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Aging is characterized by a progressive inability to maintain homeostasis, self-repair, renewal, performance, and fitness of different
tissues throughout the lifespan. Senescence is occurring following enormous intracellular or extracellular stress stimuli. Cellular
senescence serves as an antiproliferative process that causes permanent cell cycle arrest and restricts the lifespan. Senescent
cells are characterized by terminal cell cycle arrest, enlarged lysosome, and DNA double-strand breaks as well as lipofuscin
granularity, senescence-associated heterochromatin foci, and activation of DNA damage response. Curcumin, a hydrophobic
polyphenol, is a bioactive chemical constituent of the rhizomes of Curcuma longa Linn (turmeric), which has been
extensively used for the alleviation of various human disorders. In addition to its pleiotropic effects, curcumin has been
suggested to have antiaging features. In this review, we summarized the therapeutic potential of curcumin in the
prevention and delaying of the aging process.

1. Introduction

Aging is identified by a progressive inability to maintain
homeostasis, self-repair, renewal, performance, and fitness of
different tissues with advancing age [1]. The picture of aging
is characterized by genetic and environmental factors ulti-
mately leading to gradual but persistent reduction in cellular
proliferation, abnormal oxygen metabolism, and structural
instability [2]. A complex gene network contributes to organ-
ism lifespan by regulating several critical pathways including
protein synthesis and catabolism, energy metabolism, redox
balance, intracellular communication, DNA repair, inflamma-
tion, cellular senescence, and death [3]. The aging process also
involves the vascular system. In this context, cell senescence

involving either endothelial cells (ECs) or vascular smoothmus-
cle cells (VSMCs) [4] determines structural and functional
alterations resulting in development of endothelial dysfunction
[5]. Previous researches identified several molecules and
signaling pathways involved in the aging process: among them,
growth hormone (GH)/insulin-like growth factor 1(IGF1)/fork-
head box O (FOXO) pathway, target of rapamycin (TOR)/ribo-
somal S6 kinase (S6K), sirtuins (Sirts), p38 mitogen-activated
protein kinase (MAPK), and AMP-activated protein kinase
(AMPK) [6–8]. Despite many efforts in clarifying the biology
of aging and its cellular and molecular mechanisms, standard-
ized biomarkers and therapeutic targets are scarce. Only several
senotherapeutics, agents which inhibit senescence (seno-
morphics) and selectively kill senescent cells (senolytics), have
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been proposed. Senolytics are drugs that particularly target
senescent cells through promoting the apoptosis of senes-
cence [9–11].

In this field of research, there is a growing interest towards
the natural compound curcumin (CUR; diferuloylmethane),
which is known as an active therapeutic compound against
various human disorders owing to its numerous pharmacolog-
ical actions [12–17]. In light of this, research groups worldwide
are attempting to clarify biological pathways, pharmaceutical
properties, and potential clinical application of CUR [18]. In
this narrative review, we will summarize the therapeutic
potential of CUR, especially focusing on prevention and delay-
ing of the aging process.

2. Hallmarks of Aging

2.1. Oxidative Stress.A prooxidant environment certainly con-
tributes to the aging process by sustaining oxidative modifica-
tions of cellular molecules [19–21]. Targets of oxidative stress
(OS) include structural damage in cellular macromolecules
such as nuclear and mitochondrial DNA, proteins, and lipids
[22]. Nevertheless, the “free radical theory of aging” is no
longer considered a primitive causal pathway. Free radicals
and related oxidants are a subset of stressors with which all
living beings must cope with over their lifespans. Rather, the
concept of “defective adaptive homeostasis” better describes
how aging organisms fail to dynamically expand the homeo-
static range of stress defense and repair systems. Indeed, many
signal transduction pathways contribute to best fit cellular
response to a particular need.

2.2. Cellular Senescence. Cellular response to stressors includes
three distinctive cellular processes: apoptosis, autophagy, and
senescence [23–25]. The latter (from the latin term “senex”:
growing old) occurs in response to enormous intracellular or
extracellular stress stimuli [26]. Cellular senescence was firstly
described byHayflick andMoorhead [27] as an antiproliferative
process leading to permanent cell cycle arrest lifespan reduction
[25]. Such effect on the biological clock (Hayflick limit) is
generally associated with progressive telomere attrition/dys-
function [28, 29], loss of proteostasis, induction of genes located
in the INK4a/ARF locus [30], aberrant oncogene activation,
DNA damage during cell division/replication, and apoptosis-
resistance [31]. Leadingmediators of cellular senescence include
the p16INK4a/Rb and tumor suppressor p53/p21 CIP1/WAF1 fami-
lies of cyclin-dependent kinase (CDK) [32]. Senescent cells
endure futile growth, hypertrophy, and hyperfunctions,
together with generation and release of inflammatorymediators
named senescence-associated secretory phenotype (SASP) [33,
34]. SASP includes multiple inflammatory elements such as
interleukin- (IL-) 6, IL-8, IL-1, tumor necrosis factor-α (TNF-
α), nuclear factor kappa B (NF-κB), and growth factors like
insulin-like growth factor- (IGF-) 1, platelet-derived growth fac-
tor (PDGF), vascular endothelial growth factor (VEGF), and
basic fibroblast growth factor (bFGF) [35, 36].

Alongside SASP, the core event in cellular senescence cell
nucleus are the disturbances in DNA repair mechanisms,
which determine DNA double-strand breaks senescence-
associated heterochromatin foci (SAHF), terminal cell cycle

arrest with resistance to apoptosis, and loss of regeneration/re-
silience [37]. Additional features include enlarged lysosomes,
overexpression of senescence associated β-galactosidase
(SA-β-gal), and lipofuscin granularity as well. A relevant
feature of aging is chronic low grade inflammation, referred
to as “inflammaging” which is the age-related inflammatory
status, results from immunosenescence, as it is found to be
associated with the majority of age-related diseases sharing
an inflammatory basis [38]. Together with immunological
elements, cellular senescence and the SASP are the major
contributors to inflammaging.

That cellular senescence may have a causative role in
organismal aging [39]. During aging, senescent cells are possi-
bly persistent, activated by random molecular damage and
related with the activation of a DNA damage response [40].
The collection of senescent cells in animal organs may be
involved in the aging process through reducing the renewal
competence of tissues [30] and/or via reforming the tissue
structure and activity by secretion of matrix metalloprotein-
ases, epithelial growth factors, and inflammatory mediators
which could intrude with the tissue microenvironment [41].
Therefore, tissue homeostasis will be compromised which
finally will result to aging.

2.3. Sirtuins. Sirtuins are NAD+-dependent deacetylases, ubiq-
uitously distributed in either prokaryote or eukaryote cells
[42]. In mammalians, 7 Sirt genes (Sirt1 to Sirt7) have been
identified. Sirt1 belongs to the class III histone deacetylases
(HDAC) with activity on various transcriptional factors
(TFs), histones, and cytoplasmic proteins with acyl-lysine
residues [43]. Antiaging properties of Sirt1 include the sup-
pression of a typical senescent secretome through epigenetic
gene modulation [44]. However, the antiaging effects of Sirt1
are far from being elucidated, potentially ranging from mito-
chondrial respiration to stress modulation, energy expendi-
ture, and p53 deacetylation [37, 45].

3. Curcumin

Due to their ubiquitous distribution in food, phytochemicals
attract more attention because of their obvious safety. Accumu-
lating evidences reported how phytochemicals that can extend
lifespan also enhance wellness in different heterotrophic organ-
isms [46–49]. The hydrophobic yellow polyphenol CUR is a
bioactive chemical constituent of the rhizome of Curcuma
longa Linn, extensively used in cooking as food coloring and
preservative. CUR is the main chief ingredient of turmeric
representing nearly 2–5% of the plant [50]. Toxicity studies
claimed it is a safe compound agent even at high doses [51].
Concerning effectiveness, several lines of evidence highlighted
a pleiotropic potential of CUR towards several human diseases,
such as malignancies, skin and immune-related disorders,
cardiovascular diseases, pulmonary and renal fibrosis, nonalco-
holic fatty liver disease (NAFLD), fatigue, neuropathic pain,
bone and muscle loss, neurodegenerative disease, ocular dis-
eases, leprosy, osteoporosis, leishmaniosis, and HIV infection
[52–57]. Pleiotropic functions of CUR mainly rely on the inhi-
bition of IκB kinase (IKK) phosphorylation [58] and the conse-
quent suppression of the nuclear translocation of the NF-κB
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p65 subunit [59]. As an alternative epigenetic modulator, CUR
also enhances Sirt1 expression at both mRNA and protein
levels, ultimately resulting in the suppression of histone acetyl-
transferase (HAT) activity and increased NAD+/NADH ratio
[60, 61]. With the same mechanism, CUR modulated the
expression of several types of microRNAs [62–65]. Through
those mechanisms, CUR supplementation in human mela-
noma cells induces growth arrest in the G2/M phase and then
apoptosis [66]. Other studies also reported that CUR may
target oncogene expression, angiogenesis, invasion, and meta-
static dissemination [67, 68] by interfering with several other
intracellular pathways including hypoxia-inducible factor-1 α
(HIF-1 α), mammalian sterile 20-like kinase 1 (MST1),
enhancer of zeste homolog 2 (EZH2), platelet-derived growth
factor (PDGF) receptor binding,Wnt/β-catenin, transforming
growth factor beta (TGF-β), Sonic Hedgehog, Notch, and
phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target
of rapamycin (mTOR) cascade [69–71]. Alongside with anti-
tumorigenic activity, CUR was also shown to induce antimi-
crobial, antioxidant, antiglycemic, antiseptic, and analgesic
effects [72–74]. This “pleiotropic” potential may be ascribed
to the potent metal-chelating effects of CUR, which include
the scavenging of the superoxide anion, hydroxyl radical,
singlet oxygen, and nitrogen dioxide [75, 76]. In line with this,
other studies demonstrated that CUR may reduce levels of
malondialdehyde (MDA), protein carbonyls, thiols, and
nitrotyrosines. With regard to inflammation, CUR stimulates
a xenobiotic response with upregulation of defense genes
(e.g., phase II enzymes and hemeoxygenase-1 [HO-1]) [77]
and suppression of proinflammatory transcription factors
(e.g., activator protein-1 [AP1]) and cytokines (e.g., TNF-α,
IL-1b, IL-6, IL-8, and monocyte chemotactic protein 1
[MCP-1]), signal transducer activator of transcription (STAT),
peroxisome proliferator-activated receptor-γ (PPAR-γ), acti-
vating transcription factor 3 (ATF3), C/EBP homologous
protein (CHOP), and the inducible inflammatory enzymes
cyclooxygenase- (COX-) 2 and metalloproteinases [78].

Finally, as observed in human skin fibroblasts, CUR may
activate cellular stress response by interacting with the thiol-
disulfide redox system. Such stress determines a rise in cellular
GSH amounts via HO-1 and nuclear factor E2-related factor 2
(NRF2) signaling [79], ultimately improving cellular antioxi-
dant defenses [80, 81]. Moreover, several studies indicated that
CUR and may be used as senolytic and anti-inflammatory
agents for senescent cells [82, 83]. For instance, a CUR analog,
EF24, promoted senescent cell apoptosis and showed protec-
tion effect against ionizing-stimulated senescent cells [83].

4. Effect of Curcumin on Aging/Longevity

4.1. Vascular Aging. Further enhancing a wide spectrum of
activity, growing evidence indicates CUR as a promising anti-
aging agent (Table 1; Figure 1) [84, 85]. The effects of CUR
feeding have been largely investigated in animalmodels, unan-
imously reporting a suppression of intermediated oxidative
stress (e.g., lipoxygenases [LPO], MDA, lipofuscin granules,
and NO) and inflammation [3, 86]. By chelating nitrogen
dioxide (NO2), CUR administration in mice significantly
attenuates nitric oxide- (NO-) associated vascular endothelial

dysfunction and generation of advanced glycation end-
products (AGEs), leading determinants of age-related large
elastic artery stiffening [87]. As an additional mechanism,
CUR fixes lysosomal membranes and reduces the function of
lysosomal acid hydrolases, thus preventing the aberrant deposi-
tion of different connective tissue components in aging endo-
thelium. A similar upgrade in endothelial function was also
observed in postmenopausal women after eight weeks of treat-
ment [88], whereas in elderly with diabetes and cardiomyopa-
thy, CUR mitigated hypertrophy in the aging heart via
suppression of p300, the global transcription activator [89].
Beneficial effects of CUR on vascular aging also concern the
development of age-related macular degeneration (AMD),
one of the most important causes of blindness in elderly [90,
91]. CUR remarkably increases the viability of retinal pigment
epithelial cells (RPECs) modulating their proliferation apopto-
sis and OS [92]. Overall, those evidences suggest potential
application of CUR as an innovative approach to AMD, as
for other ocular diseases (e.g., ocular dryness, conjunctivitis,
uveitis, pterygium, and glaucoma) [93]. Even CUR has been
found to prevent the development of cataract in diabetic rats
by decreasing AGE accumulation and serum LPO [94, 95].
Aging-associated cerebrovascular endothelial dysfunction with
consequent chronic cerebral ischemia also plays a critical role
in stroke, as well as in cerebral amyloid angiopathy, cognitive
impairments, and neurodegenerative disorders [96–98]. One
of the main pathological mechanisms behind this effect is the
generation of ROS, due to the suppression of mitochondrial
uncoupling protein 2 (UCP2) [99] and the downregulation of
AMPK. CUR reverses those effects in cultured ECs, whereas
in experimental models, prolonged CUR feeding decreased
ROS generation and promoted cerebrovascular endothelium-
dependent relaxation, finally leading to improved cerebrovas-
cular function [100–103]. Neuroprotective effects of CUR due
to UCP2 overexpression suppression especially target hippo-
campal neurogenesis in the CA1 area, thus affecting spatial
learning and memory. CUR also prevents detrimental effects
of chronic cerebral hypoperfusion by maintaining cholesterol
homeostasis. CUR also contributes to maintain cholesterol
homeostasis, otherwise upset by chronic cerebral ischemia.
Indeed, CUR promotes cholesterol efflux through the ATP-
binding cassette transporter A1 (ABCA1) and the pathway
involving apoA-I and the liver X receptor (LXR)/retinoic X
receptor (RXR) [104].

4.2. Cognitive Impairments. With similar mechanisms, the
reduction of circulating antioxidants is tightly associated with
memory loss and cognitive impairment in the elderly [105]. It
is then not surprising that CUR has been reported to improve
neuropsychological functions. CUR has several inhibitory
effects on combining aging and Alzheimer’s disease patho-
physiology, such as the suppression of amyloid precursor pro-
tein (APP) and Aβ synthesis and the overexpression of ApoE
and Nrf2 gene, as well as the prohibition of p-mTOR and p-
NF-κB [106, 107]. CUR prevents D-gal-induced brain aging
and cognitive impairment through increments of antioxidant
enzymes and inhibition of apoptosis [108]. Beneficial effects
of CUR on mental abilities and functional capacities are asso-
ciated with a LPO reduction in brain tissue [109], especially in
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the hippocampal area. CUR improves the redox state in this
area and prevents the decline of hippocampal long-term
potentiation by maintaining synapse input specificity [110,
111]. Recently, Olesen et al. described that the dysfunction of
synaptic mitochondria of the hippocampus causing memory
loss during aging. They showed that curcumin feeding signif-
icantly improved integration and activity of the synaptic mito-
chondrial of the hippocampus, inhibiting mitochondrial
swelling and enhancing the production of synapses surround-
ing the mitochondria in mice [112].

4.3. Evidence from Experimental Models

4.3.1. Study of Longevity in Drosophila melanogaster and
Caenorhabditis elegans. Drosophila melanogaster (D. mela-
nogaster) and Caenorhabditis elegans (C. elegans) are widely
recognized models for the study of aging processes [113]. In
particular, D. melanogaster represented a paradigm of exper-
imental gerontology during the last century [114–118]

because of its complex biology and the ease of rearing and
housing as well [119, 120]. More recently, in 1983, Klass iso-
lated the first long-lived mutants of C. elegans [121], which
rose to become a promising model for aging investigations
due to the small size, anatomical simplicity, small genome,
short life cycle, and inexpensive laboratory manipulation
[122]. In C. elegans, longevity is widely determined by the
expression of the Age-1 gene [123, 124]. As one of the main
elements in the insulin/insulin-like growth factor-1 signaling
(IIS) axis, Age-1 is a subunit of phosphoinositide 3-kinase
(PI3K), which suppresses DAF-16 action [123–125]. Sup-
pression of the IIS pathway activates the downstream gene
DAF-16, which in turn promotes the transcription of genes
associated with longevity, metabolism, and response to cellu-
lar stress [126–128]. In line, increased lifespan may also be
obtained through TOR inhibition, another DAF-16 suppres-
sor [129, 130]. By sharing the same downstream signaling of
DAF-16, also the FOXO3 A gene is involved in lifespan
extension, cell growth, and stress response through a direct

Senescent cell

SASP

Senescent cell

SASSASPPASSP

Normal cell

HO-1 Sirt 1eNOS over expression
NO activation 

Genomic stress
DNA damage

p38MAPK

mTORC AKT P53/P21 P16/Rb
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Pre-senescent cell
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Aβ fibrils 
aggregation 

Aging
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Figure 1: Mechanisms by which curcumin modulate aging process and senescence. Curcumin inhibited OS-stimulated p38MAPK
activation, Aβ fibril aggregation, and expression of age-associated genes (dInR, ATTD, Def, CecB, DptB, mth, thor, InR, and JNK),
although curcumin induced eNOS, NO, Sirt1, HO-1, and UCP2 expression. Curcumin also mitigates the SASP and its aging-induction
consequences of senescent cell. Abbreviations: Aβ: amyloid-β; eNOS: endothelial nitric-oxide synthase; HO-1: hemeoxygenase-1;
mTORC 1: mammalian/mechanistic target of rapamycin complex 1; NO: nitric oxide; ROS: reactive oxygen species; SASP: senescence-
associated secretory phenotype; Sirt: sirtuins; UCP2: uncoupling protein 2.
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activity on DNA repair and transcription involving p21/p53
and β-catenin pathways [131–133]. Noteworthy, FOXO has
a multistep regulation involving not only IGF-1 but also
NAD+/Sirt1, 5′AMPK, and OS, all known as aging genes
[134]. Due to these similarity with human beings, C. elegans
became a genetic model organism already in 1965. Multiple
pharmacological interventions have been found to prolong
the survival of D. melanogaster and C. elegans [135–137].
Also, CUR was shown to increase the fecundity, reproductive
lifespan, and child viability ofD.melanogaster [85]. It has been
shown that CUR supplementation at the larval stage of D.
melanogaster elevated the developmental duration and lon-
gevity of adult Drosophila possibly through epigenetic pro-
gramming of the pace of life [138].

CUR-mediated increased longevity was observed in two
distinctive strains of D. melanogaster (Canton-S and Ivies
flies) as a result of the delayed expression of aging genes
(e.g., methuselah (mth), thor, insulin receptor [InR], and c-
jun N-terminal kinase [JNK]), improved locomotion, and
chemoprevention as well [139]. CUR was also shown to
reduce OS, DNA damage, and number of mutagenic pheno-
types induced via high-dose ionizing irradiation. These effects
may be ascribed to ROS scavenging and transcriptional regu-
lation of OS-related genes, which mainly involves γH2Ax, a
histone protein belonging to the H2A family and involved in
DNA damage response [140–142]. Also, in vivo experiments
on CUR-fed diets (0.5 and 1.0mg/g of diet) were effective in
extending the average lifespan in both females (6.2% and
25.8%, respectively) and males (15.5% and 12.6%, respec-
tively), and this effect could be more likely attributed to the
overexpression of Mn-SOD and CuZn-SOD genes and the
downregulation of aging genes associated with the TOR path-
way including Drosophila insulin receptor (dInR), attacin-D
(ATTD), defensin (Def), cecropin B (CecB), and diptericin B
(DptB) genes [143, 144]. Also, in C. elegans, CUR effectively
improves lifespan and aging by lowering intracellular ROS
and lipofuscin. The effects of CUR on C. elegans longevity
are manifested by body size and pharyngeal pumping rate
but not reproduction ability. Further studies revealed that
the long-lived phenotype induced by CUR was maintained
in mev-1 and daf-16 mutants but lost in osr-1, sek-1, skn-1,
unc-43, mek-1, sir-2.1, and age-1 ones [145]. This evidence
indicates that CUR would exert its effects independently of
the Age-1-DAF-16 pathway but rather through other constit-
uents of the IIS pathway. With regard to cognitive impair-
ment, the in vivo experiment demonstrated that CUR can
improve learning and memory also reducing Aβ plaque
formation in the context of Alzheimer disease (AD) [146].
D. melanogaster is a promising animal model for research in
AD [147]. By increasing amyloid fibril conversion, CUR
reduces the generation of prefibrillar/oligomeric species of
Aβ, ultimately protecting against neurotoxicity [148]. The
human β-amyloid precursor cleavage enzyme (BACE-1) is
another critical enzyme targeted by CUR [149, 150] in the D.
melanogaster model of AD [150].

4.3.2. Studies of Cell Senescence: Evidence from Mice and
Rats. High doses of CUR (2.5-10μM) were shown to trigger
senescence in cancer and vascular cells [151]. On the other

hand, low doses of CUR (0.1 and 1μM) failed to prevent early
senescence in doxorubicin-treated (VSMC) and even slightly
accelerated replicative senescence in endothelial cells [152].
It is therefore evident how the antiaging effect of CUR does
not rely on delayed cellular senescence. As reported by Banji
et al., CUR (40mg/kg) and piperine (12mg/kg), especially
when combined, counteract D-gal-induced senescence inmale
Wistar rats by targeting OS and lipofuscin deposition, finally
leading to higher hippocampal volume and function with
improved spatial memory and serotoninergic signaling [153].
Another study even reported how long-time CUR therapy
may progressively reverse cognitive dysfunction in D-gal-
induced senescent mice by delaying the aging process and
improving cognitive functions and locomotor activity, as well
as restoring the mitochondrial enzyme complex function
[154]. In a recent study, CUR supplementation rejuvenates
senescence-associated changes in thymus among D-gal-
induced senescent mice through promotion of proliferating
cells, preventing cells from apoptosis, and enhancing the tran-
scription of the autoimmune regulator (Aire) [155].

CUR feeding (50mg/kg) was also tested in senescence-
accelerated mouse prone (SAMP) mice resulting in increased
hippocampal SOD activity as well as upregulation of p-cal-
cium/calmodulin-dependent kinase II (p-CaMKII) in the stra-
tum lucidum and p-N-methyl-D-aspartate receptor subunit 1
(p-NMDAR1) in the hippocampal membrane [156]. Notewor-
thy, clinical benefits of the CUR analogue PE859 have been
recently reported and associated with reduction of Aβ and
tau aggregates in the mouse brain [157, 158]. Overall, these
findings suggest a role of CUR in improving cognitive difficul-
ties and the expression of hippocampal plasticity-associated
proteins. With regard to vascular function, CUR administra-
tion significantly mitigated premature senescence in HUVECs,
characterized by a reduction of senescence-related β-galactosi-
dase-positive cells, cell division, levels of senescence-related
protein p21 RNA, OS, and apoptosis. CUR is also associated
with enhanced eNOS phosphorylation and NO generation, in
addition to upregulating Sirt1 transcription, translation, and
enzymatic activity [159]. In light of these mechanisms, diets -
containing tetrahydrocurcumin (THC), the mainmetaboli-
te ofCUR, were demonstrated to significantly extendmean
lifespan in maleC57BL/6mice [160], whereas bisdemethoxy-
curcumin administration delayed the OS-caused premature
senescence via Sirt1/AMPK cascade activation [161]. As
recently demonstrated, Sirt1 signaling also mediates the anti-
inflammatory effects of CUR in C57BL/6 mice fed with high
fat diet [162] in addition to improved myocardial structure
and function in streptozocin-induced diabetic mice fed with
THC (120mg/kg/d) [163]. Even more recently, it has been
hypothesized that the antiaging effect of CUR may rely on
the control of core clock genes on which Sirt1 belongs along-
side rBmal1, rCry1, rCry2, rPer1, rPer2, and rRev-erba. CUR
treatment in middle aged male Wistar rats restored the phase
and daily pulse of rCry1, rCry2, rPer1, and rPer2 as in the
young, whereas only rPer1 and partly rBmal1, rCry1, and
rCry2 were restored in the old ones [164]. Moreover, it has
been shown that CUR mitigated mouse ovarian aging,
upgraded embryonic development, promoted oocyte matura-
tion and fertilization via improvement of ovarian hormones,
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and elevated the amounts of SIRT1 and 3 genes as well as atten-
uation of aging-associated oxidative stress and cell death [165].
Besides, CUR can reduce oxidative stress, inflammation status,
and lipofuscin deposition in aged rat liver [166].

5. Conclusion

Aging and senescence are complex processes leading to organ
dysfunction. Despite being permanent, delaying the occur-
rence of these processes is a reliable target, and CUR might
be a promising candidate for this purpose. Nevertheless, evi-
dence from clinical studies on the long-term effects of CUR
on age-related pathological events remains largely understu-
died.While several strategies to enhance the systemic bioavail-
ability of CUR have been suggested, the effects of long-term
therapy with such bioavailability-boosted CUR preparations
is not fully known, and increased concentrations may even
lead to opposite results. Pleiotropic benefits of CUR supple-
mentation involve the control of aging genes, OS, and inflam-
mation in both the vascular system and the central nervous
system. Further studies are warranted to clarify the mecha-
nisms of CUR function for potential clinical application.
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