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Sugarcane is one of the most sustainable energy crops among cultivated crops presenting the highest ton-
nage of cultivated plants. Its high productivity of sugar, bioethanol and bioelectricity make it a promising
green alternative to petroleum. Furthermore, the myriad of products that can be derived from sugarcane
biomass has been driving breeding programs towards varieties with a higher yield of fiber and a more
vigorous and sustainable performance: the energy cane. Here we provide an overview of the energy cane
including plant description, breeding efforts, types, and end-uses. In addition, we describe recently pub-
lished genomic resources for the development of this crop, discuss current knowledge of cell wall meta-
bolism, bioinformatic tools and databases available for the community.
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1. Introduction

Sugarcane (Saccharum spp.) is a perennial, tropical or subtropi-
cal non-cereal C4 grass; the major crop for food and bioenergy pro-
duction and the highest tonnage crop in the world [1]. Mainly
grown for sugar production in the tropical and subtropical regions
of the world, sugarcane has one of the highest solar energy conver-
sion efficiency and is a crop with one of the highest biomass yields
[2–4]. Due to the high yields of both sugar and lignocellulosic bio-
mass it is considered an important feedstock for substituting fossil
fuel energy, either as natural biomass or transformed into liquid or
gaseous forms [5]. An additional advantage is that this semi-
perennial grass allows harvesting for several years (4 to 5 years)
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without the need for replanting, which reduces the cost of bioen-
ergy production [6]. The development of conversion processes that
use all plant carbon in a Biorefineries approach [7,8] has stimulated
the development of plants with several co-products for different
applications, including sugars, biofuels and bioelectricity. In this
scenario, breeders are designing crosses towards the development
and improvement of energy cane, a new type of cane containing a
high yield of fiber.

Over the last century, there was a great effort in breeding pro-
grams and conventional agricultural research to increase the yield
of sugarcane and sugar to reach the current levels [9]. In addition,
research groups around the world, have generated a large amount
of molecular and physiological data on sugarcane. In addition, sug-
arcane geneticists have invested significant effort to explore and
dissect the complex genome of cane using a wide range of genomic
tools. These combined factors make data integration a key step to
achieve a broader understanding of cane physiology and its inter-
action with the environment and climate changes as well as to help
the design of more productive varieties.

In this mini review, we focus on bioenergy and energy cane and
provide an overview of the current genomic resources and data-
bases for the development of this crop. It is important to note that
the theoretical potential of sugarcane dry biomass production is
177 t/(ha yr) or a fresh weight cane yield of 381 t/(ha yr) [10].
Worldwide sugarcane yield averages around 39 and 84 t/(ha yr),
respectively. There is great interest and opportunity to decrease
this yield gap.
2. The Saccharum complex

Sugarcane is the world’s leading biomass crop, produced in over
100 countries [1]. Modern sugarcane cultivars are polyploid inter-
specific hybrids, typically with 10–13 sets of their 10 basic chro-
mosomes, 80–85% of Saccharum officinarum (2n = 80), 10–15% of
S. spontaneum (2n = 40–128) and ~5% with recombined chromo-
somes between these two ancestors [11,12]. Gene duplications as
a result of polyploidization alter the transcriptional landscape
[13] and provide additional flexibility to adapt and evolve new pat-
terns of gene expression for homo(eo)logous gene copies [14]. This
flexibility has been suggested to be an important mechanism
allowing the diversification of adaptive traits [15,16] through neo-
functionalization of duplicated genes [17] and tissue-specific
expression [18].

The high productivity cane makes this crop an excellent source
of sugar, bioethanol and bioelectricity [19] and a promising green
alternative to petroleum [20–22] with vast potential to mitigate
climate change without affecting food security [23]. Additionally,
the myriad of products that can be derived from sugarcane bio-
mass [24], such cellulosic bioethanol, further enhance opportuni-
ties for sugarcane in a portfolio of technologies needed to
transition to a low carbon ‘bioeconomy’. In this scenario, hybrids
obtained through the cross-breeding of commercial varieties of
sugarcane with ancestral species, such as S. spontaneum, have
allowed the production of genotypes characterized by high fiber
content, moderate brix levels, fine stalks and higher tillering rate
– the energy cane [25–27].
Fig. 1. An energy cane RB hybrid and a sugarcane variety (SP791011) at six months
after planting, under field conditions at the experimental site ‘Estação de Floração e
Cruzamento da Serra do Ouro’ (lat 9� 130 S, long 35� 500 W, alt 450 m asl) in Alagoas,
Brazil.
3. The energy cane

Energy cane is an ideal type of sugarcane with high yield of
fiber, more vigorous and rustic, i.e. these plants are less demanding
in soil, climate, water and nutrients, more resistant to pests and
diseases, which brings a series of economic and environmental
advantages [25,28,29]. Efforts to develop this crop include inter-
specific hybridization between modern sugarcane varieties and
other closely related wild species, such as S. spontaneum, which
has the greatest potential as a source of genetic variation for a
number of important traits for bioenergy production and low-
input adaptability [30].

Initially, Tew and Cobil [31] classified energy cane hybrids into
two categories: one (Type I) defined as a cane closer to the conven-
tional sugarcane regarding sucrose content but higher fiber con-
tent; and other (Type II) with only marginal content of sugar but
with fiber content higher than Type I, used exclusively for biomass
production. More recently, Kumar et al. [32] proposed the classifi-
cation of cane varieties considering variation in sucrose and fiber
content. According to the authors, cane type I includes traditional
commercial sugarcane varieties, with high sugar and commercial
yield (13% sucrose and 12% fiber content); cane type II also com-
prises varieties with high sugar and commercial yield, but with
an increase in fiber content (13% sucrose content and >14% fiber
content); cane type III (energy cane) includes varieties for multiple
use purposes, focusing on high biomass production (sucrose con-
tent <12% and >22% fiber content); and cane type IV (energy cane)
embraces varieties for energy cogeneration purposes (sucrose con-
tent <5% and fiber >22%).

Compared to sugarcane commercial varieties, energy canes
have higher ratooning ability and number of tillers [27,29,30,33],
which combined are very important in defining total biomass yield
(Fig. 1). Because this crop is ‘‘vegetative propagation based”, this
characteristic is also important in overcoming one of the most sig-
nificant economic constraints in the cane cultivation: clonal multi-
plication [27]. In addition, there is also a profound difference
regarding the root systems; energy cane produced an abundant
and vigorous root system, surpassing the conventional cane in
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lateral extension, depth and volume. This trait, shared with the S.
spontaneum progenitor, which is considered an invasive weed in
some countries [34], allows its cultivation in marginal lands
because it gives grater rusticity, helps mitigate soil erosion, boost
permanent carbon sequestration and extends the crop life cycle
up to 10 years; this is an important attribute due to the high cost
of replanting sugarcane [27,30].

The energy cane breeding initiatives began in Puerto Rico, with
a pioneering commercial project established to conduct an inte-
grated exploration of sugarcane as a biomass feedstock for multi-
ple products, instead of only sugar [35]. The growing interest in
bioenergy in recent decades pushed several sugarcane breeding
programs world-wide to also produce energy cane commercial
varieties. In the United States, the Cultivar L 79-1002 (‘CP 52-68’
x Tainan, S. spontaneum clone) was developed by the Louisiana
State University Agricultural Center in cooperation with the
USDA-ARS and the American Sugarcane League, Inc. This cultivar
has high biomass yield and fiber content, on average of 257 g kg�1

[36]. The breeding program in Barbados has vigorous canes with
exceptional fiber content (>30%), which are suitable for energy
cogeneration [37]. Mauritius developed a similar program, aiming
the increasing of biomass and fiber yield [38]. Other genetic
improvement initiatives have been conducted in Australia
[39,40], Colombia [41], Japan [42-44], and Thailand [45]. Further
details about breeding programs using S. spontaneum as an integral
part of their activities can be found in Matsuoka et al. [27] and da
Silva [30].

In Brazil, energy cane hyrids were obtained by Canavialis, a pri-
vate sugarcane breeding company [27]. In 2011, an initiative was
launched to create the first biorefinery in South America to pro-
duce cellulosic ethanol from sugarcane residues and energy cane
genotypes, the Brazilian Group GranBio, an innovation industry
for ethanol generation through biomass conversion [46]. New vari-
eties have been developed by RIDESA (Inter-University Network
for the Development of Sugarcane Industry) at the experimental
site ‘Estação de Floração e Cruzamento da Serra do Ouro’ (lat 9�
130 S, long 35� 500 W, alt 450 m asl), Federal University of Alagoas
(UFAL), Brazil. This institution maintains an important collection of
sugarcane germplasm, which holds modern hybrids and a myriad
of Saccharum, Erianthus and Miscanthus accessions. In a study con-
ducted by UFAL/RIDESA researchers, six energy cane clones were
selected which presented an overall average of 24.7% higher yield
of dry biomass/ha as compared to the standard sugarcane variety
(RB0442) (Table 1). Plants were grown under field conditions at
São Miguel dos Campos – Alagoas – Brazil; and traits were mea-
sured at 13 months after planting and in the second harvest year.

There are three major problems in the selection of energy cane
clones: high incidence of smut disease (Sporisorium scitamineum),
high flowering rates and low unit stem mass. Thus, the major chal-
lenge of genetic breeding for the commercial cultivation and con-
solidation of energy cane cultivars is to use more effective
strategies to overcome these three problems. In addition, there
are other technological (agro-industrial) bottlenecks, such as: (i)
Table 1
Comparison of yield related traits between six RB energy cane clones and a sugarcane sta

Value Traits

FB DB

Top 6 RB energy cane clones Min 131.8 43.2
Average 137.6 46.4
Max 153.3 50.1

RB0442 Average 126.5 37.2
RB clones vs RB0442 % 8.8 24.7
CV % 20.94 21.1

CV = coefficient of variation; FB = fresh biomass (t/ha); DB = dry biomass (t/ha); TFH = fi
in mechanized harvesting, development of harvesting machines
for high biomass and high fiber cultivars; and (ii) in industrial pro-
cessing, improve the efficiency of grinding for broth extraction
(Geraldo Barbosa, UFAL, personal communication).
4. Sugarcane genomic resources

As mentioned before, modern sugarcane cultivars are polyploid
interspecific hybrids and have a large (~10 Gb) and complex gen-
ome. Nevertheless, opportunities to accelerate breeding progress
and enrich the knowledge of the fundamental biology of this
important crop drive efforts to explore and dissect its complex
genome using different genomic tools and to develop a high-
quality reference genome.

After over a decade of multiple parallel genome sequencing ini-
tiatives [47,48], Garsmeur et al. published the first mosaic mono-
ploid genome reference of the modern cultivar R570 [49]. This
study relies on 4535 bacterial artificial chromosomes (BACs)
sequences that were colinear to the gene-rich portion of the sor-
ghum genome (used as a reference). The final assembly consisted
of 382 Mb of high-quality sequence in 3965 contigs, organized as
a single tiling path, representing the single copy sugarcane gene
space, and includes 25,316 predicted protein-coding gene models.

The nextmilestonewas the publication of the first allele-defined
genome reference of a tetraploid S. spontaneum genotype
(AP85-441) [50]. To this end, authors took advantage of multiple
sequencing technologies including high-throughput chromatin
conformation capture (Hi-C) to assemble 32 pseudo-chromosomes
(2.9Gbp) comprising 8 homologous groups of 4 members each,
bearing 35,525 genes with alleles defined. Subsequently, Nasci-
mento et al. [51] published a new S. spontaneum gene space
reference (from accession US851008), including 39,234 genes.

Recently, our group completed the assembly (4.26 Gb) of the
Brazilian modern cultivar SP80-3280 [52], which includes the com-
plete sequence of 373,869 genes and their upstream regions which
may be further explored to identify regulatory promoter elements.
This is the largest genomic data set available for the sugarcane
researchers’ community and includes putative homo(eo)logs
(mostly 2–5 copies) for a large fraction of the SP80-3280 gene
space [52].

To date, most of the sugarcane RNA-seq initiatives are based on
de novo transcriptome assembly [53–69]. Nevertheless, a few stud-
ies also consider the closely related species Sorghum bicolor [70],
the S. officinarum gene indices (SoGI) v3.0 [71] or the previously
de novo assembled transcriptome [72] as a reference for transcrip-
tome analysis. Further transcriptome studies are expected to take
advantage of the multiple reference genomes now available.

To investigate the value of the three largest public assemblies as
a genomic resource, we used RNA-seq data from Kasirajan et al.
[71]. These authors created RNA-seq libraries from top and bottom
internodes of 20 different genotypes, including commercial
cultivars and introgression lines derived from crosses with wild
ndard variety (RB0442).

Fiber (%) TFH TRS TSH

20.2 26.6 51 10.6
22.7 31.2 67.8 12.7
24.1 33.9 96.2 15.1
13.8 17.4 122.1 18
64.5 79.3 �44.5 �29.4

2 16.97 25.00 29.01 28.49

ber (t/ha); TRS = Total Recoverable Sugar (%); TSH = sugar (t/ha)



Fig. 2. Alignment rates of RNA-seq libraries from the top and bottom internodes of 20 different genotypes [71], contrasting for fiber content, against the monoploid R570
hybrid assembly [49], the AP85-441 tetraploid S. spontaneum genome reference [50] and the SP80-3280 hybrid gene space assembly [52].
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S. spontaneum relatives and Erianthus. We used HISAT2 [73] with
default parameters to align these RNA-seq reads against the mono-
ploid R570 hybrid assembly [49], the AP85-441 tetraploid S. spon-
taneum reference [50] and the SP80-3280 hybrid gene space
assembly [52].

For the vast majority of sequenced samples, the SP80-3280
assembly resulted in higher alignment rates than those against
the monoploid reference and the S. spontaneum assembly (Fig. 2).
Only in the very high end of alignment rates did the AP85-441
assembly perform better for three of the 40 samples. These results
show that these genome assemblies, and in particular the SP80-
3280, can be used as a reference for downstream genomic studies.
Combining both de novo and reference-guided transcriptome
approaches, especially by taking advantage of multiple genome
references, may allow the understanding of the extent to which
homo(eo)logs resemble or differ from each other in their expres-
sion patterns, the spatiotemporal dynamics of these relationships,
and how epistatic interactions between individual homo(eo)logs
affect biological traits.
Table 2
Number of cell wall-related genes and NAC and MYB transcription factors identified in diffe
[49]; the allele-define genome reference of S. spontaneum (AP85-441) [50]; the SP80-3280 g
Project (SUCEST) [94].

Gene class R570

Cell Wall Differentiation 83
Cell Wall Growth/Extension 54
Lignin metabolism 31
Other Glycan Degradation 117
Phenylpropanoid biosynthesis 58
Polysaccharide biosynthesis 40
Structural proteins 15
Unknown 1
MYB 178
NAC 101
5. Linking genomic data to biomass improvement by exploring
the plant cell wall metabolism

Plant biomass is composed mainly by secondary cell walls
(SCW) and, consequently, achieving tailor-made biomass for
bioenergy could benefit from a detailed understanding of SCW
biosynthesis. The potential use of currently available sugarcane
genomic resources for identifying classes of genes involved in
SCW biosynthesis will help to shed light on these aspects. Table 2
indicates the number of cell wall-related genes found in different
Saccharum genomic resources as well as transcription factors
(TFs) from the two main families, NAC and MYB, involved in the
gene regulatory network (GRN) controlling SCW biosynthesis.

The SCW-GRN has been elucidated in Arabidopsis and it is com-
prised by a three-layered structure. At the top level, TFs from the
NAC family, named VASCULAR-RELATED NAC-DOMAIN (VNDs)
and NAC SECONDARY WALL THICKENING PROMOTING FACTOR
(NSTs) genes, act as master switches activating cell differentiation,
including programmed cell death to form tracheary elements, and
rent Saccharum ssp. genomic databases: the R570 monoploid genome reference (R570)
ene-space assembly; and the SAS (Sugarcane Assembled Sequences) from the SUCEST

AP85-441 SP80-3280 SUCEST

386 742 175
219 434 58
168 541 53
456 870 177
311 511 123
220 475 112
68 103 27
7 7 5
999 613 120
412 884 63



Fig. 3. Overlap of MYB genes among the three sugarcane genomic assemblies (datasets). All genes classified as MYBs (Table 2) were used for reciprocal blastp analysis among
all three datasets. A, overlap of SP80-3280 with the other two databases; B, overlap of R570 with the other two databases; C, overlap of AP85-441 with the other two
databases. Genes with coverage and identity >=90% were considered ‘‘overlapping genes”.
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SCW deposition in vessels and fibers [74–76]. They activate a sec-
ond layer of master switches, comprised by TFs from the MYB fam-
ily (AtMYB46 [77] and AtMYB83 [78] in Arabidopsis). These second
level TFs activate biosynthetic genes of cellulose, hemicellulose
(xylan) and lignin and a third layer of TFs, turning on SCW
deposition. These downstream TFs activate other aspects of SCW
deposition, with some redundancies, and includes transcriptional
repressors of NAC master switches, such as AtMYB32 [79], estab-
lishing a negative feedback loop.

Besides this three-layer core structure and key players of GRN
being conserved among vascular plants studied so far [80,81],
including grasses like rice, maize, brachypodium, sorghum, mis-
canthus and switchgrass, considerable divergence of transcription
factors target diversities has been reported [82–91]. Even among
grasses some divergences of TF target repertoires may exist, such
as in MYB SCW repressors orthologs [92]. Within the R570, SP80-
3280, AP85 and SUCEST SAS (see below) databases (Table 2), we
have found up to 884 and 999 NAC and MYB genes, respectively,
which are potential targets for further exploration. For the NAC
family, this number is 8-11x higher than in rice (105 genes) and
Arabidopsis thaliana (75 genes) genomes [93], putting in perspec-
tive all the intricacy and diversity found in the Saccharum complex.

By comparing the overlap of genes among the three references,
we can estimate how these datasets can complement each other. In
the transcription factor MYB family, 15–50% of these genes is com-
mon to all three genotypes (Fig. 3), suggesting that all three data-
bases have their particularities, given the fact that they are derived
from different species (S. spontaneum) or varieties (R570 and SP80-
3280). This is evident for AP85-441 (S. spontaneum) which reflects
in approximately 50% of MYB genes not overlapping to sugarcane
varieties (Fig. 3C).

As lignin is one of the main causes of biomass recalcitrance,
hampering lignocellulosic biofuels production [95–99], much
effort has been made to understand its biosynthesis and polymer-
ization and how to engineer it. Lignin is a phenolic polymer com-
posed of three main units, p-hydroxyphenyl (H), guaiacyl (G),
and syringyl (S), crosslinked to hemicellulose providing strength
and rigidity to the cell wall [100]. Although known for years
[100], additional insight into the phenylpropanoid pathway and
lignin synthesis have occurred recently. For example, the
Caffeoyl-shikimate esterase (CSE) [101], the bifunctional pheny-
lalanine/tyrosine ammonia lyase (PTAL) [102] and a bifunctional
cytosolic ascorbate peroxidase functioning as C3H [103] are miss-
ing links in the phenylpropanoid pathway that have only recently
been discovered. There are ~511 genes in the phenylpropanoid
pathway of SP80-3280 (Table 2), whereas other species like Ara-
bidopsis thaliana and the model C4 grass Setaria viridis have only
26 [104] and 56 [105], respectively. Gaps in our knowledge include
how monolignols, the lignin monomers, are transported to the
apoplast for polymerization [106]. To date, only one transporter
has been characterized, AtABCG29, which is responsible for
transporting the precursor of p-hydroxyphenyl (H-units), a minor
component of lignin, but other routes should exist since loss-of-
function mutations in AtABCG29 reduce H-units, but do not
eliminate it [107].

The majority of studies about plant cell wall metabolism are
derived from dicot model plants, particularly Arabidopsis. How-
ever, grasses and dicots diverged ~150 million years ago; therefore,
considerable differences in their vascular and morpho-anatomic
patterns and cell wall structure and composition have emerged.
Grasses have several distinct features from eudicots cell walls
[108], with different abundance of pectin, structural proteins and
phenolic compounds and also hemicellulose structure and compo-
sition [109]. Eudicots have only traces of H-units and low levels of
other phenolic compounds in their cell walls, whereas grasses have
significant amounts of H-units and increased levels of hydroxyci-
nammic acids [110], especially ferulic and p-coumaric acids ester-
ified to arabinoxylan [108,111,112] and ferulate-monolignol
conjugates incorporated to lignin [113]. Furthermore, the flavonoid
tricin was discovered in monocot lignin [114,115], acting as a
nucleation site for lignification.

Grasses have arabinoxylan as the main hemicellulose, but eudi-
cots do not have arabinosyl substitution in secondary wall xylan,
which affects how lignin is crosslinked to hemicellulose [116].
Moreover, mixed-linkage glucan is a monocot-specific hemicellu-
lose, due to the absence in eudicots of the genes responsible for
its biosynthesis, cellulose synthase-like F and H (CslF e CslH)
[117–119]. Also absent in eudicots, the bifunctional PTAL can use
tyrosine as well as phenylalanine as substrate in the first step of
phenylpropanoid pathway yielding 4-coumarate, thus bypassing
the reaction catalyzed by cinnamate 4-hydroxylase (C4H), giving
plasticity to the metabolism [102]. Furthermore, a transcription
factor from the MYB family (BdSWAM1) was recently reported as
SCW biosynthesis regulator in Brachypodium distachyon, although
its clade is not found in the Brassicaceae family [120], which
includes Arabidopsis. On the other hand, CSE, an essential enzyme
in eudicot phenylpropanoid pathway whose down-regulation
improves biomass saccharification, does not have a bona-fide
ortholog identified in grasses so far [101,121,122]. Given all these
differences, it is expected that considerable genetic divergence
may be found and much of the knowledge from dicot cell wall can-
not be extrapolated to grasses. Therefore, these differences can
only be uncovered by studying grass functional genomics.

How SCW biosynthesis is connected to plant growth and bio-
mass accumulation is still less understood. However, unknown fac-
tors linking these two processes may exist [123]. For example, one
of these factors could be the transcriptional regulatory Mediator
complex, since it has been reported to directly control lignin
biosynthesis and its disruption rescues dwarfing phenotype in Ara-
bidopsis lignin-deficient mutants [124,125]. Such interactions are
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completely unknown for grasses and may be species-specific, rais-
ing the need to study crop plant omics [123]. Categorizing these
hidden molecular hubs linking SCW biosynthesis to plant growth
and other physiological processes are crucial to move forward in
developing novel biotechnological strategies to improve plant bio-
mass [123].

Identifying genes of interest, addressing grass specificities and
finding the missing links to improve biomass accumulation and
quality is a major challenge, especially in a complex genome spe-
cies such as sugarcane. We expect that the sugarcane researchers
can take advantage of genomic databases such as the ones
described here to explore cell wall related-genes (Table 2), for
example, thus helping to advance sugarcane functional genomics
and giving new opportunities for molecular breeding to achieve
and improve energy canes.
6. SUCEST-FUN Database: A platform for sugarcane data
integration in a genomic context

In addition to the recent genome assemblies, plant genomic
databases such as GRASSIUS [126], TropGENE [127], Phytozome
[128], Plant TF database [129], MOROKOSHI [130], KBase [131],
Gramene [132], PLAZA [133] and Plant GDB [134], are important
foundations for molecular breeders to mine candidate genes and
to facilitate molecular crop breeding.

Specially for sugarcane and energy cane breeders, the SUCEST-
FUN Platform (http://sucest-fun.org/) [135] was developed to
allow data analysis on five main aspects: i) gene annotation; ii)
gene expression; iii) integration of public resources; iv) sequencing
projects; and v) functional genomics. The database was initially
based on 43,141 SAS (Sugarcane Assembled Sequences) from the
SUCEST Project [94] and subsequently the 17,500 ORFeome genes
generated using RNA-seq of sugarcane ancestral and hybrid vari-
eties [69], which are useful for protein characterization, single
nucleotide polymorphism analysis, splicing variants identification,
evolutionary and comparative studies.

An important advantage of the SUCEST-FUN Database is the in-
depth automatic and manual annotation conducted by our group
and the definition of curated catalogs of transcription factors, cell
wall genes, signal transduction genes (including kinases and phos-
phatases), KEGG metabolic pathways and enzymes, transposable
elements, as well as orthologous gene analysis among grasses.
For gene expression studies, the SUCEST-FUN Database supports
three microarray platforms, including: (i) the Signal Transduction
(SUCAST) array, composed by 1900 genes with 152 hybridizations;
(ii) the RNA/Carbohydrate Metabolism and Signal Transduction
(SUCAMET) array, composed by 4600 genes with more than 150
hybridizations; and (iii) the general regulatory function (CaneReg-
Table 3
Public microarray data using the Signal Transduction (SUCAST [137]) array and general re

Platform GEO accession number Experiment description

Platform Series

SUCAST GPL3799 GSE4966 Phosphate starvation
GSE4967 Response to herbivory by Diat
GSE4968 ABA treatment
GSE4969 MeJa treatment
GSE4970 Response to N2-fixing endophy
GSE4971 Drought response
GSE14732 Sucrose content relate to drou

CaneRegNet GPL14862 GSE33574 Drought
GSE42725 Circadian rhythms
GSE87826 Sugarcane vs Leifsonia xyli sub
GSE124990 SP80-3280 growth and matura

Sugarcane Ancestral
GPL22278 GPL22278 Ethephon- and AVG-induced t
Net) array, composed by 14,522 genes, including sense and anti-
sense probes with 122 hybridizations. These transcriptome
studies used samples from multiple plant materials such as ances-
tral genotypes and commercial varieties; multiple tissues, such as
leaves, internodes and roots; multiple conditions, such as field and
greenhouse; and multiple treatments, such as drought stress,
developmental and circadian stages, high CO2 [136–140]. In this
scenario, these experiments, summarized in Table 3, are a valuable
data source for co-expression analysis, a promising approach to
unravel complex biological processes and regulatory networks,
which can be extracted from available tools in the platform [141].

At the genome level, the annotation of public Sugarcane BAC
sequences [47] and availability of a genome browser (available
at http://sucest-fun.org/cgi-bin/cane_regnet/gbrowse2/gbrowse/
microsoft_genome_moleculo_scga7/) with the gene space assem-
bly of SP80-3280 polyploid cultivar [52] enables the survey of
sequences and annotation in a global and dynamic way. For
instance, we present one example of how we can explore this
genomic tool in Fig. 4. Using the ‘SCRURZ3080F11.g’ SAS ID we
searched for SP80-3280 contigs holding this transcript sequence
(annotated as a MYB transcription factor). As a result, we found
unique matches to nine different contigs, which may represent
putative homo(eo)logs for this gene (Fig. 4A). In addition, we fur-
ther present the genomic features of one of these contigs (scga7_u-
ti_cns_0226226), such as SAS [94] matches, predicted genes [52]
and RNA-seq [69] alignment results (Fig. 4B).
7. Final considerations

Increasing plant yields is one of the greatest challenges of
biotechnology. Computational tools that link genome sequences,
their functions and possible attributes useful for breeding are
greatly needed to speed up the process of improving sugarcane
and the energy cane. Plant yields are directly impacted by lignocel-
lulosic metabolism. We give an overview of the main genes
involved and their regulators. Considering the size and complexity
of cane genomes, the fact that many species have been used in
breeding and the polyploidization that arose, datamining for genes
of interest is a significant bioinformatics challenge for this crop.
The SUCEST-FUN Platform comprises a robust infrastructure for
storage, continuously updating, annotation, easy and controlled
access and integration among the functional catalogs of the sugar-
cane transcriptome. Through various data-driven clustering analy-
sis tools, crossings and enrichment analysis it allows for a systems
biology approach. This will be an important resource considering
progenies need to be analyzed in an integrated manner for multi-
ple characteristics (technological, physiological, biochemical,
genetic traits) for the construction of gene networks.
gulatory function (CaneRegNet [138]) array.

Number of hibridizations Reference

16 [137]*
raea saccharalis 8 *

16 *
12 *

tic bacteria association 8 *
12 *

ght and cell wall metabolism 80 *
6 [138]
22 [139]

sp. xyli. 4 [142]
tion 30 [52]

36 [141]
ranscriptional changes 24 [143]

http://sucest-fun.org/
http://sucest-fun.org/cgi-bin/cane_regnet/gbrowse2/gbrowse/microsoft_genome_moleculo_scga7/
http://sucest-fun.org/cgi-bin/cane_regnet/gbrowse2/gbrowse/microsoft_genome_moleculo_scga7/


Fig. 4. A view of the SUCEST-FUN genome browser, available at http://sucest-fun.org/cgi-bin/cane_regnet/gbrowse2/gbrowse/microsoft_genome_moleculo_scga7/. A: Screen
shot of the result of searching for the ‘SCRURZ3080F11.g’ SAS (Sugarcane Assembled Sequence) derived from the SUCEST Project [94]. This SAS is annotated as a MYB
transcription factor and has 9 matches (putative homo(eo)logs) in the SP80-3280 gene space. Yellow bars represent contigs and red diamonds indicate match position. B:
Screen shot of the result of searching for the ‘scga7_uti_cns_0226226’ contig, which contains ‘SCRURZ3080F11.g’.
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