2011;
Blazquez Freches et al. 2020).

In the current work, we expanded on these previous findings
in three ways:

(i) We explored regional associations between structural con-
nectivity gradients in the temporal lobe and measures of
intracortical microstructure to assess whether large scale
connectivity axes are reflected in the local microcircuits.
Prior findings in nonhuman animals suggest that an area’s
cytoarchitectonic properties may be predictive of struc-
tural connectivity, but precise associations between both
remain underspecified in humans (Barbas 2015). To fill
this gap, our project leveraged both myelin sensitive MRI
contrasts as well as postmortem cytoarchitecture analysis
based on BigBrain (Amunts et al. 2013).

(ii) Structural connectivity is generally assumed to constrain
functional connectivity (Honey et al. 2009; Deco et al. 2017;
Wang et al. 2019; Suárez et al. 2020). Here, we assessed
whether structural connectome gradients within the tem-
poral lobe, as a low-dimensional representation of struc-
tural connectivity, can predict intrinsic functional orga-
nization derived from resting-state functional magnetic
resonance imaging (fMRI) acquisitions, both with respect
to macroscale functional motifs as well as node-wise esti-
mates of functional connectivity.

(iii) Finally, to determine phylogenetic principles of structural
connectome organization, we examined whether struc-
tural connectivity gradients reflect principal dimensions
of primate evolution. To this end, we studied the rela-
tionship of gradients with areal expansion and functional
reconfigurations from nonhuman primates to humans
(Xu et al. 2020).

Our approach capitalized on multimodal image processing
and advanced diffusion tractography analyses. Specifically, we
leveraged a high-resolution representation of temporal lobe
structural connectivity to resolve subregional heterogeneity
in connectivity and multiplicity of potentially overlapping
gradients. Our findings were replicated both in a hold-out
dataset from the same site, and in a dataset acquired with
a different scanner, imaging parameters, and preprocessing
pipeline. We have released all codes to replicate the main figures
on https://github.com/MICA-MNI/micaopen.

Materials and Methods
Overview

To foreshadow our approach (for details see the remainder of
the Methods), we computed vertex-wise structural connectivity
from the temporal lobe to the rest of the brain in three inde-
pendent datasets. Diffusion map embedding decomposed struc-
tural connectomes in each dataset into eigenvectors describ-
ing spatial gradients of connectivity. We first assessed spatial
associations to other structural connectome features (i.e., con-
nectivity distance and degree centrality). Secondly, we inves-
tigated associations to curvature, cortical thickness, and esti-
mates of cortical myelin. Third, we predicted motifs of resting-
state functional connectivity from the structural connectome
gradients. Lastly, we assessed relations to phylogenetic markers
(Xu et al. 2020). Spatial association analyses controlled for auto-
correlations using Moran’s spectral randomization.

https://github.com/MICA-MNI/micaopen
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Participants

We selected 150 unrelated participants from the Human Con-
nectome Project (HCP) dataset for whom all resting-state, diffu-
sion weighted imaging, and structural scans were available and
completed in full (Van Essen et al. 2013). These participants were
split into HCP-Discovery (n = 75; age = 29.2 ± 3.6, female = 47) and
HCP-Replication (n = 75; age = 28.9 ± 4.0, female = 44) datasets.
For the microstructure informed connectomics (MICs) dataset,
all data were collected in a single testing session per par-
ticipant between April 2018 and March 2020. Participants
(n = 54; 30.5 ± 7.3, female = 20) all provided informed consent.
Participants reported no history of neurological illness. The
study was approved by the Ethics Committee of the Montreal
Neurological Institute and Hospital.

Image Acquisition

(a) HCP. Images were acquired on the customized Siemens 3 T
“Connectome Skyra.” Two T1w images were acquired with a 3D
MPRAGE sequence with the following parameters: TR = 2400 ms,
TE = 2.14 ms, flip angle = 8 deg, FOV = 224 x 224 mm2, voxel
size = 0.7 mm isotropic. Two T2w images were acquired with
identical parameters except for the following: TR = 3200 ms,
TE = 565 ms, variable flip angle. Four resting-state fMRI images
were acquired with a gradient-echo echo-planar imaging (EPI)
sequence (TR = 720 ms, TE = 33.1 ms, flip angle = 52 deg, FOV = 208
x 180 mm, 2 mm isotropic voxels, and 1200 volumes per run).
Diffusion images were acquired with a spin-echo EPI sequence
(TR = 5520 ms, TE = 89.5 ms, flip angle = 78 deg, FOV = 210 x
180 mm, 1.25 mm isotropic voxels, b-values 1000, 2000, and
3000 s/mm2, 90 diffusion-weighting directions). Six diffusion
image scans were acquired each lasting 9 min and 50 s. Half the
runs were acquired with left-to-right phase encoding and the
other half with right-to-left.
(b) MICs. Images were acquired on a 3 T Siemens Magnetom
Prisma-Fit equipped with a 64-channel head coil. Two T1w scans
were acquired with a 3D-MPRAGE sequence (0.8 mm isotropic
voxels, matrix = 320 × 320, 224 sagittal slices, TR = 2300 ms,
TE = 3.14 ms, TI = 900 ms, flip angle = 9◦, iPAT = 2). Quantita-
tive T1 (qT1) relaxometry data were acquired using a 3D-
MP2RAGE sequence (0.8 mm isotropic voxels, 240 sagittal slices,
TR = 5000 ms, TE = 2.9 ms, TI 1 = 940 ms, T1 2 = 2830 ms, flip
angle 1 = 4◦, f lip angle 2 = 5◦, iPAT = 3, bandwidth = 270 Hz/px,
echo spacing = 7.2 ms, partial Fourier = 6/8). We combined two
inversion images for qT1 mapping to minimize sensitivity to B1
inhomogeneities and optimize intra- and inter-subject reliability
(Marques et al. 2010; Haast et al. 2016). DWI images were
obtained with spin-echo EPI, including three shells with b-values
300, 700, and 2000s/mm2 and 10, 40, and 90 diffusion weighting
directions per shell, respectively (TR = 3500 ms, TE = 64.40 ms,
1.6 mm isotropic voxels, flip angle = 90◦, refocusing flip
angle = 180◦, FOV = 224 × 224 mm2, slice thickness = 1.6 mm,
multiband factor = 3, echo spacing = 0.76 ms, number of b0
images = 3). One 7 min rs-fMRI scan was acquired using
multiband accelerated 2D-BOLD EPI (TR = 600 ms, TE = 30 ms,
3 mm isotropic voxels, flip angle = 52◦, FOV = 240 × 240 mm2, slice
thickness = 3 mm, multiband factor = 6, echo spacing = 0.54 ms).
Participants were instructed to keep their eyes open, look at
a fixation cross, and not fall asleep. Two spin-echo images
with reverse phase encoding were acquired for distortion
correction of the rsfMRI scans (phase encoding = AP/PA, 3 mm

isotropic voxels, FOV = 240 × 240 mm2, slice thickness = 3 mm,
TR = 4029 ms, TE = 48 ms, flip angle = 90◦, echo spacing = 0.54 ms,
bandwidth = 2084 Hz/Px).

Structural Preprocessing

(a) HCP. Structural images underwent standard HCP preprocess-
ing (Glasser et al. 2013). In short, T1w images were corrected
for gradient nonlinearity. Repeated scans were coregistered and
averaged. After brain extraction and readout distortion cor-
rection, T1w and T2w images were co-registered using rigid
body transformations. Nonuniformity correction based on the
T1w and T2w contrasts was applied. Preprocessed images were
nonlinearly registered to MNI152 space. Cortical surfaces were
extracted using FreeSurfer 5.3.0-HCP (Dale et al. 1999; Fischl,
Sereno, and Dale 1999; Fischl, Sereno, Tootell, et al. 1999), with
minor modifications to incorporate information from both T1w
and T2w scans. Cortical surfaces were aligned using MSMAll to
the Conte69 template (Robinson et al. 2014).
(b) MICs. Data were preprocessed with a Freesurfer 6.0 recon_all
pipeline. Both native T1w scans were provided as input and
combined through this pipeline. Manual corrections of the pial
and white matter surfaces were performed for all subjects. Cur-
vature and cortical thickness estimates were generated by the
recon_all pipeline. To acquire tissue segmentations for anatom-
ically constrained tractography, the same images underwent
a separate pipeline which included linear alignment of both
T1w scans, nonuniformity correction, and intensity normaliza-
tion. Corrected images were segmented into tissue types using
MRtrix3’s 5ttgen (Smith et al. 2012). qT1 images were linearly
aligned to the cortical surface using boundary-based registration
(Greve and Fischl 2009). qT1 values were interpolated to the
surface by taking the average of seven trilinear interpolations
evenly interspersed between the 20th and 80th percentile dis-
tances from the pial to white matter surfaces using Freesurfer’s
mri_vol2surf command.

Resting-State Preprocessing

(a) HCP. Data underwent standard HCP preprocessing (Glasser
et al. 2013). In short, the timeseries were corrected for gradient
nonlinearity and head-motion. The R-L/L-R scan pairs were
used to correct for geometric distortions. Resulting images were
warped to the structural image using rigid body and boundary-
based registrations. This warp was concatenated with the warp
from T1w image space to MNI152 space to transform functional
images to MNI152 space. Further processing removed the bias
field, removed the skull, and normalized whole brain inten-
sity. A high pass filter (>2000s FWHM) was used to correct for
scanner drift, and additional noise was removed using ICA-FIX
(Salimi-Khorshidi et al. 2014).
(b) MICs. The first five volumes were discarded to allow for
magnetic field saturation. Images were then reoriented, and
motion and distortion corrected. Nuisance variable signal was
removed using an ICA-FIX classifier trained on this dataset and
subsequent spike regression (Salimi-Khorshidi et al. 2014). Fur-
ther tissue-specific signal regression was not performed (Mur-
phy and Fox 2017; Vos de Wael et al. 2017). A warp to the
Freesurfer T1w image was computed by averaging volumetric
timeseries across the time dimension and registering this image
using boundary-based registration. Timeseries were sampled to
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the surface by taking the average of seven trilinear interpola-
tions evenly interspersed between the 20th and 80th percentile
distances from the pial to white matter surfaces.

Diffusion Preprocessing

(a) HCP. Images underwent standard HCP preprocessing (Glasser
et al. 2013). In short, image intensity was normalized across
scans. The topup and eddy algorithms were used to correct for
EPI distortions, eddy currents, and motion. A gradient nonlin-
earity correction was performed, and the deviation of the b-
values and b-vectors was computed. Mean b0 images were regis-
tered to the T1w image with boundary-based registration (Greve
and Fischl 2009), and this registration was used to transform
DWI images to T1w space. The brain was masked based on a
Freesurfer segmentation.
(b) MICs. Data were preprocessed and denoised with MRTrix3’s
dwipreproc, which is based on FSL’s eddy correction and topup,
and dwidenoise (Andersson et al. 2003; Smith et al. 2004;
Tournier et al. 2012). Freesurfer segmentations were registered
to the subject’s DWI space using boundary-based registration
(Greve and Fischl 2009).

High-Resolution Diffusion Tractography and Gradient
Mapping

Tractography was performed identically for the HCP and MICs
dataset with MrTrix3 (Tournier et al. 2012). Response functions
for each tissue type were estimated using the dhollander algo-
rithm (Dhollander et al. 2016). Fiber orientation distributions
were modeled with multishell multitissue spherical deconvolu-
tion (Jeurissen et al. 2014) and subsequently underwent multi-
tissue informed log-domain intensity normalization. The struc-
tural T1w image was segmented into five tissue types (Smith
et al. 2012). Anatomically constrained tractography was per-
formed systematically for each temporal lobe voxel in the gray–
white matter interface by generating streamlines using second
order integration over fiber orientation distributions (Tournier
et al. 2010). Streamlines were seeded dynamically from the
white matter using the SIFT model (Smith et al. 2015a, 2015b).
Streamline generation was aborted when 40 million streamlines
had been accepted. Each streamline was assigned a weight by
optimizing a cross-section multiplier derived with the SIFT2
algorithm (Smith et al. 2015a, 2015b). Streamline termini were
assigned to their nearest vertex on the surface of the gray-
white matter interface. Streamlines of which either terminus
was further than 3 mm from its nearest vertex were discarded.
Connectomes were smoothed on the surface using a 20 mm full
width at half maximum Gaussian smoothing kernel.

To describe the largest axes of variance in connectivity, we
used diffusion map embedding (Coifman and Lafon 2006), a
nonlinear dimensionality reduction techniques technique used
previously to identify neocortical, hippocampal, and cerebellar
functional gradients (Margulies et al. 2016; Guell et al. 2018; Vos
de Wael et al. 2018). Gradients were computed and aligned using
the BrainSpace toolbox (https://github.com/MICA-MNI/BrainSpa
ce) (Vos de Wael et al. 2020), with the following settings: sparsity
thresholding at the 75th percentile, a cosine affinity kernel,
diffusion map embedding dimensionality reduction with α = 0.5,
and automated diffusion time estimation. Gradient computa-
tions were performed separately on left and right temporal
lobes. Interhemispheric connections were not included in the
gradient computation. Left and right gradients were aligned

with Procrustes alignment (Langs et al. 2015) as implemented
in BrainSpace. To approximate the effect of the alignment, we
computed the 5th, 50th, and 95th percentiles of the diagonal
elements of the rotation matrices across subjects; lower valued
diagonals indicate larger rotations. As the sign of gradients
may be freely inverted, rotation matrices were multiplied by
the sign of the diagonal element before percentile computation.
Eccentricity was computed from the aligned gradients by com-
puting the Euclidean distance to the origin of the manifold space
spanned by the first three gradients.

Statistical Testing

Testing for linear associations between cortical markers and
gradients likely leads to biased test statistics due to the spa-
tial autocorrelation of MRI data violating the independence of
observations assumption (Alexander-Bloch et al. 2018). Instead,
for each statistical test, we generated random datasets with
comparable spatial properties. Specifically, we generated ran-
dom datasets with equivalent spatial autocorrelation as the
response variable using Moran spectral randomization with the
singleton procedure (Wagner and Dray 2015) as implemented in
BrainSpace (Vos de Wael et al. 2020). All linear models were fitted
for the original data as well as 1000 corresponding simulated
datasets. Presented P-values were derived from the percentile
rank of the true F-statistic in the distribution of F-statistics in the
simulated data. We further report product moment correlations
derived from the empirical data; however, please note that these
are only approximate values given the unknown spatial autocor-
relation (Burt et al. 2020). Multiple comparisons were corrected
for false discovery rate with the Benjamini–Hochberg procedure
(Benjamini and Hochberg 1995).

Tractography Analyses

Connectivity distance, a measure that characterizes the rela-
tionship between physical distance and connectivity (Larivière
et al. 2020), was computed by thresholding the structural con-
nectivity matrix at the 80th percentile, multiplying each connec-
tion by the geodesic distance between their nodes, and averag-
ing all connections for each node. Degree centrality was com-
puted as the column-wise sum of the connectivity matrix. Sta-
tistical significance of the association between both degree cen-
trality as well as connectivity distance with the gradients was
assessed with Moran spectral randomization (Wagner and Dray
2015).

BigBrain Gradient

To assess histological properties of the brain we used BigBrain,
an ultrahigh-resolution atlas of a single postmortem brain
stained for cell bodies (Amunts et al. 2013). Gradients of
microstructural profile covariance were computed as described
previously (Paquola et al. 2019). In short, 18 equivolumetric
surfaces were constructed between the outer and inner cortical
surfaces. To reduce partial volume effects, the inner cortical
surface was removed. A linear model implemented in SurfStat
(Worsley et al. 2009) was used to correct for anterior-to-posterior
increases in intensity values (Amunts et al. 2013). Surface
vertices were grouped into 1012 parcels which respected the
boundaries of the Desikan-Killiany atlas (Desikan et al. 2006;
Hong et al. 2017). A microstructural profile covariance matrix
was constructed by computing the Pearson’s correlation of every

https://github.com/MICA-MNI/BrainSpace
https://github.com/MICA-MNI/BrainSpace


Axes of Organization of the Temporal Lobe Vos de Wael et al. 5155

pair of vectors while controlling for the average whole-cortex
intensity profile. Gradients were constructed from this matrix
using BrainSpace default parameters (90% sparsity, normalized
angle kernel, diffusion map embedding, α = 0.5, automated
diffusion time estimation). To compare structural connectivity
gradients to BigBrain gradients, the structural gradients were
parcellated using the same parcellation scheme. Moran spectral
randomization (Wagner and Dray 2015) was used to test for
associations between BigBrain gradient 1 and the structural
gradients.

Functional Predictions

Structural gradients were used to predict canonical resting-state
networks published previously [(Yeo et al. 2011); https://surfe
r.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011].
HCP-Discovery was split into 5-folds of 15 subjects each; for
each fold, we performed a multinomial logistic regression with
the first three gradients as predictor variables and networks as
outcome variables. Beta values derived from the training set
were used to predict probabilities of each network in the testing
set. Each vertex was assigned to the network with the highest
probability. Additionally, we derived beta values from the entire
HCP-Discovery dataset and used these to predict functional
networks from HCP-Replication and MICs gradients.

To further assess the relationship between structural gradi-
ents and edgewise functional connectivity, we used a decision
tree with binary splits for regression. Similar to the network
prediction, training and testing was performed both with 5-
fold cross validation as well as training on HCP-Discovery and
testing on the other datasets. Model training was performed
with the fitrtree function as implemented in MATLAB R2019b
with a minimum leaf size of 20, a maximum number of splits
of 20, and otherwise default parameters.

Evolutionary Analyses

We tested for associations between our gradients and two mark-
ers of evolutionary change between humans and macaques:
functional homology and areal expansion. Both measures were
presented in a prior paper (Xu et al. 2020), hence we only provide
a short overview here. Functional homology is a measure for the
functional similarity of a human brain area with its macaque
counterpart. It is computed based on the maximum cosine simi-
larity of functional gradient profiles within a 12-mm search light
around the corresponding human/macaque vertices. An areal
expansion map shows the relative expansion of human cortex
compared to macaques. It is computed by dividing the local area
of human cortex by the corresponding area of macaque cortex
where correspondence was defined based on functional homol-
ogy. We tested for associations between these two markers and
the structural gradients using Moran spectral randomization
(Wagner and Dray 2015).

Results
Our main analyses were based on 75 unrelated participants
of the HCP S900 release (Van Essen et al. 2013), a large-scale
open-access neuroimaging dataset comprised of healthy young
adults (HCP-Discovery; n = 75; age = 29.2 ± 3.6, female = 47). We
also replicated all findings in a subset of unrelated participants
from HCP, (HCP-Replication; n = 75; age = 28.9 ± 4.0, female = 44).
For each participant, we mapped structural connectivity of each

vertex in the gray–white matter interface of the temporal lobe to
the entire cortex using high-resolution tractography (see Meth-
ods, for details). To identify structural connectivity gradients,
we used nonlinear dimensionality reduction techniques that
identify spatial eigenvectors explaining inter-regional variations
in structural connectivity (Coifman and Lafon 2006). To assess
the reproducibility of our findings, we repeated our analyses on
the MICs dataset, a separate dataset of healthy controls who
underwent 3 T imaging comparable to the HCP protocol in our
center (54 controls, 30.5 ± 7.3 years old, 20 females).

Multiple Gradients of Structural Connectivity in the
Temporal Lobe

In HCP-Discovery, the first three components of temporal cor-
tical gradients collectively explained 67% of variance in tempo-
ral lobe structural (Fig. 1A). We retained these gradients based
on the decrease in size of later eigengaps combined with the
practical consideration of allowing for data visualization in 3D
space. Furthermore, eccentricity, the main measure used in the
remainder of this manuscript, only changed marginally with
additional gradients (r > 0.99 between any pair of eccentricities
derived from between 3 to 10 gradients in all datasets). Findings
were similar in the left and right hemispheres (correlations of
left/right gradients all r > 0.99). We, thus, present only left hemi-
spheric results in the main figures (for right hemisphere results,
see Supplementary Fig. S1). Gradient solutions were consistent
across the different datasets studied, with absolute correlations
between G1–3 of HCP-Discovery with G1–3 of HCP-Replication
and MICs exceeding r > 0.96.

The first structural connectivity gradient (G1) ran between
the superior temporal gyrus and the medial temporal lobe
(Fig. 1A), the second (G2) along the posterior–anterior axis, and
the third (G3) from anterolateral to posteromedial. To determine
the connectivity patterns represented by each gradient, we
mapped the connectivity of the top/bottom 10% of vertices of
each gradient and assessed changes in the spatial distribution
of connectivity profiles at the anchors of each gradient. G1
connectivity changes differentiated between visual and parietal
connectivity, G2 involved changes from temporal pole and
insula to visual/parietal cortex and lateral frontal cortex, and
G3 described changes from visual/parietal to lateral temporal
and frontal (see Supplementary Fig. S2).

In order to provide a scalar metric in multivariate gradient
space and quantify connectome-level differentiation across the
cortical mantle, we calculated an eccentricity measure that
captures the distance from the origin in the manifold space
spanned by the first three gradients (Park, Bethlehem, et al.
2020; Park, Hong, et al. 2020). Low eccentricities were situated in
the middle temporal gyrus, while high eccentricity was present
in posterior superior temporal and medial temporal regions.
To determine the connectivity patterns underlying gradient
eccentricity, we performed spatial correlation analyses between
eccentricity and topological measures of degree centrality, a
measure for the number of connections of a node (Hagmann
et al. 2008), and connectivity distance, a measure for the relative
strength of a node’s long distance connections (Larivière et al.
2020) (Fig. 1B). These measures were chosen as both overall
connectedness and the length of connections represent key
organizing principles of the human connectome (Hagmann
et al. 2008; van den Heuvel and Sporns 2011). Findings were
corrected for spatial autocorrelation with Moran Spectral Ran-
domization (Wagner and Dray 2015) implemented in BrainSpace

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
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Figure 1. Generation of temporal lobe structural connectivity gradients. (A) Streamlines were generated throughout the entire brain and systematically mapped to the
cortical surface using nearest neighbor interpolation. We computed the unitless (u.l.) affinity matrix of the connectivity matrix using a cosine similarity kernel and

constructed gradients [in arbitrary units (a.u.)] of structural connectivity of the temporal lobe to ipsilateral hemisphere with diffusion map embedding. The first three
eigenmodes, sorted by variance explained, described connectivity gradients that were selected for further analyses. (B) An eccentricity feature can be computed in this
manifold space, by calculating node wise Euclidean distances to the origin of the manifold, this feature was high in posterior medial temporal lobe and the superior
temporal gyrus and correlated significantly with connectivity distance (left) but only moderately with degree centrality (right).

(Vos de Wael et al. 2020), and adjusted for multiple compar-
isons using a false discovery rate procedure (Benjamini and
Hochberg 1995). Gradient eccentricity correlated with connec-
tivity distance in both hemispheres (left/right r = −0.76/−0.70,
pmoran < 0.002), but not with degree centrality (left/right
r = 0.46/0.28, pmoran < 0.22), indicating that the gradients are
partially driven by the strength of long-range connections.
Results replicated in all datasets, that is, gradients were
bilaterally associated with connectivity distance (left/right HCP-
Replication: r = −0.75/0.70, pmoran < 0.002; MICs: r = −0.78/0.71,
pmoran < 0.01), but not degree centrality (HCP-Replication:
r = 0.44/0.27, pmoran < 0.23, MICs: r = 0.40/0.39, pmoran < 0.19).

To contextualize the gradients through cognitive terminol-
ogy, we decoded the structural gradients and eccentricity map
using Neurosynth, an ad hoc meta-analysis of previous fMRI
studies (Yarkoni et al. 2011) (see Supplementary Fig. S3). Both

G1, G3, and eccentricity represent axes of sensory functions to
self-generated cognitive processes (G1: auditory vs. memory/-
navigation terms, G3: cognitive vs. auditory terms, eccentricity:
cognitive vs. perception terms). G2 differentiated stress/affect
related terms from visual/word related terms (e.g., “visual” and
“word form” vs. “stress”, “pain,” and “regulation”).

Microstructural Underpinnings

Prior research in nonhuman animals has shown inter-regional
connectivity is predicted by cytoarchitectural similarity (Barbas
2015), and recent functional MRI work showed correspondence
between functional gradients and proxies for intracortical
myelin (Huntenburg et al. 2017; Vos de Wael et al. 2018;
Paquola et al. 2019; Larivière et al. 2019). Here, we examined
the relationship between structural connectivity gradients
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Figure 2. Morphological and microstructural associations. (A) We tested for linear relations between manifold eccentricity and curvature, cortical thickness, as well
as T1w/T2w intensity. Stars denote significant correlations. (B) We also tested for an association to microstructural profile covariance derived previously from the
BigBrain atlas (Amunts et al. 2013; Paquola et al. 2019). Eccentricity was projected to the same parcellation scheme as microstructural profile covariance by taking the

mean within each parcel.

and in-vivo measures of cortical microstructure. Specifi-
cally, we tested for associations of gradient eccentricity and
intracortical T1w/T2w intensity, a proxy for myelin (Glasser
and Van Essen 2011), and observed a strong association
(Fig. 2A; left/right r = 0.69/0.78, pmoran < 0.012). Associations to
cortical thickness were only moderate (left/right r = −0.43/−0.44,
pmoran < 0.024) and those to curvature did not reach statistical
significance (left/right r = −0.07/−0.11, It pmoran < 0.65). Similar
findings were seen in HCP-Replication (left/right T1w/T2w
r = 0.68/0.78, pmoran < 0.012; cortical thickness r = −0.45/−0.44,
pmoran < 0.020; curvature r = −0.07/0.12, pmoran < 0.637) and in
the MICs dataset, which used quantitative T1 relaxometry as
a myelin proxy (left/right qT1 r = −0.36/−0.66 pmoran < 0.062;
cortical thickness r = −0.33/−0.31, pmoran < 0.08; curvature
r = 0.01/0.03, pmoran < 0.91). To further study these connectomic
associations, we mapped the connectivity of the min/max 10%
of each microstructural feature (see Supplementary Fig. S4). We
observed more parietal connectivity for areas with lower cortical
thickness or higher T1w/T2w intensity and the cytoarchitectonic
gradient displayed distinctions in parietal and lateral frontal
connectivity.

Next, we evaluated the association between gradients and
cortical cytoarchitecture (Fig. 2B), capitalizing on the BigBrain
dataset, an ultra-high resolution 3D histological reconstruction
of a post-mortem human brain (Amunts et al. 2013). We adopted
a previously established approach to identify cytoarchitectural
gradients (Paquola et al., 2019) and compared the principal
cytoarchitectural gradient, which runs from primary sensory to
limbic areas, to our in vivo structural connectivity gradients.
We found strong associations in both hemispheres (left/right
r = −0.65/−0.73, pmoran < 0.002). Again, results were replicated in

both HCP-replication (left/right r = −0.64/−0.73, pmoran < 0.002)
and MICs (left/right r = −0.60/−0.71, pmoran < 0.028).

Functional Associations

Structural connectivity is ultimately assumed to give rise to
functional connectivity (Honey et al. 2009; Deco et al. 2017; Wang
et al. 2019; Suárez et al. 2020). As such, we hypothesized that
axes of structural connectivity would capture the organization
of large-scale functional connectivity. We related the structural
connectivity gradients to intrinsic functional community orga-
nization, a predominant motif of macroscale neural function
(Fig. 3A) (Yeo et al. 2011). Using a 5-fold cross validation, we
computed group-level structural gradients for the training and
testing group. We derived beta values from the training sets
with a group-level multinomial logistic regression and used
those to predict the layout of the Yeo-Krienen intrinsic func-
tional communities from the group-level testing set. Predictions
were accurate and stable (Cohen’s kappa mean ± SD left/right:
0.77 ± 0.01/0.81 ± 0.01). Beta values derived from HCP-Discovery
gradients could also accurately predict macroscale functional
communities from HCP-Replication (Cohen’s kappa left/right:
0.77/0.82) as well as MICs (Cohen’s kappa left/right: 0.69/0.70).

To further assess how structural connectome gradient fea-
tures predict regional functional connectivity, we leveraged deci-
sion tree regression with Euclidean distances between vertices
in gradient space as predictors and edgewise functional con-
nectivity within the temporal lobe as outcome variable. In a
5-fold cross validation trained on group-level folds of HCP-
Discovery, gradient manifold distances were predictive of func-
tional connectivity of held-out subjects at the single subject
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Figure 3. Functional markers of the structural gradients. (A) Based on a canonical network parcellation (Yeo et al. 2011), we attempted to predict the functional networks.

Performance was high with a Cohen’s kappa of 0.77 ± 0.01 (left) and 0.81 ± 0.01 (right). Predicted networks shown here are the results of one of the five folds. (B) Accuracy
of left hemispheric decision tree regression. Histograms show the prediction accuracy per subject, as measured by the Pearson’s correlation between empirical and
predicted data, of a decision tree regression estimating functional connectivity from structural gradients. HCP-Discovery predictions were trained with a 5-fold cross-

validation, the predictions of the other datasets were trained on HCP-Discovery. Cortical surfaces show the Pearson’s correlation between the predicted and empirical
functional connectivity for every vertex across subjects. Predictions were especially accurate in lateral temporal regions, and less robust in the medial temporal lobe.

level (Fig. 3B; see Supplementary Fig. S5; mean ± SD left/right:
r = 0.50 ± 0.04/0.46 ± 0.05). To assess accuracy of this model at the
single subject level a decision tree regression was trained on the
entire HCP-Discovery dataset. This model accurately predicted
single subject functional connectivity in both HCP-Replication
(Fig. 3B; left/right r = 0.49 ± 0.05/0.43 + 0.05) and MICs (left/right
r = 0.50 + 0.03/r = 0.46 + 0.04). In all datasets, prediction quality
was excellent in the lateral temporal lobe but less favorable in
the medial temporal lobe. To verify whether the between-subject
alignment affected our results, we assessed stability of manifold
orientations of the single-subject structural gradients. The first
three gradients appeared stable across subjects (5th percentile
of the rotation matrices’ diagonal elements > 0.95 across all
datasets; see Supplementary Fig. S6).

Evolutionary Associations

Last, we assessed whether eccentricity also relates to measures
of phylogenetic changes in the temporal lobe (Fig. 4). We found
associations to previously established indices of functional
homology (left/right: r = 0.50/0.51, pmoran < 0.04), a measure
for similarity of functional organization between human
and macaque, and areal expansion (left/right: r = −0.52/−0.31,
pmoran < 0.04), a measure for the surface areas increase of human
cortex relative to homolog regions in macaques (Xu et al. 2020).
At the individual gradient level, both of these markers loaded
primarily onto the third gradient (functional homology left/right
rg1 = −0.15/−0.28, rg2 = 0.20/0.11, rg3 = 0.60/0.61; areal expansion

left/right rg1 = −0.05/−0.07, rg2 = −0.49/−0.38, rg3 = −0.59/−0.49).
Results were consistent in both HCP-Replication (functional
homology; left/right: r = 0.50/0.50, pmoran < 0.04; areal expan-
sion; left/right: r = −0.52/−0.31, pmoran < 0.04) as well as MICs
(functional homology; left/right: r = 0.48/0.54, pmoran < 0.04; areal
expansion; left/right: r = −0.54/−0.40, pmoran < 0.03). To further
characterize the association between connectivity and these
measures, we mapped the connectivity profiles of the min/max
10% of each feature (see Supplementary Fig. S4). Areas with
more areal expansion or less functional homology showed more
lateral frontal connectivity as well as reduced medial occipital
connectivity.

Discussion
The temporal lobe hosts a diverse array of functional processes
implicated in sensory processing, memory, and language abili-
ties (Bonilha et al. 2017; Ralph et al. 2017; Vaz et al. 2019). In addi-
tion to its role in healthy brain function and primate evolution,
the temporal lobe is among the macroscopic structures most
frequently compromised in neurological and neuropsychiatric
disorders, including Alzheimer’s disease (Dubois et al. 2010;
Stein et al. 2010; Johnson et al. 2016) and drug-resistant epilepsy
(Bernasconi et al. 2003; Blümcke et al. 2013; Bernhardt et al. 2015).
To comprehensively characterize its substructural organization
in humans, our study harnessed manifold learning operating on
high resolution diffusion MRI tractography data of the tempo-
ral lobe to identify separate, yet partially overlapping axes of
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Figure 4. Relationship between the structural gradients and phylogenetic markers. Both functional homology and areal expansion are significantly associated with
eccentricity of the first three structural gradients.

its structural connectome embedding. These axes were found
to relate to MRI-based measures of intracortical myelination
as well as post-mortem cytoarchitecture, supporting potential
microcircuit underpinnings of these spatial trends in structural
connectivity variations. Supervised machine learning experi-
ments indicated that structural gradients can serve as sensitive,
low-dimensional predictors of the functional organization of
the temporal lobe. Furthermore, structural connectivity gradi-
ents were spatially correlated with previously identified pat-
terns of functional reconfiguration and areal expansion between
humans and nonhuman primates, supporting the potential of
connectome gradients as axes of evolutionary changes (Xu et al.
2020). Results were reproducible across multiple datasets, indi-
cating generalizability. Collectively, our findings provide robust
evidence for an association between structural connectivity, tis-
sue microstructure, and functional motifs of the temporal lobe,
which suggests their potential to serve as major organizational
axis bridging between its microcircuit layout and macroscale
functional role.

Diffusion MRI is currently the only noninvasive method to
approximate the course of white matter connections in humans.
Based on multishell diffusion acquisitions of the HCP and
MICs datasets, we applied constrained spherical deconvolution
(Jeurissen et al. 2014) and spherical-deconvolution informed
filtering of tractograms (Smith et al. 2015a, 2015b) to estimate
streamline weights interconnecting cortical areas. These
techniques provide biologically meaningful weights of the
modeled streamlines (Smith et al. 2015a, 2015b), and reduce
fiber tracking biases (Yeh et al. 2016) as well as partial volume
effects (Jeurissen et al. 2014). By propagating each streamline
to cortical surface points, rather than to macroscopic parcels,
we were able to resolve fine grained changes in temporal
lobe connectivity and account for heterogeneity of subregional
connectivity. We enhanced this vertex-wise approach with
manifold learning techniques that allow for the representation
of continuous spatial variations in temporal lobe structural
connectivity. Already established by an emerging literature of
neuroimaging and network neuroscience studies (Margulies
et al. 2016; Huntenburg et al. 2017; Haak et al. 2018; Bajada
et al. 2019; Paquola et al. 2019; Blazquez Freches et al. 2020),
these techniques model both gradual and overlapping modes
of connectivity without reliance on a priori boundaries (Haak
and Beckmann 2020). Recapitulating prior work, we found
that the temporal lobe is best described by three gradients

(Bajada et al. 2019; Blazquez Freches et al. 2020), spanning
medio-lateral (G1), anterior–posterior (G2) and anterolateral-
posteromedial (G3) axes. Although there have been several
reports of asymmetry of the white matter tracts of the temporal
lobe, such as greater fiber density and tract volume in the left
arcuate fasciculus than the right (for review, see Ocklenburg
et al. 2016), the symmetry of the structural gradients identified
here suggests gross similarity between the large-scale network
embedding of left and right temporal lobes. We then tested for
associations with MRI-based measures of curvature, cortical
thickness, and intracortical microstructure. In line with our
hypotheses and prior work suggesting a close link between
internal cortical architecture and structural connectivity (Young
1992; Scannell et al. 1995; Beul et al. 2017; García-Cabezas
et al. 2019), we found strong associations between connectome
gradients and MRI-derived proxies of cortical myelin. The
relationship with cortical thickness and curvature was weaker,
suggesting that our cortical connectivity gradients closely
reflect intracortical factors and only to a lesser extent mesoscale
morphological variations and/or potential biases from sulco-
gyral folding (Schilling et al. 2018). A closer link to microstructure
was also suggested by harnessing BigBrain derived histology
gradients, which describe sensory-fugal trends in internal
cortical cytoarchitecture (Amunts et al. 2013; Paquola et al. 2019).
Collectively, these findings highlight the close relationship
between microstructure and structural connectivity, supporting
the extension of the structural model of connectivity to humans
in the temporal lobes (Young 1992; Scannell et al. 1995; Beul et al.
2017; García-Cabezas et al. 2019).

Many studies found that structural connectivity may predict
functional connectivity by assuming that the strength of func-
tional interactions depends, in part, on the density and effi-
cacy of both direct and indirect structural connections (Honey
et al. 2009; Deco et al. 2017; Wang et al. 2019). We hypothesized
that the structural gradients, despite their low dimensionality,
would still accurately describe functional interactions. Super-
vised learning approaches with crossvalidation could show that
gradient-informed models predicted the spatial layout of previ-
ously described intrinsic functional communities in the human
brain (Yeo et al. 2011). At a more local scale, gradients could
also predict patterns of inter-regional functional connectivity,
even when trained and tested on datasets acquired from differ-
ent scanners. This model was more accurate in lateral regions
than in medial regions. One potential cause of this divergence
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could relate to the increasingly recognized reduction in struc-
ture–function coupling in heteromodal and paralimbic regions
such as the medial temporal lobe (Paquola et al. 2019; Baum
et al. 2020), which would limit the predictability of functional
interactions from structural connectivity patterns. Another, not
mutually exclusive, option is that the decreased signal-to-noise
ratio in the medial temporal lobe reduces the signal fidelity
and potentially prediction accuracy. Overall, our results sup-
port that eigenmode representations of structural connectivity
may potentially underpin intrinsic functional architecture of the
human connectome. Such a conclusion is in line with several
prior studies in healthy individuals showing that whole-brain
structural connectivity gradients shape dynamic signaling at
rest (Park et al. 2021) as well as dynamic brain reconfigurations
during tasks (Murphy et al. 2019). Furthermore, in the study of
brain diseases associated with macroscale dysfunction, connec-
tivity gradients have been used to contextualize changes in brain
network architecture (Hong, Vos de Wael, et al. 2019; Larivière
et al. 2020; Li et al. 2020; Park, Hong, et al. 2020), supporting their
utility to serve as coordinate systems of macroscale functional
interactions in healthy and diseased brains.

Cross-species comparisons between humans and nonhuman
primates provide a potential window into human uniqueness,
and allow studying brain reconfigurations that happened during
primate evolution (Krubitzer 2007; Buckner and Krienen 2013).
Although a remarkable conservation of macroscale organiza-
tional principles between macaques and humans is evident
(Glasser et al. 2014; Margulies et al. 2016; Valk et al. 2020),
higher association cortices have specifically undergone a strik-
ing expansion in relative surface area and potentially increased
participation in spatially distributed functional networks (Hill
et al. 2010; Buckner and Krienen 2013; Mueller et al. 2013; Patel
et al. 2015; Mars et al. 2017). Here, we showed that our struc-
tural connectivity gradients spatially align with the pattern
of evolutionarily diverging brain areas and areal expansion,
an index for relative areal size differences across species (Xu
et al. 2020). Areas near the center of the structural manifold
were less functionally homologous and have undergone more
expansion relative to macaques. This may indicate that evo-
lutionary changes have preferentially occurred along particu-
lar fiber tracts including, for example, the arcuate fasciculus
which has undergone critical anatomical modifications between
nonhuman and human primates (Rilling et al. 2008; Mars et al.
2013; Mars, Eichert, et al. 2018; Ardesch et al. 2019; Eichert
et al. 2019, 2020). When taken together with the cognitive terms
from the Neurosynth meta-analysis, these results indicate that
phylogenetic differences in the temporal lobe are primarily situ-
ated along those tracts associated with self-generated cognitive
processes.

Theoretical accounts, empirical findings, and gradual
changes in research culture have increased the scientific value
of replications in neuroscience (Ioannidis 2005; Moonesinghe
et al. 2007; Open Science Collaboration 2015). Here, we replicated
our findings in two datasets: (1) a set of unrelated young adults
derived from the same dataset as the discovery set (HCP-
Replication) as well as (2) a separate dataset acquired at the
Montreal Neurological Institute (MICs). Even after corrections
for both spatial autocorrelation (Wagner and Dray 2015) and
multiple comparisons (Benjamini and Hochberg 1995), most
findings held across all datasets indicating good reproducibility.
We have released all utilized feature data and associated
analysis scripts to generate the main figures (https://github.co
m/MICA-MNI/micaopen), allowing for independent verification

of our results and potential follow-up analysis. We hope
that these data and associated findings continue to pave the
way into studying the important relationship between the
microstructure, connectivity, and evolutionary development of
the temporal lobe.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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